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Abstract

Training deep learning (DL) models is a complex process,
making it prone to silent errors that are challenging to detect
and diagnose. This paper presents TRAINCHECK, a frame-
work that takes a proactive checking approach to address
silent training errors. TRAINCHECK automatically infers in-
variants tailored for DL training. It uses these invariants to
proactively detect silent errors during the training process
while providing debugging help. To evaluate TRAINCHECK,
we reproduce 20 real-world silent training errors with diverse
root causes. TRAINCHECK successfully detects 18 errors
within a single training iteration. It also uncovers 6 unknown
bugs in popular training libraries that lead to silent errors.

1 Introduction
Training deep learning (DL) models has become integral for
many application domains [8, 17, 24]. DL training, however,
is a complex process involving multiple steps and layers of
components such as user code, compiler, training framework,
optimization libraries, drivers, and distributed systems. More-
over, these components undergo frequent updates [9, 13] due
to the rapid pace of DL research. Consequently, training jobs
are prone to errors from various sources [51].

To make matters worse, while some errors cause immediate
job failures and are relatively easy to identify (e.g., GPU out
of memory or illegal argument exceptions), many others are
silent or latent. Such errors do not cause obvious training dis-
ruptions but eventually produce suboptimal/incorrect models
or cause noticeable failures much later.

Figure 1 shows a real-world silent training error in Hug-
gingFace’s training of BLOOM-176B [4]. DeepSpeed’s
BF16Optimizer was used in this training task, which had a
logic bug in gradient clipping. This bug did not trigger any
exception but caused parts of the model to diverge silently
across GPUs, a problem that went undetected for 10 days.

Detecting such silent errors is inherently difficult due to the
lack of clear signals. When they are detected, substantial train-
ing resources have been wasted. The problem is further com-
pounded by the trend of training large models using massive
resources. Moreover, during diagnosis, developers are often
left in the dark and have to take a trial-and-error approach [53],
such as tweaking hyperparameters and rerunning the task
while the real root causes are elsewhere, which is tedious and
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Figure 1: Silent error in BLOOM-176B training.

time-consuming. Indeed, developers have expressed frustra-
tion with diagnosing these silent errors [7, 20, 37, 38, 46, 47].

Current practices rely on high-level model evaluation sig-
nals such as loss, accuracy, and gradient norms [1, 5]. While
these signals provide useful information about overall training
progress, they are not designed for error detection. They are
often noisy and evaluated only periodically, leading to missed
or delayed detection. Even when anomalies are observed, they
provide little diagnostic value for identifying the root cause.
The aforementioned BLOOM-176B training error, for exam-
ple, did not manifest as abnormal loss or accuracy, and it took
developers 12 days to diagnose and resolve the problem [4,6].
A few static solutions exist to detect certain errors with spe-
cific root causes, such as tensor shape mismatches [22], but
they fail to cover many other types of silent training errors.

Our insight is that a fundamental reason behind the chal-
lenges is the lack of proactive checks to continuously validate
a training task. We call such checks, training invariants, which
are rules that should hold throughout the training. Violation
of a training invariant indicates potential errors. The concept
of invariants is not new and has been widely studied in tradi-
tional software. However, existing tools such as Daikon [16]
focus on low-level variable relationships (e.g., var1 > var2)
and fail to capture the high-level semantics of silent errors in
DL training, making them ill-suited for this domain.

Based on this insight, we design an end-to-end framework,
TRAINCHECK, that enhances a DL training job with train-
ing invariants to proactively detect a wide variety of silent
errors. Compared to generic high-level signals, the training
invariants TRAINCHECK introduces can more accurately and
quickly detect anomalies. Upon detection, TRAINCHECK pro-
vides debugging information indicated through the violated



invariant and relevant traces. Compared to static approaches,
TRAINCHECK can provide stronger assurance. Its checks cap-
ture misbehavior caused by various root causes. It operates
continuously with a running training task, enabling the de-
tection of real errors in deployment, which may only occur
under specific datasets, environments, or scales.

In designing TRAINCHECK, we aim to explore two key
research questions. First, what kind of training invariants are
effective to address silent training errors? We initially hy-
pothesized that, due to the stochastic nature of DL training,
the invariants would need to encode probabilistic predicates,
which can be complex and unstable. Our further investigation
leads to the insight that, by properly choosing the level of
behavior to observe, a training invariant can be made simpler
and more precise. Non-determinism is an artifact of checking
at too high of a level. The invariants should operate at a level
below model evaluation signals, but not as low as traditional
software invariants. In the BLOOM-176B example, an effec-
tive training invariant is roughly: the weights of certain layers
should stay consistent across tensor parallelism (TP) ranks.
We thus focus on such rule-level training invariants.

Second, how can we automatically obtain and check train-
ing invariants? The above invariant description is informal.
The actual invariant must be concrete and detailed enough to
be directly checkable for a specific training task. It is imprac-
tical to ask developers to manually write and maintain such
invariants. Deep learning frameworks and training practices
evolve rapidly, introducing new APIs, model architectures,
and algorithms that make handwritten invariants difficult to
catch up. Moreover, invariants must match precisely with the
actual implementation, not just high-level intent.

Automated inference is needed, but this is challenging. For
example, to infer the above invariant, we need to collect infor-
mation about each worker’s role (e.g., TP rank), tensor prop-
erties (replicated or partitioned), and observed values. The
conditions under which this invariant applies are subtle: it only
holds in distributed training when using tensor parallelism and
LayerNorm, and only for weights replicated across TP ranks.
This makes identifying the correct precondition critical—for
example, the tensor must have tensor_model_parallel=False.
These kinds of invariants go beyond what traditional invariant
inference tools like Daikon [16] are designed to handle.

TRAINCHECK is designed to address these unique chal-
lenges and automatically infer concrete, checkable training
invariants for assorted DL training tasks written on top of
popular frameworks such as PyTorch [2] and DeepSpeed [40].
TRAINCHECK first instruments a given DL training program
to collect traces. To achieve high usability and low overhead,
we take a monkey-patching approach to dynamically inject
the instrumentation code for framework API invocations and
a proxy-based approach to intercept state updates.

To infer invariants from the collected traces, TRAINCHECK
defines a set of generic relation templates. It uses an effi-
cient algorithm that generates hypotheses based on a relation

template and validates the hypotheses in the traces to gener-
ate invariants. TRAINCHECK further designs an algorithm to
deduce the precondition, if any, for each invariant.

To use the inferred invariants for detecting silent training er-
rors in a specific training pipeline, TRAINCHECK selectively
instruments the pipeline for only information relevant to the
invariants. A verifier continuously validates the traces from
the instrumented training task to check violations.

Unlike traditional invariant inference tools that operate
within a single program, a unique feature of TRAINCHECK
is its ability to generate invariants transferable across dif-
ferent training programs and even different libraries. This
makes TRAINCHECK broadly applicable and adaptable. Con-
sequently, we can leverage high-quality DL training pipelines,
such as those found in tutorials and example repositories, e.g.,
PyTorch examples [35], to infer the invariants and apply them
to other training programs. This helps with both improving
invariant accuracy and aggregating effective invariants.

For evaluation, we collect and reproduce 20 real-world
silent training errors with diverse root causes. TRAINCHECK
detects 18 cases within a single training iteration while provid-
ing debugging hints. TRAINCHECK additionally uncovers 6
previously unknown errors, all of which have been confirmed
with 3 being fixed. We also share our experiences applying
TRAINCHECK to various DL training scenarios and highlight
challenges and opportunities in this domain. TRAINCHECK is
open sourced at https://github.com/OrderLab/TrainCheck.

The contributions of this paper are as follows:
• We investigate the notorious yet under-explored problem of

silent errors in DL training and conduct an empirical study
to shed light on their characteristics.

• We propose an approach that uses training invariants to
proactively validate DL training and catch silent errors.

• We design and implement TRAINCHECK, which, to the best
of our knowledge, is the first framework that automatically
infers and checks invariants tailored for DL training tasks.

• We evaluate TRAINCHECK in detecting real-world silent
training errors and exposing unknown errors.

2 Silent Errors in DL Training
To gain a deeper understanding of silent training errors, we
conduct an empirical study on real-world errors that DL prac-
titioners encountered. We aim to provide insights regarding
their root causes, impact, and current detection methods.

Methodology To ensure the study is representative, we
inspect diverse sources: (1) GitHub issues from popular li-
braries such as PyTorch [36] and DeepSpeed [12], (2) dis-
cussion forums such as StackOverflow [41] and the PyTorch
forums [34], and (3) papers and blog posts from DL practi-
tioners [6,52]. For GitHub, we search closed issues labeled or
containing the keywords “correctness” or “silent”. For discus-
sion forums, we search for posts with “silent” or “bug” in the
title or description. We also examine DL training papers and
blog posts from large organizations such as HuggingFace [4],

https://github.com/OrderLab/TrainCheck
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Figure 2: Root cause locations and types of the studied errors.

Bloomberg [45], and Meta [14, 52], particularly those dis-
cussing widely deployed LLMs like Llama3 [14], OPT [52],
and BLOOM [4]. These sources often describe errors arising
in industrial-scale training pipelines. Many of the candidate
reports from GitHub and user forums are incomplete or poorly
understood, as silent errors are often difficult to diagnose. We
carefully inspect each case and curate a set of high-quality
instances that are well-documented, diagnosed with clear root
causes, likely reproducible, and impactful.

In total, we collect 88 silent errors with known root causes.
Among the sources, 70 are GitHub repository issues, 16 from
discussion forums such as StackOverflow and the official
PyTorch Forums, and 2 from industrial reports [4, 52].

2.1 Analyses and Observations
Diverse Root Causes The studied errors are caused by de-
fects in a wide range of components involved in DL training,
including user code, framework, compiler, mathematical oper-
ators for different hardware or from optimization libraries, and
underlying system components such as driver or hardware.

Figure 2a shows the distribution of the locations of the
root causes. The majority of the errors are caused by user
code (32%) and framework (32%), followed by mathematical
operations (12%), hardware (12%), compiler (8%), and other
factors (4%). User code may contain missing or incorrect API
calls or poorly chosen hyperparameters. Frameworks may
have bugs in their Python components, often involving high-
level algorithm logic. Mathematical operations such as matrix
multiplication can produce inaccurate results. Hardware fail-
ures are usually caused by driver or device faults that lead
to communication errors or memory corruption. Compiler
failures occur when Torch Dynamo, PyTorch’s JIT compiler,
is unable to compile the pipeline correctly.

Figure 2b shows the root cause types for the studied cases.
For user-code-induced silent errors, we identify two primary
categories: (1) Incorrect Implementation and (2) Inappropri-
ate Design Choices. The first includes incorrect, missing, or
inconsistent API calls or parameter updates. For example, one
error is caused by a missing zero_grad() inside the training
loop, resulting in noisy gradients; another stems from initial-
izing the optimizer before model transformations, leaving the
optimizer with incorrect parameters to update. The second
category involves flawed design choices, such as selecting an
unsuitable loss function, setting an overly aggressive dropout
rate, or using a problematic data processing pipeline. While in-
dividual components may appear correct, their interaction of-

Iter Type Loss Diff PPL Diff Diff (Loss/PPL)

2000 Valid +1.14% +1.43% +0.014 / +0.050
2000 Test +2.74% +3.30% +0.032 / +0.107
4000 Valid +3.05% +3.36% +0.033 / +0.099
4000 Test +4.67% +4.79% +0.047 / +0.131

Table 1: Reproducing DeepSpeed-1801 (the root cause of BLOOM-
176B silent training error) in a small transformer-based language
model. Due to resource constraints, we trained for only 2000 and
4000 iterations. However, the impact of the error—observed as dif-
ferences in loss and perplexity due to weight merging—is already
noticeable and increases with the number of training iterations.

ten leads to numerical instability or divergence. For instance,
BLOOM developers encountered repeated loss explosions
when training with the float16 data type, which was mitigated
by switching to bfloat16 and applying gradient clipping.

Severe Consequences The impact of silent errors can be
enormous. DL training tasks are often run on many GPUs
for a long time. This is the case for the motivating example
in Figure 1, which is a large-scale training task that involves
384 A100 GPUs for 3.5 months. Discovering errors late in
the training result in significant waste of expensive resources.

The majority of the studied errors result in either subopti-
mal or incorrect models. In the former case, users may choose
to accept the degraded outcome to avoid paying the expensive
retraining cost, but must live with lower model performance.
In the latter case, rerunning the job leads to a significant waste
of costly training resources. Many errors also introduce severe
performance impacts. For example, in PyTorch-Forum-84911,
the data processing code in the user program mistakenly re-
sizes the input images to 1024× 1024 instead of the expected
224× 224, significantly increasing per-iteration training time.
Moreover, due to their silent nature, the effects of these errors
often persist and accumulate over time.

Challenging Detection and Diagnosis Unlike other DL
training failures that trigger explicit exceptions (e.g., Illegal
Argument) or terminate jobs, silent training errors are chal-
lenging to detect. In many of our studied errors, although the
root cause is triggered early on, the error remains undetected
for a long time. Developers currently mainly rely on high-
level model evaluation metrics such as loss or accuracy. How-
ever, silent errors often do not cause immediate anomalies
in such evaluation metrics. For example, in PyTorch-Forum-
84911, the loss and accuracy metrics are still changing over
time. For large-scale training jobs, it can take hours or even
days for a silent error to show obvious signs of anomalies in
these metrics. Moreover, these metrics can be highly noisy in
real-world training tasks. Using them for detection can easily
create false alarms. When a silent error causes a performance
impact, it can also be difficult for developers to tell whether or
not the long training iteration is expected. Even after the error
is detected, developers often have no clear clues of the root
cause. The diagnosis process is onerous and often based on



ad-hoc trial-and-error changes (e.g., to hyperparameters) and
rerunning the training job to check if the error is fixed, leading
to both developer productivity loss and wasted resources.

2.2 Case Studies
We describe two representative cases from our study.

BLOOM-176B training (DeepSpeed-1801) This is the
example described in § 1, which occurred in HuggingFace’s
training of BLOOM-176B in 2022 [4]. Due to the large model
size, 3D parallelism [31] was used to partition the model
across multiple GPUs and nodes. Conceptually, tensor paral-
lelism partitions the model by splitting individual layers into
multiple GPUs. Thus the same layer on different GPUs is
not the same. However, in implementation, due to the com-
munication cost, certain layers that do not impose a memory
bottleneck are not partitioned. In the Megatron-style tensor
parallelism [31], LayerNorm layers are not partitioned as their
size is small (<1% of the model weights) compared to the
other layers, like attention layers. Thus, optimizers must be
aware of this partition scheme, carefully distinguish between
different kinds of layers, and perform updates accordingly.
This leads to complex logic in the optimizer.

In this specific training task, DeepSpeed’s BF16Optimizer
was used. It had a bug that causes the gradient clipping to be
enabled on only the first GPU on layers that are not partitioned.
This caused the LayerNorm layers’ weights to silently diverge,
as these layers were updated with different gradients.

This bug neither triggers exceptions nor immediately af-
fects loss or accuracy. Only when the model partitions across
GPU need to be merged into one checkpoint file will users
realize that the model has diverged. This happens in two sce-
narios: (1) when training completes, and the model needs to
be served or further fine-tuned; (2) during training, there is a
need to change the parallelism configuration, e.g., due to fail-
ure of a GPU. The developers of BLOOM-176B were lucky
enough to catch this error before the model was served in pro-
duction or further fine-tuned while investigating another error.
The detection took 10 days, and it required 9 additional days
to merge the weights and mitigate the impact of divergence.

We conduct an experiment to further confirm the impact
of this error on a small scale. Specifically, we train a small
transformer-based language model using the CodeParrot clean
dataset [10], with 4 tensor parallel (TP) ranks and 2 data
parallel (DP) ranks. The results are shown in Table 1.

At the initial steps (2000 and 4000) iterations, the loss
and the perplexity of the model on the validation and test set
are both noticeably affected by merging the weights, and the
difference increases with the number of training iterations.

PyTorch-115607 Another interesting case is PyTorch-
115607. It showcases situations when a silent training error
can be detected, but the diagnosis is frustrating. torch.dynamo
[2] is a new feature in PyTorch that provides a Just-In-Time
(JIT) compiler for unmodified PyTorch programs. It transpar-

ently swaps bytecode to be executed with a more optimized
version and thus can speed up the training process. It uses
guards to ensure that when certain conditions change (e.g.,
the shape of a tensor changes), the bytecode is recompiled
to reflect the changes. Ideally, every critical variable that can
affect training should be guarded. However, in this case, a
guard is missing, which causes the model to not update if a
developer decides to only do a forward pass without a back-
ward pass in a certain iteration. This error can be detected
since the entire model is not updating. However, diagnosing
it can be problematic: if the training program does not dump
per-iteration loss and accuracy, the developer would have no
idea where the model stopped updating.

2.3 Implications
Our study underscores the significant challenges posed by
silent errors in DL training. It also reveals implications for
designing solutions to address such errors.

Manual methods for detecting and diagnosing silent errors
are time-consuming, ineffective, and impractical, given the
scale and complexity of the DL training system stack. Auto-
mated approaches are essential to reduce the burden on devel-
opers while improving the reliability of training pipelines.

Monitoring high-level signals such as loss and accuracy
is insufficient. These metrics are often noisy and periodic,
leading to missed or delayed detection. They are also prone
to false alarms because it is difficult to distinguish between
expected fluctuations and true anomalies. Moreover, they pro-
vide few clues for debugging. Fundamentally, they are not
designed for error detection. A true detection solution is re-
quired and needs to operate at a deeper level than such signals.

The diverse locations and root causes of silent errors call for
systematic approaches. While point solutions, such as using
differential testing [27, 33] to find bugs in DL compilers and
frameworks, have been proposed, they offer only limited help
in addressing the broad categories of silent errors.

Eliminating all bugs statically is ideal, but it is nearly impos-
sible due to the complexities involved in DL training. Many
bugs tend to only trigger in a specific environment, dataset, or
scale. Continuous monitoring of a DL training task provides
a safety net to detect silent errors at runtime.

3 System Design
Motivated by our study, we design TRAINCHECK, a frame-
work that takes a proactive validation approach to quickly and
reliably detect silent DL training errors with a wide variety of
root causes, while providing diagnosis clues.

The designs of TRAINCHECK are guided by two key in-
sights we have from analyzing real-world cases. First, while
the symptoms of silent training errors take time to become
visible and often appear non-deterministic in generic, high-
level signals such as loss, the root causes of many errors are
triggered early on and detectable through specific, lower-level
checks. Second, seemingly unrelated DL training programs
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can share similar correctness properties due to the heavy re-
liance on external libraries and similar training methods.

Based on these insights, TRAINCHECK introduces the no-
tion of training invariants, which are rules that should hold
during training, e.g., the model weights should stay consistent
across distributed workers. These rules capture the semantics
and correctness properties specific to a training task. Interest-
ingly, we observe that a training invariant often only applies
under specific conditions, e.g., to particular layers or paral-
lelism settings, i.e., they have preconditions. TRAINCHECK
automatically infers training invariants as well as their pre-
conditions and enforces them to detect silent errors.

Scope. Silent errors in DL training span a broad spectrum,
ranging from correctness violations such as buggy API imple-
mentations to optimization-sensitive issues like hyperparam-
eter choices. This work specifically focuses on correctness
violations, which directly affect the integrity and correctness
of training outcomes, and are often high-impact and action-
able, yet remain largely overlooked by existing tools. Within
this scope, TRAINCHECK aims to provide early and accurate
detection of silent training errors before they silently prop-
agate and accumulate. While its detection results can offer
useful diagnosis hints to developers, providing systematic de-
bugging support for precisely identifying root causes deserves
dedicated investigation in future work.

3.1 Overview
Figure 3 shows the workflow of TRAINCHECK, which op-
erates in two phases. In the offline phase, it automatically
infers a set of training invariants from high-quality training
pipelines. In the online phase, these invariants are deployed
to a given training job to check for violations during training.
TRAINCHECK reports invariant violations with contextual
information to assist confirmation and investigation.

TRAINCHECK comprises three major components: (1) In-
strumentor, which dynamically instruments DL training pro-
grams to collect runtime traces with low overhead; (2) Infer
Engine, which analyzes these traces to infer training invariants
and their preconditions automatically; and (3) Verifier, which
continuously validates a training task against the invariants.
When Instrumentor is used in the online stage, it performs

Trace snippet for torch.nn.Parameter
1

2

3

{"name": "layernorm.weight", "type": "torch.nn.Parameter", 
"meta_vars": {"TP_RANK": 0, ...}, "attr": {"data": 411977, 
"is_cuda": true, "tensor_model_parallel": false, ...}} 

{"name": "layernorm.weight", "type": "torch.nn.Parameter",
"meta_vars": {"TP_RANK": 1, ...}, "attr": {"data": 411977, 
"is_cuda": true, "tensor_model_parallel": false, ...}}

{"name": "dense_h_to_4h.bias", "type": "torch.nn.Parameter",
"meta_vars": {"TP_RANK": 1, ...}, "attr": {"data": 650462, 
"is_cuda": true, "tensor_model_parallel": true, ...}}

1. Generate hypothesis
CONSISTENT(torch.nn.Parameter.data, torch.nn.Parameter.data)

2. Validate hypothesis
Passing samples: (    ,    )    Failing samples: (    ,    ) (    ,    ) 

3. Deduce precondition
UNEQUAL(meta_vars.TP_RANK) && 
CONSTANT(attr.tensor_model_parallel, false) && EQUAL(name)

1 2 1 3 2 3

Figure 4: The invariant with preconditions TRAINCHECK infers for
Bloom-176B error (§ 2.2), and the simplified trace it emits and uses.

Relation Description

Consistent(Va,Vb) Va and Vb should have the same values, while
the values may change

EventContain(Ea,Eb) Eb must happen in the duration of Ea
APISequence(Ia, Ib, . . .) Ia, Ib, . . . must all occur and in the specified

order
APIArg(Ia, is_distinct) Ensures argument consistency or distinction

in all calls to Ia
APIOut put(Ia,bound_type) The output of Ia must meet certain attribute

constraints

Table 2: Sample relations TRAINCHECK defines and supports.

selective instrumentation relevant to the inferred invariants.
In this section, we focus on Infer Engine. § 4 will describe

the design of Instrumentor. Figure 4 shows a simplified ex-
ample of the concrete training invariant with preconditions
TRAINCHECK infers for the Bloom-176B training error.

3.2 Invariant Representation
TRAINCHECK focuses on capturing semantic rules related to
DL training. Such rules can be expressed as logical relations
involving key variables (e.g., model weights), and events (e.g.,
API invocations). Infer Engine defines a generic relation in-
terface from which the specific relations can be implemented.
An invariant is a relation instantiated with concrete variables
and APIs that must satisfy the specified relationship.

Through analyzing silent training errors in practice, we
identify and provide a set of representative relations often
violated in these silent errors. Table 2 lists five relations
TRAINCHECK supports. For example,
• Consistent relation establishes that two attributes of differ-

ent variables should be equal despite how the value changes.
This is effective for distributed training, where the model
layers can be partitioned or duplicated across workers, and
for model architectures that use shared parameters.

• EventContain relation establishes that when an API is in-
voked, a specified child event, such as another API call or
a variable state change, occurs within that invocation. For
example, calling Optimizer.step should always contain up-
dates to the model parameters and the corresponding opera-



tions that perform those updates. This relation is effective
for catching misconfigurations or unexpected arguments
that otherwise lead to silent control-flow deviations.

• APISequence relation establishes (1) the group of APIs
that should be called together and (2) the order in which
they should be called. Users often forget to call certain APIs
or call them in the wrong order, which can lead to silent
errors. For example, in a few rookie mistakes collected from
StackOverflow, users forgot to call Optimizer.zero_grad
before loss.backward, leading to training instability.
These relations are deterministic and encode strict seman-

tics, enabling precise and timely detection of silent errors.
Besides the built-in relations, TRAINCHECK is extensible, so
developers can easily add new relations into the framework.

Invariant inference in TRAINCHECK begins by instanti-
ating each relation with concrete descriptors. A descriptor
is a predicate that selects which trace records or events an
invariant should examine. API descriptors specify the API’s
name and, optionally, the expected arguments or return values.
Variable descriptors specify a variable’s type and attribute
name, along with an optional expected value or value change.

3.3 Trace Representation
TRAINCHECK collects execution traces from a DL training
program by instrumenting it to emit relevant runtime informa-
tion. A raw trace consists of a sequence of records capturing
API entry and exit points, as well as variable states. Each
trace record is annotated with a timestamp and thread ID.
TRAINCHECK further extracts high-level events from raw
trace records to represent semantically meaningful behav-
iors. For example, an APICallEvent represents a complete
API invocation, aggregating its entry and exit records along
with derived attributes such as execution duration and nested
events. These high-level events form the foundation for in-
variant inference by providing structure to raw trace data.

TRAINCHECK additionally introduces meta variables,
contextual attributes for a trace record. These include proper-
ties such as the training iteration number, distributed training
ranks, and active context managers. Users can also define cus-
tom meta variables, such as pipeline stage (e.g., initialization,
training, or evaluation). These meta variables are essential
for precondition inference (§ 3.5), enabling TRAINCHECK to
generate invariants that are both precise and interpretable.

3.4 Invariant Inference
TRAINCHECK takes a hypothesis-based approach to infer
training invariants from traces. As summarized in Algo-
rithm 1, the inference workflow contains three main steps. (1)
Hypothesis generation: The engine scans through all traces
to instantiate a relation with potential concrete descriptors.
(2) Hypothesis validation: For each hypothetical invariant,
TRAINCHECK validates it against the trace and records en-
tities that match the descriptors as passing/failing examples
based on whether the relationship holds. (3) Precondition

Algorithm 1: Invariant Inference
Input: traces, relation_pool
Output: all_invariants
all_invariants← [];
foreach relation ∈ relation_pool do

hypotheses← [];
foreach trace ∈ traces do

hypotheses.extend(relation.GEN_HYPOS(trace));
foreach hypo ∈ hypotheses do

foreach trace ∈ traces do
relation.COLLECT_EXAMPLES(trace, hypo);

foreach hypo ∈ hypotheses do
preconditions← INFER_PRECONDITION(hypo);
if preconditions ̸= null then

hypo.invariant.preconditions← preconditions;
all_invariants.append(hypo.invariant);

return all_invariants;

Algorithm 2: Hypothesis Generation for Consistent
Input: trace
Output: Generated hypotheses
variables← trace.get_all_variables();
foreach (var1,var2) ∈ Combinations(variables,2) do

foreach (attr1,attr2) ∈
CartesianProduct(var1.attrs,var2.attrs) do

if exists_value_match(attr1.states,attr2.states)
hypo←

NEW_HYPO(relation← ConsistentRelation,
entities← [VarDesc(var1.type,attr1.name),
VarDesc(var2.type,attr2.name)]);

yield hypo;

deduction: Try to deduce the distinction between passing/-
failing examples. Such distinction, if found, will be used as
the precondition for the property, and if not found, the hypo-
thetical property is invalidated and dumped.

Each relation type implements the methods to generate
and validate hypotheses for that relation. These methods are
invoked in the generic inference loop. For the motivating
example, the Consistent relation can be instantiated with
two torch.nn.Parameter object’s data attribute (Figure 4).
Algorithm 2 shows how the hypotheses are generated for
this relation. The other relations’ hypotheses generation and
validation are defined in a similar vein.

3.5 Preconditions
Semantics in deep learning are often context-sensitive and can
only be applied to a specific subset of the training pipeline. For
example, the parameter consistency invariant in distributed
training should only be checked for the same model layer
across workers within the same training iteration and only
for the parameters replicated instead of partitioned across
workers. For another example, the output tensor dtype usually
depends on the input tensor dtype, but when an autocast con-
text manager is active, the output tensor dtype should be the



autocast dtype instead of the input dtype.
TRAINCHECK thus defines preconditions for a training in-

variant. Preconditions provide various benefits: (1) confidence
in the invariant’s accuracy, (2) reduction in false positives, (3)
debugging, as when the invariant is violated, the precondition
can help explain which part of the pipeline is causing the
error, and (4) reduced overhead by only performing the appli-
cable checks. In addition, preconditions enable transferable
invariants, as they provide a very clear context of when the
invariant should be applied and thus can be applied to other
pipelines that share the same context.

3.6 Deducing Preconditions
We design an algorithm to deduce the weakest yet safe pre-
conditions for each invariant. A precondition is considered
safe if it provides a clean separation: evaluating to true for
all passing examples and false for all failing examples.

A precondition consists of one or more conditions (predi-
cates) that compare a field’s values across all trace records of a
given example. TRAINCHECK supports four types: CONSTANT,
where the field’s value is identical in every record and must
match a specific required value; CONSISTENT, where the field’s
value is identical in every record without a specific value con-
straint; UNEQUAL, where the field takes different values across
records; and EXIST, where the field appears in every record.

The deduction algorithm first scans through the passing
examples and produces conditions for each example. It then
forms a candidate precondition by using the conditions found.
For each example, the algorithm finds the conditions satisfied
in all trace records of that example. The candidate precondi-
tion is then formed by taking the conjunction of the conditions
satisfied in all passing examples. This conjunction is verified
against the failing examples to see whether the precondition
is safe; if so, the algorithm returns that precondition.

By restricting the candidate precondition to a conjunction
of conditions that hold in all passing examples, the algorithm
implicitly assumes the invariant applies to only a single sce-
nario, which is often not the case. For instance, the parame-
ter consistency invariant holds both across (1) data-parallel
workers and (2) LayerNorm parameters on tensor-parallel
workers.When the initial candidate precondition is unsafe,
the algorithm attempts to split the passing examples into sub-
groups based on remaining non-overlapping conditions and
performs inference on each subgroup. If no further splitting
is possible, the algorithm terminates and reports an inference
failure. If the preconditions inferred from these subgroups
are safe and collectively cover all passing examples, they are
combined disjunctively to form the final precondition.

Prune Irrelevant Conditions Numerous conditions can be
inferred from the trace, but not all are relevant to the invari-
ant. For example, in the parameter consistency invariant for
distributed training, it is likely that all the parameters have
the same is_cuda attribute. TRAINCHECK prunes irrelevant
conditions during the safety verification process by remov-

ing conditions not violated in any failing examples. These
conditions evaluate to true in all examples and are not dis-
criminative. This approach is simple yet effective in removing
a good amount of noisy conditions unrelated to the invariant.

A more complex situation is when the irrelevant condition
is an artifact of the invariant handled by the current algo-
rithm. For example, all consistent model weights will also
have the same gradient values to maintain consistency. How-
ever, using consistent gradient values as a condition for the
parameter consistency invariant is not a good idea because,
while safe, it is too shallow and prevents the algorithm from
going deeper to find the multiple scenarios that the invariant
holds. To fix this problem, we allow each relation to encode
rules on what conditions should be avoided in the precondi-
tion inference process. For example, a Consistent invariant,
if about attributes of type torch.Tensor, cannot use any other
attributes of type torch.Tensor as a condition. Alternatively,
static analysis can help determine correlated fields and re-
move them from the precondition inference process, but its
complexity and overhead may not be justified by the benefits.

Example In the simplified example presented in Figure 4,
there is one passing example and two failing examples. Each
example contains two trace records of torch.nn.Parameter

objects. The algorithm first generates the candidate precondi-
tion by finding the conditions that hold in the positive exam-
ple, which is CONSTANT(tensor_model_parallel, False) &&

CONSTANT(is_cuda, True) && UNEQUAL(meta_vars.TP_RANK)

Verifying the conjunction of these three conditions against
the failing examples reveals that it is safe. However, the sec-
ond condition of is_cuda constantly True is not violated in
any failing examples; thus, it is pruned from the precondition.
The final precondition is CONSTANT(tensor_model_parallel,

False) && UNEQUAL(meta_vars.TP_RANK)

When the candidate precondition is unsafe, we are in an
under-constrained situation. This can happen for three rea-
sons: (1) the precondition is fundamentally not expressible
in the condition types we support, (2) the information in the
trace is not enough to infer the precondition, or (3) the invari-
ant holds under multiple preconditions. In our experience, (3)
happens most of the time. This indicates that local attributes
and meta variables are sufficient for most invariants and do
not need a complex grammar to express the preconditions.

We enhance an unsafe candidate precondition by adding
conditions not considered previously to further constraint it, as
described in § 3.6. We choose the conditions to add based on
decreasing order of statistical significance, i.e., the conditions
that cover the most passing examples. In Figure 5, the candi-
date precondition is the conjunction of the two fully-covering
conditions, cond1 && cond2. However, since it is unsafe, we
attempt to add cond3 and cond4, resulting in a safe precondi-
tion of cond1 && cond2 && (cond3 || cond4). If this precon-
dition is still unsafe, we repeat the process until we find a safe
precondition, or the computation budget is exhausted. The
statistical significance based search helps reduce the search
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Figure 5: Deduce precondition in under-constrained situations.

space and find the majority scenarios that the invariant holds.
Our algorithm is not guaranteed to find strictly the weakest

precondition, as the pruning strategy only looks at individual
conditions, and we do not rely on any static program analysis
to infer the preconditions. However, it provides a good trade-
off between simplicity and effectiveness.

3.7 Filtering Out Superficial Invariants
One challenge in invariant inference is distinguishing mean-
ingful invariants from superficial ones—those that appear
valid due to the limited information available in a trace. For ex-
ample, two irrelevant APIs torch.cuda.is_available() and
torch.jit.is_scripting() can have consistent return values.

TRAINCHECK deems an invariant superficial if it cannot
deduce a precondition for this invariant. Such invariants will
not be deployed because they may not hold in the target train-
ing task. Even if they hold, they are not effective as runtime
checks because we do not know when to apply them due to
the lack of precondition. This is a key design choice to reduce
false positives and enhance explainability.

Our approach differs significantly from traditional invariant
mining solutions. They typically use the number of passing
examples and the number of failing examples to estimate
the statistical significance and select likely invariants. This
approach has two drawbacks in our context. In DL training,
having a large number of failing examples does not mean
the invariant is superficial due to the diverse and intricate
training process. Local semantics might not be statistically
representative in the global context. For example, in tensor
parallelism, all major parameters in the attention layer are
partitioned across workers. Only the LayerNorm parameters
are replicated, which accounts for less than 0.1% of the total
parameters in representative transformer models like GPT
[39]. During inference, the invariant that torch.nn.Parameter
objects should be consistent has a passing/failing ratio of

1:38. This can be pruned by a statistical significance-based
approach, but in reality, this turns out to be an important
invariant for catching the Bloom-176B error.

3.8 Scalability
DL training produces large traces due to frequent
API calls and variable updates, posing significant chal-
lenges for analysis. For example, instrumenting a 2-GPU,
70M-parameter pretraining run for BLOOM-176B (using
Megatron-DeepSpeed’s GPT-2 pipeline) generates approx-
imately 92,000 trace records (50 MB) per training iteration.

TRAINCHECK adopts two key design choices to address
this challenge. First, it restricts analysis to a predefined set
of high-level semantic relations, significantly reducing the
search space. Second, TRAINCHECK abstracts APIs and vari-
ables into descriptors. For variables, they are typically com-
pound objects with multiple attributes. A variable descriptor
consists of the variable’s type (as returned by type(obj)), at-
tribute name (e.g., data, grad), and optional value constraints.
This allows TRAINCHECK to reason over groups of variables
sharing the same type and attribute, rather than enumerating
individual instances. For example, when analyzing BLOOM-
176B using a 2-GPU and 70M-parameter run, enumerating
104 variable instances such as 0.input_layernorm.weight

and 2.post_attention_layernorm.weight would yield 5,356
pairs to consider. In contrast, TRAINCHECK considers only
the available PyTorch variable types relevant to training state,
where the primary type is torch.nn.Parameter. This dramati-
cally reduces the number of invariant candidates while pre-
serving the properties needed for error detection. Descriptors
can also encode constraints (e.g., requiring non-null values)
to further generalize invariant specification.

3.9 Input Requirements
Importantly, while the inferred invariants are intended to val-
idate large-scale training, generating them does not always
require large-scale setups. In our experiments, effective invari-
ants can often be inferred from small-scale runs. For example,
although the original BLOOM training job spanned hundreds
of GPUs, TRAINCHECK was able to infer the relevant invari-
ant using only a 2-GPU run. All evaluated invariants in this
paper were inferred from training jobs using at most 4 GPUs
and 100 iterations. These results demonstrate that represen-
tative behaviors can be captured with lightweight workloads,
making the inference phase practical and efficient.

4 Implementation
We implement TRAINCHECK in Python with 22.7 K lines of
code. The system is composed of Instrumentor, Infer Engine,
and Verifier. A key challenge in developing TRAINCHECK
is to balance fine-grained trace collection for inferring effec-
tive invariants to detect silent errors and minimizing runtime
overhead. We made extensive efforts to explore different tech-
niques for achieving a good trade-off.



4.1 Instrumentor
Instrumentor collects traces from a training task for both
Infer Engine and Verifier. It instruments a given DL training
program to emit information as required by the relations we
support (§ 3), specifically (1) API invocation trace: function
entry, exit, arguments, and return values, (2) variable state
trace: variable assignment, deletion, and modification, and
(3) meta variables: steps, epochs, ranks, etc.

We implement it as a command-line tool that takes the path
to the entry Python program and the libraries of interest (e.g.,
torch, deepspeed) as arguments. Instrumentor automatically
scans the import statements and model definitions in the pro-
gram and instruments the necessary functions and variables.
The user can also provide a shell script that sets up the en-
vironment and arguments for the program. Trace logs are
written to a specified directory using JSON format.

Instrumentor is designed with three key goals: (1) non-
intrusiveness, (2) low overhead, and (3) high coverage. Instru-
mentor also aims to be flexible in instrumentation granularity,
as different relations require different levels of detail. For
example, the Consistent relation only requires a periodic
sampling of model states, whereas the EventContain relation
requires an eager model state logging whenever the variable
is modified, as accurate timing of events is crucial for it.

One option is to use Python’s sys.settrace function,
which installs a trace function that is invoked on every func-
tion call, return, and exception. However, this approach incurs
prohibitively high overhead; we observed a 200× to 550×
slowdown. It can also interfere with existing workflows that
use tools relying on sys.settrace, such as pdb and cProfile.

Dynamic Monkey Patching To meet the above goals, we
adopt a monkey-patching approach. Instrumentor is imple-
mented as a Python package that dynamically instruments the
target program by injecting hooks into relevant source code at
runtime. It supports selective instrumentation, allowing users
to specify which modules to instrument; only APIs defined
in the specified modules are patched. During instrumentation,
Instrumentor recursively traverses the namespace of each se-
lected module and wraps identified methods. Each wrapper
inserts logging and bookkeeping logic before and after in-
voking the original function. To minimize overhead, Instru-
mentor skips low-level internal functions, particularly those
in torch.jit and torch._C, which are invoked frequently but
rarely provide meaningful information for invariant inference.

Tracking Variables Instrumenting Python variables is
more challenging than tracing APIs. In CPython, assignment
operations occur at the C level and do not invoke any Python-
level hooks, making it infeasible to efficiently track arbitrary
variable state changes. Our study shows that most non-trivial
silent errors, despite their diverse root causes, affect a small set
of key objects, such as the model and optimizer. If a silent er-
ror does not impact model quality, it is often inconsequential
for training correctness. This leads to a key insight: track-

ing the state of only the model and optimizer is sufficient to
detect meaningful silent errors. These objects are typically
long-lived, and updates to them occur through attribute mod-
ifications rather than object replacement, which simplifies
tracking. Therefore, Instrumentor focuses on tracking models
and optimizers rather than arbitrary local variables.

To achieve this, models and optimizers are wrapped with
a Proxy that intercepts state-changing operations via overrid-
den magic methods such as __setattr__. These changes are
logged to the trace eagerly upon execution. During instrumen-
tation, Instrumentor scans the program’s AST to locate the
initialization sites of these objects and replaces them with their
corresponding Proxy instances. Alternatively, when precise
timing of state changes is not required, Instrumentor supports
a lower-overhead, sampling-based approach that registers a
state-dump callback on Optimizer.step.

Logging Hashes of Tensors When dumping the model
states, we are essentially doing checkpointing. The cost of this
is unbearable as the model states are large and the overhead
of serializing them, writing them to the log file, and reading
them back is significant. Through our study, we observe that
the actual values of the tensors are typically unimportant
for inferring invariants. Silent errors typically arise from the
shape, dtype, and the equality relationship between the tensors.
Thus, Instrumentor only logs the hash of tensors.

Collecting Meta Variables Instrumentor also collects meta
variables such as the current step, epoch, rank, etc. Whenever
a trace record for a function call or variable state is dumped,
Instrumentor walks through the call stack and finds the loop
index local variable. This is a simple heuristic that works
for most cases, as the loop index is usually a local variable
in the outermost loop that is incremented in every iteration.
Instrumentor further allows users to specify meta variables
by calling the set_meta API. Users may also annotate the
program into different phases, such as training, validation,
and testing. The general idea for collecting meta variables is
to provide context for the invariants to deduce preconditions.

4.2 Infer Engine
Infer Engine processes the trace files generated by Instrumen-
tor to infer training invariants and their preconditions. One key
challenge is handling large input traces produced by the data-
intensive nature of DL training. Typical training pipelines can
generate several hundred megabytes of trace data per epoch.
Our algorithms, as described in § 3, are designed to efficiently
deduce invariants with preconditions from large traces.

We implement Infer Engine in Python to leverage its rich
ecosystem of libraries for data processing and deep learn-
ing. In addition, our traces cannot be conveniently repre-
sented with a fixed schema. We implement multiple trace
backends, including Pandas, Polars, and built-in dictionaries.
From experimenting with these backends, we choose Pandas
DataFrames with Python dynamic typing as the default based
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on its analysis performance and flexibility. We introduce opti-
mizations with custom analysis functions that provide query
caching, sampling, and pruning (e.g., pruning candidates re-
lated to torch.cuda.is_available).

4.3 Verifier
During the online checking phase, TRAINCHECK consumes
the stream of the trace generated by the instrumented program
to detect silent errors in real-time. Different from the offline
phase, the instrumentation is restrained to only the APIs and
variables that are relevant to the deployed invariants and is
thus lightweight. Verifier monitors the trace and triggers a
check when a relevant piece of trace is available. It first evalu-
ates whether the preconditions of an invariant are satisfied. If
so, it checks whether the invariant holds. When an invariant
violation is detected, Verifier reports the invariant and the
corresponding trace to provide debugging help to developers.

5 Evaluation
We evaluate TRAINCHECK to answer several questions: (1)
Can TRAINCHECK infer effective training invariants for de-
tecting real silent errors? (2) How quickly can the invariants
detect the errors? (3) Can TRAINCHECK help diagnose a de-
tected silent training error? (4) Is the detection accurate? (5)
What is the runtime overhead?

Our experiments are run on a server running Ubuntu 22.04,
equipped with an Intel(R) Xeon(R) Silver 4310 CPU, 252
GB RAM, and one NVIDIA A40 GPU. For trace collection
related to distributed training, we use another server with
identical specifications but featuring 8 NVIDIA A2 GPUs.
We use Python 3.10 and PyTorch 2.2.2 with CUDA 12.1.

5.1 Silent Error Detection
To assess TRAINCHECK’s effectiveness, we collect and re-
produce 20 real-world silent errors. Of these, 6 are drawn
from our prior study (§ 2), while the remaining 14 are newly
gathered from GitHub issues for popular libraries (PyTorch,
DeepSpeed, etc.), StackOverflow, and social media. These
errors span a broad range of root cause locations and types, as
illustrated in Figure 6a and Figure 6b. The complete descrip-
tions of these errors are available in our technical report [23].

We compare TRAINCHECK with four baselines that repre-
sent the current practices and state-of-the-art research:
• Spike detector is used to monitor numerical instability in

training where the loss or accuracy spikes to a large value.

• Trend detector is used to monitor the training process where
the loss or accuracy is not decreasing or increasing as ex-
pected. A tolerance factor is set to allow some fluctuation.

• Anomaly Detection detector applies common algorithms
like LOF, Isolation Forest, and Z Score to detect anomalies
on the same high-level metrics like loss and accuracy.

• PyTea [22] and NeuRI [28] are two recent research artifacts.
PyTea specifies constraints on APIs used in the training
process, primarily focusing on the shaping constraint of the
input and output tensors. NeuRI automatically infers such
constraints encoded in PyTea’s syntax.
When implementing the first three detectors, we monitor

signals as per industry practice [5] and apply the same con-
figuration parameters to all errors for a fair and consistent
comparison. For the spike detector, we set the threshold to 75,
and for the trend detector, we set the tolerance to 3. The num-
ber of neighbors for LOF is set to 2, and the contamination
factor is set to 0.1 for Isolation Forest. Other parameters use
defaults provided by Scipy and Scikit-learn.

Methodology We prepare a reproduction script for each er-
ror and run them to emit (1) runtime trace for the checking of
TRAINCHECK and PyTea/NeuRI, and (2) high-level metrics
(loss, accuracy, gradient norm) for the anomaly detection-
based detectors. We then run the detectors on the traces and
metrics and collect the detection results. The invariants used
by TRAINCHECK are inferred from PyTorch’s official GCN,
Autocast, and DDP examples, for PyTorch-related errors, and
Megatron-DeepSpeed’s official GPT pretraining examples
for DeepSpeed-specific errors, and the official Transformers
trainer examples for Transformers-specific errors.

We focus on true detections (true positives) to avoid re-
warding detectors that indiscriminately raise many alarms.
This ensures the result reflects real error-detection capability.
For example, we observe that when using the anomaly detec-
tion detector, no matter how we tune it, it raises numerous
alarms throughout the training process, e.g., since the loss is
dropping fast. To objectively determine the true positive, we
run the fixed versions of each error and check if the detector
also raises alarms in the error-free traces.

Detection TRAINCHECK successfully detects 18 out of the
20 errors. The invariants it infers and uses represent all five
relations in Table 2. In all cases, detection occurs no later than
one iteration after the root cause is triggered. For the motivat-
ing example, the incorrect gradient clipping logic is triggered
in the second training iteration, and TRAINCHECK shortly
detects it in the third iteration. Despite diverse root causes,
TRAINCHECK achieves high detection coverage and timeli-
ness. We attribute its effectiveness to our invariant checking
approach and the precision of the inferred invariants.

TRAINCHECK fails to detect two errors: TF-33455 and TF-
29903. TF-33455 involves the trainer stopping early due to an
incorrectly calculated total number of training steps, while the
training process itself is correct. Detecting this error would re-



Bug Id Synopsis

AC-2665 Initializing the optimizer prior to wrapping the model with DDP
causes training to not progress.

DS-6770 A mismatch between the model and the parameters held by the
optimizer causes a KeyError during initialization.

DS-5489 Freezing parameters prior to initializing DeepSpeed causes in-
complete model checkpoints.

DS-6714 Using heterogeneous MoE architecture with pipeline parallelism
causes inconsistent usage of communication primitives, leading
to training stuck.

DS-6772 DeepSpeed initialization silently overwrites “id” attributes on
models, causing wrong model-GPU placement.

DS-6089 The program is stuck on communication due to consistent “ca-
pacity” value across workers.

Table 3: Six newly reported bugs that lead to silent errors, detected
and diagnosed with the help of TRAINCHECK. AC: Accelerate. DS:
DeepSpeed. Numbers refer to GitHub issue IDs.

quire monitoring the computed training steps and comparing
them with the intended arguments. Currently, TRAINCHECK
does not support tracking Python primitive variables, as doing
so would incur prohibitive overhead and require modifications
to the Python runtime. TF-29903 concerns a bug caused by a
corrupted state dict constructed within the safe_checkpoint

function. TRAINCHECK fails to detect this case because (1)
this error is confined to the checkpoint function and does not
impact the main training logic, and (2) TRAINCHECK does
not analyze local variables.

In comparison, the signal-based detectors collectively only
detect 2 errors, which are extreme cases where the model
stops learning entirely and the loss is constant over epochs.
The PyTea/NeuRI detector detects 1 error, which is from a
bug in the transformers library where the processed data does
not have the same batch size as the argument, falling into the
shaping constraints supported by PyTea/NeuRI.

Diagnosis While diagnosis is not the primary goal of
TRAINCHECK, we conduct analysis to understand whether
invariant violations can aid in debugging. Among the 18 cases
detected by TRAINCHECK, the violation reports can pinpoint
the exact root cause in 10 cases and localize close to the
root causes in 8 cases. The diagnosis hints for the one error
detected by PyTea/NeuRI are on par with TRAINCHECK.

5.2 New Silent Errors
To further test TRAINCHECK’s effectiveness, we monitor re-
cent open GitHub issues in DeepSpeed and Transformers. We
focus on issues that have silent symptoms, are unresolved
with unknown root causes, and reproducible. We create re-
production scripts based on the reports to ensure the issues
occur with the latest library. We then apply the invariants
TRAINCHECK infers from the sample pipelines to the issues.

During this exercise, TRAINCHECK detects 6 new silent
errors at an early stage and aid in diagnosing their root causes,
as summarized in Table 3. Three of these root causes have
since been confirmed and fixed.

Case Study: AC-2665 It causes the model to not learn
effectively during training. In the original issue report, the
user adapted their original pipeline into DDP, but the model
stopped learning at all. The user did not know the root cause,
but found a setting that fixed the error, use_orig_param true.

We applied the invariants inferred from the GCN exam-
ple to the user’s pipeline and inspected invariant violations.
Below, we present three example true positives identified
by the inferred invariants. Inv1: zero_grad should contain
changing of grad attributes from a non-zero tensor to a zero
tensor or None. Inv2: step should contain changing of data
attributes of the model parameters. Inv3: step should con-
tain a number of invocations of mathematical operations on
the model parameters, such as _foreach_add. Inv2 and Inv3
indicate that the optimizer is not performing updates to the
model, while Inv1 indicates that no gradient was computed.
The three invariants combined point out that the optimizer is
likely not initialized with parameters that are actually used
during forward and backward passes. We then checked the
model parameters and the optimizer’s param_groups and con-
firmed the hypothesis. Upon investigation of the model and
optimizer initialization process, we found out that DDP auto-
matically flattens the original model parameters and creates a
new model with the flattened parameters. However, the user
initialized the optimizer with the original model parameters,
and thus the optimizer did not have the correct parameters
to update. We reported the issue both to the user and to the
transformers team, and the issue has been confirmed. A pull
request has been under review to fix the issue.

5.3 False Positive
To measure false positive, we collect 63 diverse training pro-
grams drawn from existing tutorials, all without known bugs.
They span different training scales (e.g., single-GPU vs. multi-
GPU), frameworks (PyTorch, Transformers, Diffusers, etc.),
tasks (image classification, language modeling, vision trans-
former pretraining, etc.), and configuration parameters (e.g.,
precision, batch size, dataset, and model architecture).

To minimize confounding effects from applying invariants
across unrelated tasks, we group programs into four classes
based on training task type, as shown in Figure 7. Transfer-
ability across task classes is evaluated separately in § 5.4. For
each class, we split the programs into a training set (used to
infer invariants) and a validation set (used to assess false pos-
itives). Validation programs are further categorized as either
cross-configuration (differing from the training set only in
configuration parameters) or cross-pipeline (different code
with similar semantics). This categorization allows us to as-
sess how well the inferred invariants generalize across both
minor and structural variations in training programs.

Figure 7 shows that TRAINCHECK achieves consistently
low false positive rates. In the primary evaluation setting,
where invariants are inferred from representative workloads
using 5 or 6 input programs, false positive rates remain below
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Figure 7: False positive rates across four program classes, broken
down by cross-configuration and cross-pipeline settings.
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2% across all classes. Even in constrained settings with only
2 or 3 input programs, the rate stays below 5%.

5.4 Invariant Transferability
TRAINCHECK infers transferable invariants, enabling those
learned from a small set of input programs to generalize across
different pipelines and library versions. To evaluate this trans-
ferability, we apply a set of valid invariants to all 63 collected
pipelines. These invariants are inferred using a 5/6-input setup
across all classes and exclude any that triggered false positives
in § 5.3. For each invariant, we count how many pipelines it
can be applied to without raising a false alarm.

As Figure 8 shows, many invariants exhibit broad transfer-
ability. All invariants apply to at least one additional pipeline
beyond those used for inference. Notably, over 8% of invari-
ants apply to more than 16 pipelines—the average number of
pipelines per model class, demonstrating strong cross-class
generalization despite semantic and structural differences. We
also observe that invariants with preconditions are generally
more transferable than unconditional ones, underscoring the
importance of precise precondition inference.
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Figure 9: Detection rate as the number of input pipelines increases
under cross-configuration, cross-pipeline, and random settings.

We expect the transferability to be even higher in practice,
as developers typically apply invariants only within the same
framework or library context. For example, invariants involv-
ing Transformers-specific APIs would not be applied to a
program that only uses PyTorch. Since all pipelines in our
dataset use PyTorch, we isolate 8,172 invariants that capture
only PyTorch-specific semantics. These exhibit significantly
higher transferability: 23% of them apply to more than 16
pipelines. This result suggests that framework-level behavior
is a strong source of reusable invariants.

We also evaluate the false positive rate of applying in-
variants across model classes to assess TRAINCHECK’s ro-
bustness in extreme transfer scenarios. Using the setup from
§ 5.3, we infer invariants from one class and apply them to all
programs in the other classes, comparing the resulting false
positive rate to the in-class baseline. Surprisingly, only the
smallest-scale class, CNN, shows a higher false positive rate
in the cross-class setting (2.62% vs. 0.65%). In all other cases,
the rate is comparable or lower (e.g., 0.93% vs. 1.54% for
language modelling). This is because many invariants become
inapplicable due to differing API usage and training context.

5.5 False Negative
To study the trade-off between false negative and the input pro-
grams used for invariant inference, we evaluate three settings:
cross-configuration, cross-pipeline, and random. In the cross-
configuration setting, invariants are inferred from historical
runs of the same training pipeline executed under alternative
configurations where the silent error was not observed. In the
cross-pipeline setting, invariants are inferred from semanti-
cally similar training pipelines that do not exhibit the error.
In the random setting, invariants are inferred from general
tutorial pipelines collected from relevant frameworks.

For each silent error detected in § 5.1, we randomly sample
k input pipelines for each setting and evaluate whether the
error can be detected using the inferred invariants. The aver-
age detection rate for a given k is computed by repeating this
process 100 times and averaging the results across all cases.

As Figure 9 shows, increasing the number of input
pipelines consistently improves detection rates. Both the
cross-configuration and cross-pipeline settings achieve high
detection coverage (91% and 82%, respectively) even with
only two input programs. The random setting starts with lower
detection coverage, but improves steadily as more inputs are
added (76% with five inputs). Further investigation of the
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Figure 10: Overhead of different instrumentation techniques.

undetected silent errors reveals that the violated semantics
often involve specialized features that are underrepresented
in the available example pipelines or not exercised in cross-
configuration or cross-pipeline inputs. For instance, detecting
DeepSpeed-5794 requires invariants about DeepSpeed’s MoE
features; however, only 1 out of 15 available DeepSpeed tuto-
rial pipelines performs MoE training, making it infeasible to
detect DeepSpeed-5794 with random sampling.

5.6 Overhead

We evaluate the runtime overhead of invariant checking during
training. TRAINCHECK uses selective instrumentation, which
only instruments the APIs and variables relevant to the de-
ployed invariants. We conduct experiments on a diverse set of
training programs that vary in model size, task complexity, and
framework usage. For each program, we deploy 100 randomly
sampled invariants and compare the per-iteration training time
before and after instrumentation. We compare our selective in-
strumentation against two baselines: (1) Python’s sys.settrace,
using a simple trace function that logs API calls and argu-
ments without variable tracking, and (2) TRAINCHECK’s full
instrumentation mode, which instruments all API calls and
variables regardless of invariant relevance.

Figure 10 shows the results. TRAINCHECK incurs low over-
head in selective mode, typically less than 2%, and at most
1.6× slowdown across all workloads. GCN and MNIST exhibit
higher relative overhead (1.6× and 1.4×, respectively), as
they are toy workloads (e.g., training a 2-layer CNN) where
per-iteration execution time is minimal, and any instrumenta-
tion incurs a larger proportional cost. In contrast, for the more
realistic workloads, overhead is significantly lower, as a larger
portion of the time is spent on GPU-bound computation.

The primary sources of overhead stem from trace data
serialization into JSON, conversion of objects into dictio-
nary representations, and handling of tracked objects. These
operations occur at the Python level and introduce runtime
costs, especially in tight CPU-side loops. While our current
implementation is synchronous and prioritizes correctness
and modularity, there are clear opportunities for reducing
overhead further. Potential engineering optimizations include
asynchronous or batched logging and minimizing redundant
instrumentation through static analysis. We leave the explo-
ration of these optimizations to future work.

1 2 3 4 5 6 7 8
Trace Size (Normalized)

102

103

In
fe

re
nc

e 
Ti

m
e 

(M
in

ut
es

)

Figure 11: Inference time vs. trace size (normalized to ResNet-18
pretraining trace size).

5.7 Inference Efficiency

To quantify the invariant inference efficiency, we reuse the
traces from the false positive experiments (§ 5.3) and measure
the inference time across traces of varying size and struc-
tural complexity. For consistency, we normalize trace size
by treating the trace from a ResNet-18 pretraining run with
20 training iterations and 10 testing iterations as a standard
program trace, corresponding to 66.2 MB or 93,686 records.

Figure 11 shows that inference time grows roughly quadrat-
ically with trace size in this setting. While the inference al-
gorithm itself is linear in both trace size and the number of
hypotheses, larger traces typically expose more semantic be-
haviors, resulting in a larger hypothesis set. In the worst case,
TRAINCHECK completes inference in 38 hours when process-
ing traces from 8.2 standard programs. Since inference runs
offline and our current implementation is single-threaded, the
performance remains acceptable for practical usage.

5.8 Examining Invariant Violations

Despite a low false positive rate, false alarms do occur, and
developers must examine violation reports to extract action-
able diagnostic information. We find that violations can often
be inspected structurally rather than treated in isolation. They
tend to cluster around specific APIs or components, which
makes the review process more manageable. In practice, true
positives are frequently supported by multiple related viola-
tions that reinforce the underlying issue, while false positives
follow recognizable patterns and are easy to dismiss.

For example, in the AC-2665 case study (§ 5.2), using in-
variants inferred from PyTorch’s GCN pipeline alone, 100
violations were reported. Among these, 52 were true posi-
tives. Of those, 33 indicated that torch.optim.adamw.adamw
was never invoked, highlighting a missing optimizer initial-
ization. 18 showed that optimizer.step performed no math-
ematical operations, suggesting it was not linked to model
parameters. The remaining 48 violations were quickly dis-
missed as irrelevant: 7 involved GCN-specific constants (e.g.,
dropout_rate == 0.5), and 26 flagged missing ReLU invo-
cations, which do not apply to the T5-based model used in
AC-2665. The rest followed similar, non-impactful patterns.



6 Limitations
TRAINCHECK has a few limitations. First, its instrumenta-
tion interferes with JIT compilation tools like torch.compile,
preventing the analysis of optimized code paths. Second, it
is restricted to Python code, limiting its ability to analyze
components with significant logic implemented in lower-level
languages, such as the Flash Attention algorithm [11]. Finally,
representing tensors in hash form prevents fine-grained numer-
ical analysis, limiting its applicability to detecting instabilities
caused by inappropriate hyperparameters. However, this can
be complemented by existing research on hyperparameter
tuning [50] and numerical defect detection [25].

7 Related Work
Testing Pipeline Code, Libraries, and Compilers CRA-
DLE [33], AUDEE [18], LEMON [44], and NNSmith [27]
employ differential testing to detect and diagnose failures
across frameworks and compilers. PyTea [22] detects ten-
sor shape mismatches using pre-specified API constraints,
while NeuRI [28] enhances this by automating constraint
inference. RANUM [25] targets numerical defects in deep
neural networks. TRAINCHECK goes beyond framework in-
consistencies or isolated error categories by inferring runtime
invariants tailored to the training process. It automates error
detection and debugging with automated invariant inference
from example pipelines, addressing a broader range of silent
failures across diverse training pipelines.

Monitoring Frameworks for Training Dynamics Tools
like TensorBoard [1] and Weights & Biases [5] log high-level
metrics such as loss and accuracy, enabling developers to
visualize and compare experiments easily. However, these
tools require manual and active monitoring, as seen during
the training of BloombergGPT [45], where loss plateaued for
seven days before the developer noticed it. These metrics are
often noisy and can lead to many false alarms when used for
detecting silent errors. They also do not help with diagnosis.

In contrast, TRAINCHECK provides an automated solution
that captures the precise semantics of training as training in-
variants and proactively checks them, enabling reduced man-
ual effort, early and accurate detection of silent training errors,
and providing diagnosis hints for root-cause analysis.

Testing DL Models Extensive work exists to test trained DL
models for robustness and fairness, such as DeepXplore [32]
and DeepTest [43]. They are orthogonal to TRAINCHECK
given their focus on testing and uncovering errors in the final
model weights rather than validating the training process.

Fault-Tolerance in DL Systems Fault-tolerance mecha-
nisms have been proposed, such as elastic resource scaling,
task reallocation, pipeline parallelism, and efficient check-
pointing [3, 21, 26, 42]. While these approaches improve fault
tolerance, they do not address silent errors that arise from
misconfigurations, bugs, or subtle correctness violations.

Invariant Mining Much work has explored mining likely
program invariants for traditional single-component software
with tools such as Daikon [16] and DIDUCE [19]. These
invariants focus on low-level program variable relations at
certain points of the program, such as idx < len for two local
variables in a loop. Recent work such as I4 [30], DistAI [49],
and DuoAI [48] infer inductive invariants, which are used in
the verification of distributed protocols. Oathkeeper [29] in-
fers event rules to detect silent failures in distributed systems.

Inferring rules is a general approach for bug detection. En-
gler et al. [15] notably propose inferring rules about program-
mer beliefs and show its effectiveness in large systems code.

TRAINCHECK targets a new domain of deep learning
training systems and addresses various challenges unique
to this domain. To the best of our knowledge, it is the
first work for systematic invariant checking in DL training
pipelines to detect silent training errors. The training invari-
ants TRAINCHECK infers capture high-level semantics tai-
lored to DL training. TRAINCHECK also deduces precise pre-
conditions for these invariants. Moreover, prior work mainly
infers invariants from a single system, and these invariants
only apply to that system. In contrast, TRAINCHECK invari-
ants from diverse and seemingly unrelated training pipelines.
Its inferred invariants are transferable to different pipelines.

8 Conclusion

Silent errors are detrimental to DL training and yet notoriously
difficult to address. This paper presents a study on such errors
to understand their characteristics. Informed by the study, we
propose a principle approach that uses precise training invari-
ants to detect and diagnose silent training errors. We present
TRAINCHECK, an end-to-end framework that automates the
process of inferring training invariants and proactively check-
ing them. TRAINCHECK shows effective and quick detection
capability for real-world silent training errors with diverse
root causes. It also uncovers previously unknown bugs lead-
ing to silent errors in popular training libraries. Its tailored
approach and the transferability of its inferred invariants make
it readily applicable to existing DL training pipelines.
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