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Abstract
Achieving high availability for modern software requires fast
and correct recovery from inevitable faults. This is notoriously
difficult. Existing techniques either guarantee correctness by
discarding all state but suffer from long downtime, or preserve
all state to recover quickly but reintroduce the fault.

We present PHOENIX, a framework that enables a new de-
sign point of optimistic custom recovery for high-availability
software through partial process state preservation. PHOENIX-
mode recovery allows an application to selectively preserve
long-lived state, discard transient state, and reset the execu-
tion. In the common cases, it combines the effectiveness of
full restart with the speed of state reuse. PHOENIX offers
simple APIs for annotation, supports consistency checks via
unsafe region detection, and provides cross-checking valida-
tion with default recovery paths for strong correctness. We
implement PHOENIX in Linux kernel and apply it on six large
server applications. Our extensive evaluation of real bugs and
fault injection testing shows that PHOENIX recovery signifi-
cantly improves availability while not sacrificing correctness.

CCS Concepts: • Computer systems organization → Avail-
ability; Reliability.

Keywords: Availability, software recovery, operating systems,
static analysis
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1 Introduction
Availability is crucial for software deployed at scale. Even a
brief downtime can impact many users and cause significant
financial losses [47]. Yet, production systems inevitably en-
counter bugs such as crashes, hangs, and memory leaks [25,
30, 43]. To maintain high availability, an application must not
only recover from a fault but do so quickly and correctly, i.e.,
resolving the failure with minimum interruption.

Achieving this level of recovery is notoriously difficult.
It is not enough to just bring the application back online
as fast as possible. The recovered process must also avoid
triggering the same fault. Moreover, for availability to be
meaningful [32, 62], the recovered process needs to promptly
resume handling requests with near-normal performance. If
the system appears “available” but serves virtually no requests
or is extremely slow, it is effectively unavailable to users.

The most common recovery technique is process restart.
It offers simplicity and correctness: by destroying and reini-
tializing all application’s state, it avoids the same failure [16,
29, 38, 41] and rejuvenates a system [22, 44, 53]. However,
process restart severely hurts availability. The process must
reconstruct the entire runtime state from scratch after restart,
which involves costly operations such as reading large data
files from disk, replaying lengthy logs, and fetching updates
over the network. During this time, the system is unable to
serve requests. Afterwards, the new process also has to slowly
rebuild its cache, suffering a long warm-up time.

To reduce downtime, some developers adopt process check-
pointing techniques such as CRIU [8], which periodically
freezes a running process and captures its full memory as
well as execution state (i.e., registers, instruction pointer,
stack pointers). Upon failure, the checkpoint allows restoring
the process memory and resuming execution from the last
point. While improving availability with faster recovery, it
loses state updates that happened after the checkpoint. Whole-
system persistence techniques [49, 70] preserve the latest
system state by making main memory non-volatile, which
achieves instantaneous recovery and avoids losing updates.
However, checkpointing indiscriminately preserves all appli-
cation state. In the presence of software faults, the checkpoint
also includes the buggy state, making the recovery incorrect.
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Despite decades of effort, designing recovery mechanisms
that deliver speed and post-recovery performance for high
availability while ensuring correctness remains a core chal-
lenge, especially for modern complex applications.

Behind this core challenge lies a dichotomy of existing so-
lutions: preserve all state or preserve none. The former gains
high availability by giving up correctness completely. The
latter guarantees correctness but severely damages availabil-
ity. Few solutions have explored the middle ground. Micro-
reboot [15, 16] and Orleans [13] divides an application into
smaller components and restarting only the failed compo-
nents, but each component still suffers the same pitfall. They
also require prohibitive effort to restructure the applications.

This paper presents PHOENIX, a recovery framework that
introduces a new design point: optimistic custom recovery
through partial process state preservation. PHOENIX does not
replace the default recovery (e.g., log replay) an application
has but instead adds a fast path—PHOENIX-mode restart, in
which an application keeps a subset of its state in memory
and carries over this state to the new process. This improves
availability by avoiding the costs of rebuilding this state. Im-
portantly, it discards the remaining state and resets the execu-
tion. Thus, the new process starts from the main function like
a regular restart and reinitializes the unpreserved state.

We make two key insights when designing PHOENIX. First,
custom recovery is indispensable for addressing the afore-
mentioned trade-offs. Indeed, Lowell et al. [45] show that it
is impossible for generic recovery, i.e. without any help from
application, to guarantee failure transparency (recovering to a
state that is consistent with prior output and avoids the bug).

Based on this insight, PHOENIX is not designed as a bolt-on
recovery solution that can be applied without understanding
the application logic. Instead, it relies on developers to apply
their application-specific knowledge when using PHOENIX.
This matches the trend that custom recovery is common in
server applications. For example, instead of using generic
process checkpoint, Redis implements an RDB feature [5]
that only checkpoints the key-value dictionaries.

PHOENIX is designed to help developers implement custom
recovery and leverage the custom code that the applications al-
ready have. Different from the existing all-or-nothing choices,
PHOENIX provides simple APIs for developers to selectively
annotate state for preservation, and add logic for determining
whether to use a preserved state or not during a recovery.

Our second insight is that many production software fail-
ures are caused by transient state (e.g., local variables, short-
lived heap allocations), which do not impact large, stable
portions of global or long-lived state. Our study (§2.3) of real-
world failures across popular server applications confirms
that over half are triggered by temporary state, suggesting the
practical viability of selective state preservation.

This asymmetry also has a deeper structural cause. In mod-
ern server applications, bugs and bytes are unevenly dis-
tributed. Most bugs reside in a small amount of complex

code, while most program state is occupied by large data
structures managed by simple, well-tested logic. For instance,
a web cache server spends most of its memory on cached
pages, using only a few data types, while request handling
and scheduling code, though smaller in memory footprint,
involves intricate logic more likely to contain bugs.

This insight motivates PHOENIX’s design of resetting ex-
ecution to the beginning, which reinitializes most transient
state. Moreover, it reveals a simple yet effective state selection
methodology: preserving the largest few data types manipu-
lated by relatively few lines of code offers high availability
gain, with low chance of inconsistency.

PHOENIX aims to accelerate recovery but its correctness
is bound by the application’s default recovery. It does not
attempt to fix errors that the default recovery could not fix.
For example, if the application persists a buggy state to the
disk, the default recovery may read this corrupt state and fail
again. PHOENIX cannot fix this corruption and may fail, too.
Similarly, if the bug is calling print(A) instead of print(B),
the failure will persist across any recovery method until the
code is corrected. We thus define PHOENIX recovery as cor-
rect if the application is restored to a state that is equivalent
to what the default recovery would produce.

To safeguard correctness, PHOENIX introduces a mecha-
nism of unsafe regions, which identifies code sections that are
in the middle of modifying a preservable state. If a failure oc-
curs within these regions, it indicates risk of inconsistent state,
and PHOENIX falls back to default recovery. For users who
desire stronger assurance of correctness, PHOENIX provides
a cross-check validation mechanism. While the main process
restarts quickly with PHOENIX and resumes serving requests,
a background process runs the default recovery and com-
pares its state against PHOENIX’s initial state. If they match,
PHOENIX safely continues; otherwise, the system switches
to the validated process. This allows an application to remain
available, at the potential cost of some incorrect output in
this brief window. If the cross-check passes, both the output
during speculation and output in future execution are correct.

PHOENIX is designed for software faults and targets high-
availability software. It does not address hardware failures.

We implemented PHOENIX in Linux kernel along with a
runtime library, a modified glibc, and a companion compiler
tool on top of LLVM. For evaluation, we integrate PHOENIX
into six large, popular server applications, with only small
code changes. We apply the proposed state selection method-
ology uniformly. Afterwards, we collect 17 real-world bugs
to measure the benefits of PHOENIX-mode restart in practical
failure scenarios. In all cases, PHOENIX not only significantly
improves the restart performance but also recovers the appli-
cation successfully. It reduces half-hour-long recovery and
warm-up down to sub-second scale, and achieves close to
100% recovered performance in all cases. We further perform
large-scale random fault injection testing on the ported appli-
cations. PHOENIX-mode restarts are initiated and successful
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Figure 1. Redis case #12290 long downtime and warm-up

in 85.6% of the injections. PHOENIX falls back to the normal
restart for the remaining injections, and does not introduce
additional data corruption.

In summary, this paper makes the following contributions:
• We propose a new approach of optimistic recovery with

selective process state preservation for server software. We
identify a simple yet effective state selection methodology.

• We design PHOENIX to realize this approach using a holis-
tic solution spanning kernel, runtime, and compiler.

• We apply PHOENIX on large applications and real-world
bugs to evaluate the benefits of PHOENIX-mode restarts.
The source code of PHOENIX is publicly available at:

https://github.com/OrderLab/phoenix

2 Motivation and Background
2.1 Recovery and Availability

To demonstrate the impact of software faults to availabil-
ity, we reproduce a real Redis freeze bug [1] using a YCSB
90%-10% read-insert workload with Zipfian key distribution.
Figure 1 shows the service timeline. Redis serves requests
at a stable rate of 53.3K QPS, and one request puts Redis in
an infinite loop for 15 s before our added watchdog forces
a restart. The old process is torn down, and a new process
is created, loading an RDB file that was saved to disk two
minutes ago. However, data unmarshalling and data structure
allocation costs significant amount of time, and eventually
takes 53.5 s to recover from a 6 GB RDB file on SSD. During
this period, 2.8 million requests where impacted. Because Re-
dis recovers to an older RDB file, it also loses two minutes of
updates between RDB save time and the crash. The recovered
process sees a significant drop in hit rate, and takes 361.7 s to
recover 90% of stable performance. Since the keys arrive in
Zipfian distribution—hot items are rebuilt quickly while cold
items take longer to repopulate—the system will experience
continued cache misses and lower throughput for an extended
period, further reducing the capacity of the system.

Such a case is not rare but commonly exists in practice, as
evidenced by numerous real-world service outages [4, 7].

2.2 Existing Solutions

Techniques for software recovery have been extensively stud-
ied. Despite the progress, developers remain stuck with hard
choices between availability, correctness, and practicality.

Process restart simply discards and reinitializes all in-memory
state. It ensures correct recovery since the buggy state is
avoided. However, it requires reconstructing all state from

data loading, log replay, re-computation, synchronization, etc.
For server applications, this reconstruction process is very
expensive, resulting in a long downtime and warm-up time.

Checkpointing periodically saves all memory and execu-
tion state to a snapshot on disk and restores the application to
this snapshot upon failure. This avoids the cost of state recon-
struction. In-memory checkpointing, e.g., using fork, further
avoids I/O time, at the cost of additional memory for storing
the snapshots. These methods significantly improve availabil-
ity but indiscriminately preserve all state. If the checkpoint is
taken after the bug, the buggy state will be persisted, result-
ing in incorrect recovery. If the checkpoint is infrequent and
before the bug, it avoids the buggy state but loses significant
updates after the checkpoint. Fork-based checkpointing is also
challenging to apply correctly for multithreaded applications.

Journaling immediately persists each transaction to disk
and is widely used in databases. Therefore, it preserves more
recent progress than checkpointing but incurs higher I/O over-
head during normal execution and longer recovery delays due
to log replay, often lasting hours [9]. While suitable for sys-
tems requiring strong durability and immediate persistence, it
is less commonly adopted by other types of applications.

Microreboot [15, 16] and Orleans [13] seek finer-grained
recovery by restarting individual components. They reduce
the recovery time but require applications to be rewritten and
restructured into independently restartable units.

Verification-based solutions, such as in FSCQ [18], use for-
mal methods to prove that recovery behavior satisfies system
invariants. They provide the strongest correctness guarantees,
but require building the system in special languages with
complete specifications and extensive proof effort. They have
been limited to a few domains. Extending them to large server
applications remains out of reach for most developers.

Beyond single-node recovery, replication reduces state loss
and improves cluster-wide availability through automatic
failover, though at the cost of additional resources. While
replication minimizes downtime, single-node availability re-
mains critical to reduce the duration of capacity loss and to
prevent metastable failures [35].

2.3 Opportunities

To understand the opportunities for improving recovery, we
conduct a study on real-world failures from six widely-used
server applications of different categories and in different
languages. We randomly select 64 user-reported failures sat-
isfying two criteria: happens during normal service (ruling
out startup/shutdown failures) and having explicit failure be-
haviors (e.g., crash and hang) that trigger recovery. We aim to
answer the following questions: (1) What kind of problematic
state causes the failure? (2) Can state be reused and what state
can be reused?

We categorize the cases by three dimensions: (i) location
of affected state: temporary only (short-lived local or heap
variables), corrupting global state (long-lived service data),
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Category Redis MS. HD. MDB. Ceph ES. Total
Language C C++ Java C++ C++ Java
Cases 17 14 8 9 8 8 64
Temp. Only 12 6 2 6 2 7 35
Bad Global 3 4 0 1 0 0 8
Good Global 2 4 6 2 6 1 21
Partial Update 2 2 0 0 5 0 9
Non-partial 15 12 8 9 3 8 55
Modifying 6 6 4 0 5 0 21
Non-modifying 11 8 4 9 3 8 43

Table 1. Studied systems and randomly-selected real bug cases,
categorized by three independent taxonomies: location of affected
state, timing of failure, and affected operation type. MS: MySQL.
HD: Hadoop. MDB: MongoDB. ES: ElasticSearch.

no corruption; (ii) timing of failure: partial updates and other;
(iii) affected operation type: modifying operation, ready-only.
Table 1 shows the results.

Finding 1: Most (87.5%) of the studied failures only corrupt
temporary state or does not corrupt any state.
Among the 64 cases, 35 failures arise from reading or writ-
ing problematic values to local variables on the stack or to
short-lived heap objects such as client or request structures.
These failures do not affect global or long-lived heap state
that contains product of completed requests. In another 21
cases, failures stem from incorrect logic or assumptions but
still leave global state intact. For example, a MySQL case
incorrectly asserts on a nullable pointer, and a Redis case
passes a wrong data type to a read-only function.

These results indicate a potential to reuse large amounts of
correct global state in most cases. Only eight cases corrupt
global state, making them unrecoverable. PHOENIX does not
attempt to recover from such scenarios and will fall back to
the application’s original recovery. Nevertheless, correctly
identifying these scenarios remains crucial. Finding 2 guides
us with a method to distinguish them.

Finding 2: Reusability has high correlation with whether
failing during modification operation.
Bad or inconsistent state is often a result of buggy state up-
dates. Nine out of all cases fail while updates are applied
partially. 21 out of all cases fail in write-related functions,
and 43 cases are either in read-only transactions (i.e., modify-
ing only temporary state), or are before or after a modifying
part. Those 21 cases cover all nine partial update cases (crash-
ing before an operation finishes), and cover seven out of eight
cases where global state is actually corrupted. The remaining
one MongoDB buffer overrun case corrupts the heap but can
be easily detected by malloc internal checks. Thus, failure
happening during modifying operation is a useful indicator
for detecting potential inconsistent state.

These findings highlight a practical opportunity: most fail-
ures only impact a small subset of short-lived state, and the
risk of inconsistency can be localized to specific update paths.

3 PHOENIX Design
Guided by our insights and observations in § 2.3, we de-
sign PHOENIX, a recovery framework that enables developers
to implement custom optimistic recovery for their software
through partial process state preservation. PHOENIX offers a
third option between the existing preserving all state or dis-
carding all states solutions, by providing a set of convenient
APIs for developers to selectively annotate state for preserva-
tion and validate the preserved state post-restart. It aims to
achieve high availability in the common case by reusing the
preserved state, while not sacrificing correctness by falling
back to default recovery when necessary.

To achieve these goals, PHOENIX designs a set of novel
techniques. We highlight some:
• Fresh Restart with In-memory Preservation. PHOENIX

lifts the restriction of full process teardown, enabling the
restarted application to selectively salvage reusable state.
This retains the benefits of restart—resetting execution—
while avoiding the downside of preserve-all which retains
bad state, effectively combining the best of both sides.

• Holistic Coordination. PHOENIX employs coordinated
OS, library, and compiler techniques to support partial pro-
cess state preservation as a first-class recovery mechanism.
By bridging the gap between OS-level memory manage-
ment and application semantics, PHOENIX enables efficient
state selection tailored to different state types.

• Unsafe Region. PHOENIX introduces unsafe region, a
simple yet effective way to determine when the system
may be inconsistent. Instead of pinpointing and cutting
out bad state, PHOENIX increases the chance of successful
in-memory recovery by focusing on when to recover.

• Cross-Check Validation. For higher correctness guaran-
tees, developers can enable background validation with
application-specific recovery, while the PHOENIX-restarted
application continues serving new requests—improving
short-term availability and ensuring long-term correctness.

Targets PHOENIX is most effective when failures stem from
temporary state, such as local variables, in-flight requests, or
session objects. It is less benefitial if large long-lived state is
regularly corrupted. PHOENIX tends to benefit applications
with a large memory footprint, for example, in-memory data
stores or applications with on-disk persistence (like databases)
that still maintain substantial in-memory state for metadata,
query result caches, and other structures. Compute-bound
applications with mostly transient local state tend to benefit
less from it. PHOENIX preserves only memory state and does
not retain system state. For example, all files and sockets are
closed by default. We rely on the application’s existing startup
logic to recreate worker threads and external resources.

3.1 APIs and Usage Example

Table 2 shows the main APIs PHOENIX provides. Figure 2
shows a minimum usage example for Redis.
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API Description

phx_recovery_info *phx_init(int argc, const char **argv, Initialize PHOENIX context; save custom command line for restart use; register
char **env, func *restart_handler) restart handler. Retrieve information from terminated process at the same time.

void phx_restart(info, bool with_heap, bool with_section, PHOENIX restart used by user fault handler or called manually, with options
range *preserve_ranges, size_t len) for preservation targets (whole heap, ELF sections, custom ranges).

bool phx_is_recovery_mode() Check if application is restarted by PHOENIX.
void phx_mark_preserve(void *object) Mark malloc variable as needed to avoid being garbage collected.
void phx_finish_recovery(bool cleanup_malloc=false) Reset PHOENIX recovery mode flag and start garbage collection on malloc.
phx_unsafe_begin(NAME), phx_unsafe_end(NAME) PHOENIX unsafe region begin and end mark.
phx_stage(NAME, CODE, PRESERVE_HOOK, RESTORE_HOOK) PHOENIX progress recovery hook.
phx_allocator *phx_create_allocator() Create PHOENIX allocator with managed preserve ranges.

Table 2. PHOENIX library APIs.
1 void restart_handler() {

2 redis_info = malloc(...);

3 redis_info->pres_db = server.db;

4 phx_restart(redis_info, true, false, NULL);

5 }

6 int main(int argc, char **argv, char **env) {

7 redis_info = phx_init(argc, argv, env, restart_handler);

8 server.db = phx_is_recovery_mode()

9 ? redis_info->pres_db

10 : redisLoadOrNewDB();

11 phx_finish_recovery(false);

12 handle_requests(); }

Figure 2. PHOENIX usage example in Redis.

Developer initializes the PHOENIX context using phx_init

(line 7), specifying a command line for future restart, and
a user-defined restart handler. The handler is automatically
registered for SIGSEGV. PHOENIX restart can also be invoked
externally, e.g., by a watchdog. A typical handler creates a
custom data structure to collect information about the failed
process, and passes it to phx_restart to activate the restart,
adding a few options specifying preservation targets (§ 3.3).
In the example handler (line 1), the heap is preserved (set-
ting true for with_heap option), and the server.db pointer is
passed in the custom structure redis_info. After a PHOENIX
restart, the restarted application retrieves the custom informa-
tion (line 7 again), and then checks whether it is in PHOENIX
mode (line 8). If so, it recovers the server.db by simply
assigning the pointer (line 9); otherwise, it goes through
the normal reconstruction (line 10). Finally, developer calls
phx_finish_recovery (line 11) to signify the end of recovery,
so that phx_is_recovery_mode returns false thereafter. The
restarted application handles new requests as normal.

3.2 PHOENIX Recovery Workflow

PHOENIX orchestrates recovery through the OS kernel, run-
time library, libc, and dynamic linker, and application code.
Figure 3 shows the recovery workflow for a crashing scenario
in an example system that preserves a hash table.

Recovery begins when a worker thread crashes, triggers a
user-defined restart handler (step ❶). The handler selects state
to preserve, prepares a structure with pointers to preservable
data (§ 3.1), and checks if the system is outside any unsafe re-
gion. It then invokes phx_restart (step ❷), which computes

New local 
vars
Recovered 
hashtable

Fresh State & 
Restored State

Faulty Process

Runtime

workers()
Restart 
Handler

Kernel
User

App

pagepagepage

request 
queue

hashtable

⥯

malloc heap

local 
vars

❶

❷

❸

Old States Buggy Execution
Recovered Process

libc_recover()

app_recover()

workers()

Fallback H
andler

pagepagepage

malloc heap

Fresh Execution

preserved_exec() ❺

❻

❹

❽

❼

Partial 
moved 
pages New execution

RegPC SP⥯

New req 
queue

phx_restart()

Figure 3. PHOENIX recovery workflow with example preservation.

the page ranges to preserve. For heap data, it uses our in-
strumented malloc to identify relevant pages. It also gathers
preservable section pages from dynamic linker (§ 3.3).

Next, phx_restart invokes the preserve_exec system call
(step ❸), a PHOENIX-specific variation of the exec system
call that installs the selected pages into the new process’s
address space (step ❹) at their original virtual addresses and
discards all other pages.

The kernel then switches the execution to a new context
(step ❺). During startup (step ❻), the dynamic loader restores
executable and shared library mappings, and malloc regains
control of the preserved heap. The application’s main function
and recovery code are then executed. It reconstructs partial
state from the saved information, reinitializes non-preserved
components (step ❼), and optionally cleans up unused heap
objects (step ❽).

Developers are responsible for providing the restart handler
and application recovery logic involved in steps ❶, ❼, and ❽.
All other steps are handled automatically by the framework.

By default, if the restarted process fails again shortly after
recovery, PHOENIX will not attempt a second restart and will
fall back to the application’s full recovery path.

3.3 Efficient State Preservation

Strategies for state preservation varies by applications. This
section discusses the mechanisms PHOENIX provides to effi-
ciently preserve selected state under different scenarios, and
Section 4.2.1 describes a simple methodology in choosing
application state for preservation.
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Figure 4. Partial preservation based section types.

There are three challenges in efficient preservation design.
First, a freshly restarted process creates a new address space.
Therefore, an efficient transfer mechanism is needed to pre-
serve state across address space boundary while reducing
downtime. Second, references preserved in the preserved state
must remain valid across restart. Lastly, unused state could
be spatially mixed with preservable state, making it hard to
retain only selected state.

PHOENIX introduces a zero-copy transfer mechanism to
the OS kernel. Using that as a basis, PHOENIX conveniently
provides allocation tracking for heap variable preservation
and section-based preservation for static variables.

Zero-Copy Transfer To address the first challenge, PHOENIX
transfers state directly in memory to the new process. To avoid
excessive data copying across address spaces, PHOENIX ker-
nel manipulates page tables. During the perserve_exec sys-
tem call, the kernel creates an empty page table, and then
moves the page table entries (PTEs) of preserved ranges from
the old page table to the new one. The fresh executable image
is loaded to the new page table afterwards.

To address the second challenge, one solution is pointer
swizzling [67], which instruments all pointer operations but
incurs high overhead. Instead, PHOENIX installs preserved
pages at their original virtual addresses in the new process,
thereby avoiding address translation overhead. We require
developers to ensure that the preserved state is self-contained
and does not reference discarded memory.

This design is compatible with address space layout ran-
domization (ASLR). During a normal startup, the applica-
tion receives a randomized offset. PHOENIX reuses this offset
upon restart without re-randomization. From an external view-
point, the application appears as though it never shut down.
As long as the offset is not leaked, reusing it does not intro-
duce additional security concerns.

This mechanism provides the low-level foundation for the
recovery process. We also expose this raw interface to give de-
velopers flexibility in preserving custom memory mappings.

Over-Approximate Allocation Tracking Modern applica-
tions often have a large number of variables with complex,
nested data structures and mixed allocation locations, includ-
ing temporary or unpreserved state. Precisely identifying the
byte ranges for all variables incurs prohibitive runtime over-
head. Furthermore, the kernel must fall back to memory copy-
ing when only part of a page needs to be preserved.

To address this challenge, PHOENIX integrates with glibc’s
malloc and provides an over-approximation method with

1 static Mem::Allocator *& GetPool(size_t type) {

2 static Mem::Allocator *pools[MEM_MAX] phxsec("bss");

3 static bool initialized phxsec("bss") = false; ...}

Figure 5. Section-based static variable preservation in Squid.

cleanup to selectively preserve heap variables. We describe
the cleanup mechanism in § 3.4.

malloc allocates memory from three sources: (a) arenas
for small objects, (b) direct memory mappings for large ob-
jects, and (c) the growing data segment (sbrk). PHOENIX
adds bookkeeping to track those mmap-backed pages from
(a) and (b), and integrates with the kernel to restore the brk

range for (c), as shown in Figure 4. The phx_restart library
function provides a with_malloc option, allowing develop-
ers to automatically include glibc heap pages during restart.
Alternatively, developers can use the custom phx_allocator

(Table 2) to separate allocations by component, enabling fine-
grained control over which components are preserved.

Section-Based Preservation Preserving static variables is
tedious and error-prone. Consider an example shown in Fig-
ure 5, Squid developers must move private static variables
to global scope, expose them with extern, add storage fields
to the recovery info, and manually copy arrays such as pool.
This adds ∼10 lines of boilerplate per variable, and the Squid
cache component alone has 29 such variables, breaking en-
capsulation and polluting the global namespace.

PHOENIX addresses this with section-based preservation.
Static variables normally reside in the ELF .data (non-zero)
or .bss (zeroed) sections. PHOENIX introduces .phx.data and
.phx.bss, whose contents are automatically preserved across
restarts (Figure 4). Developers can simply annotate variables
with the phxsec marco to place them in these sections (Fig-
ure 5). The resulting binary remains backward compatible on
systems without PHOENIX.

During recovery, when phx_restart is invoked with the
with_section option, it instructs the dynamic linker to append
the .phx ranges to the preserve_exec system call. The kernel
installs these preserved pages in place of default data. After
that, the dynamic linker in the restarted process reloads the
remaining sections from binary images.

3.4 State Recovery

Memory Mapping Preserving state at the same virtual ad-
dress requires coordination between the kernel and the dy-
namic linker, and requires shared knowledge about prior bi-
nary object mappings. PHOENIX introduces a private system
call that allows the runtime to preserve the link_map data
structure, which contains such information, before invoking
preserve_exec in the PHOENIX runtime.

Then, during phx_restart, the kernel first installs the pre-
served pages—including heap pages, selected sections, and
user-defined ranges—into the new page table, before loading
any object files. When control is passed to the dynamic linker,
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it skips the kernel-installed ranges and fills the remaining
gaps with freshly loaded binaries.

Cleanup PHOENIX automatically discards local state such as
stack variables. However, the over-approximate preservation
feature (§ 3.3) preserves the entire heap, which can retain
unreferenced data. Developers must therefore provide cleanup
routines to prevent memory leaks.

To support this, PHOENIX offers a cleanup mechanism
based on mark-and-sweep garbage collection. We add a marker
bit to the malloc_chunk metadata structure in glibc malloc.
Initially, the markers of all heap allocated variables are set
to zero. As a protocol, developers need to write a traver-
sal function over preserved objects. Each time an object is
reached, the traversal calls phx_mark_used, flipping its marker
to one. After all marking, phx_finish_recovery scans all ob-
jects, frees the unmarked ones, and resets the markers of
retained objects to zero for future restarts.

Some preserved objects require special handling. Two no-
table examples are (1) synchronization objects and (2) refer-
ence counts. Synchronization objects (e.g., locks) may contain
references to destroyed threads that are invalid after restart,
and therefore should be reinitialized. Reference counts may
be inflated compared to actual counts, since the purged state
may contain references to preserved objects. Therefore, they
should be recomputed to ensure correctness.

3.5 Consistency

To recover correctly, the preserved state should be consistent.
We propose a guideline for developers to check the recovery
condition at the crash point. The application proceeds with
PHOENIX mode restart only if the recovery condition deems
the preserved state safe to reuse.

Unsafe Region Based on our findings in Section 2.3, an
effective recovery condition is to check whether the process
is in the middle of modifying some preservable state at the
crash time. If so, PHOENIX falls back to the normal recovery
path to avoid preserving potentially inconsistent state. This
helps easily detect faults originating in state modification.

If the application survives the current modification, a fail-
ure is likely to manifest soon in the next request, which can
still be caught by this check. If a failure happens immediately
after PHOENIX restart, PHOENIX does not attempt a second
recovery, but falls back to normal recovery. If the failure is
silent (e.g., silent data corruption) and survives for a long
time, PHOENIX shares the same fate as the original recovery
method. Neither PHOENIX nor the original one can clear the
corruption; both may persist the corrupted data to disk. In all
scenarios above, PHOENIX does not introduce extra harm.

An intuitive definition of unsafe region is reusing the criti-
cal sections of the preservable object. However, this approach
falls short in several ways. Single-threaded applications such
as Redis do not use mutexes, and thus critical sections are not
well defined. Moreover, even in multi-threaded applications,

critical sections do not precisely capture the region of memory
modification. A critical section may include long read-only
operations or only write to non-preserved components, with a
small portion involving actual writes to preserved state. For
instance, we find that Redis only spends 3.9% of its time mod-
ifying preserved data during a 50%-50% read-write YCSB
workload, and LevelDB spends 27.5% making updates during
its async fillseq benchmark.

While unsafe regions and critical sections may overlap,
they are not identical. Unsafe regions explicitly exclude read-
only portions of critical sections and may span multiple criti-
cal sections when they collectively represent a single transac-
tion. As discussed in Section 3.4, locks must be reinitialized
after a PHOENIX restart. Clearly, reusing preserved state is un-
safe if the application fails while holding a lock and actively
modifying that state. Therefore, it is essential that unsafe re-
gions cover such modification intervals, allowing PHOENIX
to correctly fall back to the default recovery path. With this
guarantee, initializing locks becomes a safe operation.

To identify the modification boundary more precisely, we
provide a pair of APIs shown in Table 2. Developers insert
a phx_unsafe_begin before the first memory write instruc-
tion on the preserve state, and insert a phx_unsafe_end after
the last write. The unsafe region is semantically defined as
the smallest range to contain all modifying code per trans-
action. For example, the code of hash table insertion is the
only unsafe region for a SET user request in Redis. If a modi-
fying function is called multiple times within a transaction,
developers need to mark the outermost region to include all
modifications of one integral transaction.

The two APIs take a component name as an argument
and will generate code to increment or decrement unsafe
counters related to it. The recovery handler can then access
NAME_is_safe to make recovery decisions. The component
granularity can be chosen based on applications’ needs to aid
for determining recoverability of independent components.

Static Analysis Tool To help developers reduce manual
annotation efforts, we build a static analysis tool on top of
LLVM [40] to automatically annotate unsafe regions.

The analyzer calculates one range that covers the first and
last modifications to the preserved data in one transaction.
The transaction granularity can be selected by developers. For
request-based systems, the request handler is suitable as the
entry function of a transaction. Given the entry function’s
name, the analyzer searches for all modifications in itself and
its callees. The analyzer automatically marks the first and last
modifications as the boundary of unsafe region.

There are two challenges in designing the analyzer. First,
the inner modifying functions could be invoked by different
callers. For example, the dictionary operations in Redis can
be called both on preservable KV data, and on non-preserved
temporary variables. Simply inserting unsafe regions within
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Figure 6. Layered analysis in PHOENIX analyzer.

dictionary functions will include irrelevant operations. Insert-
ing unsafe region at the caller of dictionary operations is too
coarse-grained—a long read-only loop that finds a target slot
in insert function is unnecessarily included in unsafe region.
Second, modifications could span multiple modify functions.
For example, the unsafe region for DELETE and INSERT com-
mands are scoped at delete and insert functions respectively.
However, an UPDATE operation that calls delete and insert

sequentially should insert a larger unsafe region before the
call to delete and after the call to insert.

To solve those challenges, we design a layered analysis
algorithm. Figure 6 shows an example of this analysis. The
example request handler calls delete and then insert, and
the insert has a last step of adding linked list element.

We partition each function in this call chain into three
stages: a U stage where no modification has happened in the
current function, a E stage where all modifications have ended,
separated by the modifying stage M in the middle. Any of
the regions can contain regular instructions or function calls.
When the first or last modifying operation in M is a function
call, we recursively look into the callees’ execution stages.

To calculate the partition of different stages, we use stan-
dard def-use analysis to determine the taint set of instructions
in each function. The initial taint set for each analysis is one
of the arguments and all direct access to preserved global
variable specified by the user. To determine whether a callee
is modifying, we run analysis from all leaf functions to all
callers. We generate a function summary for each function,
which tells the caller whether each passed argument will be
modified. It also tells whether other arguments will be tainted
and whether the return value contains preserved state.

In Figure 6, the actual unsafe begin for the whole request
handler is the first M instruction in delete, and the actual end
mark should be the last M instruction in link. The analyzer
instruments the state transition points. At runtime, the appli-
cation will update the current function’s state in a state stack.
During a restart, PHOENIX restart handler checks whether all
functions in the state stack are all on the left or on the right of
M regions. In this example, while both the handler and insert

function have reached the last modifying call, the link has not
started any modification operations. Therefore, the request is
in unfinished state, indicating potential inconsistency in the
preservable data. PHOENIX falls back to application’s default
recovery to avoid introducing inconsistency.

This design finds a range that contains all modifications
in one transaction. In implementing this analysis, we prior-
itize completeness over soundness, and allow the analyzed
taint set to be larger than the actual taint set. For example,
to speed up analysis, we avoid field-level taint analysis on
function arguments. Instead of accurately tracking arg->x, we
consider arg and any arg->* as taint. This heuristic reduces
precision, but ensures the taint set contains all possible taints
(completeness). The instrumented unsafe region is therefore
conservatively larger than theoretical minimum.

Limitations of Static Analysis The current compiler tool
only considers memory effects and not external effects. Appli-
cations such as LevelDB has an implicit connection between
file writes and in-memory state updates, and requires manual
annotations to include file writes in unsafe regions.

Indirect calls are another challenge: the current tool conser-
vatively merges all possible callees’s effect for each call site,
which can over-approximate. In practice, callees of the same
call site often share similar modification semantics, avoiding
inaccuracy increase in the caller’s unsafe region analysis.

The tool also requires knowledge of the effects of exter-
nal libraries (e.g., glibc). When the source code or bitcode
is available, developers can compile the libraries together
with the application, allowing PHOENIX to instrument them
automatically. Otherwise, developers must provide annota-
tions for library functions. In practice, annotating only the
library functions actually invoked by the application is usually
sufficient, though applications that spend significant time in
library code may benefit from finer-grained rules. To reduce
annotation efforts, PHOENIX includes built-in annotations for
common glibc functions, which are shared across analyses
for all applications. In the future, we plan to explore binary
lifting techniques to support direct binary analysis.

While the tool can theoretically support any language com-
piled to LLVM bitcode, we find precise C++ analysis difficult,
due to heavy STL inlining and opaque internal function usage.
We plan to use ClangIR [2, 3] to assist modification effect
analysis based on higher-level language semantics.

3.6 Cross-Check Validation

The unsafe region mechanism effectively avoids propagating
inconsistent state. For users who may require even stronger
assurance, PHOENIX provides a background cross-check vali-
dation mechanism.

When this mechanism is enabled, PHOENIX speculatively
processes new requests in the restarted process, and runs
the application’s default recovery in a background process.
The background process then compares the initial PHOENIX-
preserved state with the state recovered by default recovery.

As Figure 7 illustrates, after a PHOENIX restart, the main
process resumes execution immediately using the preserved
state, termed Si, and begins serving new requests, which will
advance the application state to Sn. In parallel, a background
process is forked with the same initial preserved state, Si. This
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forked process does not process new requests, retaining an
isolated snapshot of Si throughout the cross-check. It then in-
vokes the default recovery function to reconstruct a reference
state, Sr, in a separate memory region from Si.

PHOENIX then compares Si with Sr. The goal is to ensure
the initial preserved state is correct to use. For the compar-
ison to be meaningful, the application needs to recover all
completed work at the failure time. Some applications already
support this. However, if the default recovery is restoring from
an older checkpoint, it would produce a stale state that is not
comparable to fresher state Si. In this case, the background
process needs to replay the work completed after the check-
point. This will establish Sr as an equivalent reference point
for comparison. We implement a custom in-memory redo
log to support replay. PHOENIX’s state preservation makes it
practical to maintain such logs entirely in memory.

A straightforward state comparison method is byte-wise
whole memory comparison. However, data placement can be
easily affected by system dynamism, making two states that
are actually equivalent appear different. A better method is
data-structure-level comparison that also tolerates environment-
dependent fields such as timestamps. In addition, the com-
parison should allow the recovered state to either include or
exclude the effect of fault-free in-flight requests by whole at
the time of the failure.

If the states match, PHOENIX continues serving requests
with an assurance of correctness. If they diverge, PHOENIX
hot-switches to the validated recovery process, discarding the
speculative one. This ensures that any potential inconsistency
is confined to the short period before the validation completes.

This mechanism assumes that the reference state Sr is cor-
rect. Otherwise, the cross-check will pass but Si is incorrect.
PHOENIX cannot be more correct than the default recovery.

3.7 Progress Recovery

Besides our main target, request-based applications, some
other categories of applications run long computational jobs.
Restart in such systems means a recompute from the begin-
ning. Because the preservable state is constantly changing,
unsafe regions cover most of the execution, thus preventing
PHOENIX from effectively recovering the latest state.

To address this, we introduce the phx_stage API to sup-
port stage-based progress recovery. A stage marks a consis-
tent recovery point in the program, such as before or after a
sorting step. For each stage, developers define two hooks: a
PRESERVE_HOOK that saves the variables about to be modified,
and a RESTORE_HOOK that restores them during recovery.

1 void optimize_one_step(&model, x) {

2 phx_stage(predict_stage, { pred = model.Forward(x); },

3 { SAVE(pred) }, { RESTORE(pred) });

4 phx_stage(getgrad_stage, { grad = model.GetGradient(pred); },

5 { SAVE(grad) }, { RESTORE(grad) });

6 phx_stage(update_stage, { model.Backward(grad); },

7 { SAVE(model) }, { RESTORE(model) });

8 }

Figure 8. PHOENIX progress recovery in XGBoost
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Figure 9. PHOENIX restart time with preserved memory sizes

Stages are typically defined at a finer granularity than one
full iteration. A basic preserve hook implementation may
simply copy all variables modified within that stage, while
the corresponding restore hook copies them back. However,
this approach can be costly for large data structures. To reduce
such overhead, we recommend placing stage marks at points
where only new temporary variables are created, and the
PHOENIX-preserved ones remain unchanged. In such cases,
recovery can simply discard temporaries and resume from the
last stage point without copying. We find this pattern common
in computational systems.

We show a code example in Figure 8 to demonstrate coarse-
grained stage definitions for an XGBoost iteration—predict,
gradient calculation, and model update. Preserve hooks exe-
cute during normal execution, while restore hooks are invoked
automatically during recovery. At runtime, each hook invoca-
tion records itself in a linked list. During recovery, PHOENIX
traverses the chain of restore hooks to reconstruct the stack
and resume execution from the nearest consistent stage.

4 Evaluation
We answer several questions in evaluation: (1) How much
availability improvement does PHOENIX achieve? (2) Does
PHOENIX recover correctly? (3) What effort and overhead
are required to employ PHOENIX?

The experiments are performed on a bare-metal machine
with Intel Xeon Silver 4114 CPU @ 2.20 GHz and 192GB
ECC memory, running Ubuntu 22.04 LTS and the PHOENIX
kernel. The machine has one 480 GB Intel DC S3500 SSD.

4.1 Microbenchmark

We measure the PHOENIX restart time with different amounts
of preserved state. We measure the duration from invoking
phx_restart to returning from phx_init in the restarted pro-
cess. We allocate heap memory of varying sizes, fill it with
non-zero data, and use PHOENIX heap preservation to retain
the memory across restart. We pin the test program to a single
core using numactl, and average results of 20 times (Figure 9).
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System Description Preserved States
Redis In-mem KV database In-mem KV hash table
LevelDB KV database Skiplist memory tables
Varnish Web cache server Web page cache objects
Squid Web cache server Web page cache objects
XGBoost Gradient boosting Gradients and model
VPIC Particle simulation Particles and physical fields

Table 3. Evaluated systems and state chosen for preservation.

Restart latency is nearly constant for state sizes under 4 MB,
taking around 1.20 ms. For larger sizes, the latency grows
linearly with the amount of preserved data, due to the in-
creased number of page table remap operations. Restarting
with 32 MB of state takes 1.56 ms, and restarting with 32 GB
takes 220.6 ms. For comparison, a baseline process restart in
a bash loop with no state preserved takes 1.02 ms.

4.2 Applications

We apply PHOENIX on 6 large applications, Redis, LevelDB,
Varnish, Squid, XGBoost [20], and VPIC [14]. They repre-
sent different categories including database systems, caching
systems, and computational jobs.

4.2.1 State Selection Methodology We select preserved
state based on its semantic importance and the time cost
during recovery. Target data structures are closely tied to
core application functionality and are costly to reconstruct. If
the application already uses custom persistence for specific
state, this serves as a useful starting point, as it reflects both
importance and time cost sensitivity.

We apply this general method to select preserved state, with-
out tuning for specific bugs. Table 3 lists our selection for each
application. For Redis, XGBoost, and VPIC, which already
implement custom persistence, we follow their choices and
preserve those states. In XGBoost, we preserve not only the
model object (small) but also the large calculation workspace,
which dominates memory usage and reinitialization time. For
cache systems, we observe that cached objects are both se-
mantically important and critical for post-recovery availability
(§4.3.3) during warm-up, so we preserve them for Varnish
and Squid. LevelDB persists SSTs and logs to disk, but log
recovery dominates restart time, we therefore preserve its
in-memory counterpart—skiplist—to avoid replay overhead.

4.2.2 Porting Methodology and Effort PHOENIX can be
adopted in three steps. First, implement minimal PHOENIX
recovery by defining a signal handler, creating a structure to
capture necessary state (often just data structure root point-
ers), and restoring preserved data during restart, just like Fig-
ure 2 shown before. Second, select a consistency mechanism—
unsafe region, stage-based recovery, or cross-check validation,
or a combination of them—based on the required correctness
guarantees. These steps require clear understanding of how
the data structures are touched during execution. Third, op-
tionally implement a cleanup function to avoid memory leaks

System App. Base Mark CC. Clean Sum
Redis 140,996 72 0 160 188 348
LevelDB 21,192 186 14 72 40 312
Varnish 109,564 196 0 N/A 85 281
Squid 186,219 46 82 N/A 62 190
XGBoost 38,906 98 60 N/A N/A 158
VPIC 44,773 127 145 N/A N/A 272

Table 4. Usage effort in lines of C/C++ code. App.: application
base LoC. Base: minimal working PHOENIX recovery. Mark: unsafe
regions or stage hooks. CC.: cross-check. Clean: cleanup.

from over-preservation. This can often reuse existing traversal
logic and may be skipped if memory overhead is acceptable.

We summarize the manual effort in Table 4. Across all sys-
tems, we modified 260.2 lines on average, amounting to just
0.52% of the codebase. Minimal PHOENIX recovery typically
requires ∼120.8 lines, though it varies across systems. Var-
nish requires extra integration to accommodate parent-worker
communication. Squid enables section-based for static vari-
ables and therefore needs less annotation. Unsafe regions or
stage hooks add ∼50.2 lines on average. Redis and Varnish
are instrumented automatically by the compiler, while VPIC’s
higher count comes from duplicating existing functions. Re-
dis and LevelDB have an additional cross-check feature that
increases our effort, due to their recursive data structure com-
parison needs. Cleanup averages 93.8 lines in four systems,
mostly duplicating existing traversal code (e.g., Redis RDB
walk-through). Varnish requires resetting refcount to dis-
count references from discarded state. XGBoost and VPIC
preserve over 90% of memory and thus we skip cleanup with
acceptable leakage.

We share our porting experience. Redis, Squid, and VPIC
were ported alongside PHOENIX development. With the de-
sign finalized, we ported Varnish, LevelDB, and XGBoost.
LevelDB and XGBoost each took two days to implement
minimum version by a Ph.D. student, plus two more days to
verify LevelDB correctness, owing to unfamiliarity with its
sequence number logic during both persistence and recovery.
Such bugs during porting can be quickly resolved by develop-
ers. Varnish required one week of an undergraduate’s effort
to handle parent-worker logic and refcount resets. Cleanup
logics across all systems were implemented in a few hours.

4.3 Real-world Bug Cases

4.3.1 Cases Selection Methodology We collect real-world
bug cases to evaluate PHOENIX. We search bug trackers of
the evaluated applications (17,183 tickets total), filter for
bug tickets with severe-impact keywords (crash, hang, leak),
and obtain a pool of 948 candidates. From this pool, we
randomly sample 141 tickets—30 each for Redis, LevelDB,
Varnish, and XGBoost; 50 for Squid; and 1 for VPIC (due
to limited available tickets). We then exclude invalid tickets
(e.g., missing description, feature cases, requiring a different
OS, runtime, or hardware) and issues outside PHOENIX’s
scope (e.g., startup/shutdown only, no explicit failure). We
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No. System Case# Description
R1 Redis 761 OOM due to integer overflow
R2 Redis 7445 Unsanitized memory overwrite
R3 Redis 10070 Nullptr dereference
R4 Redis 12290 Hang due to infinite loop
L1 LevelDB 169 Race on file operations
L2 LevelDB 245 Hang due to unreleased lock
VA1 Varnish 2434 Unsynchronized critical section
VA2 Varnish 2495 Memory leak
VA3 Varnish 2796 Deadlock from priority inversion
VA4 Varnish 3319 Buffer overflow
S1 Squid 1517 Buffer overflow
S2 Squid 257 Using closed file descriptor
S3 Squid 3735 Passing incorrect type
S4 Squid 3869 Missing null terminator
S5 Squid 4823 Incorrect length check assertion
X1 XGBoost 3579 Memory leak
VP1 VPIC 118 Out-of-bound, forgot index revert

Table 5. Bug cases we reproduced and evaluated.

successfully reproduced 17 out of the remaining 56 valid
cases. Table 5 summarizes the reproduced cases.

4.3.2 Effectiveness We run all systems with standard bench-
marks and reproduce single fault in the middle of every bench-
mark. We continue execution after recovery until benchmark
finish. PHOENIX successfully recover from all cases, except
for one fallback (R2). We check correctness of PHOENIX re-
covery by comparing workload result with ground truth. We
allow partial recovery to miss only in-flight request at restart
time. PHOENIX correctly recovers all other data in all cases.

4.3.3 Availability Improvement Figure 10 shows avail-
ability comparison. We collect three metrics: (1) total time a
system cannot serve any requests or computation (downtime),
(2) relative effective availability (defined below) at the fifth
second after restart, normalized to that before failure, and (3)
time to restore 90% of pre-failure effective availability. We
compare PHOENIX with three baselines: (a) Vanilla: appli-
cation w/o persistence, (b) Builtin: default persistence and
recovery mechanism, and (c) CRIU: Vanilla w/ periodical
checkpoint. Unless otherwise specified, the default check-
point interval for both Builtin and CRIU is 30 seconds.

Effective Availability Metric For cache systems, we define
effective availability as the rate of successful retrievals (i.e.,
hit rate for Varnish and Squid, and successful read throughput
for Redis). We use system capacity for other systems (i.e.,
throughput under closed-loop requests). We count recompute
period in VPIC and XGBoost as zero effective availability.

Result Overview As shown in Figure 10, for request-based
systems, Vanilla generally exhibits the shortest downtime,
since no state is recovered, but it suffers the lowest post-restart
availability and the longest time to regain pre-restart availabil-
ity among all mechanisms. For computational systems, where
the downtime additionally reflects progress re-computation,

Vanilla shows longer downtime than Builtin, while the relative
trends of other metrics stay the same.

Builtin recovery, typically based on custom application-
level checkpointing, takes longer to load and unmarshal large
data files from disk. In return, it provides improved post-
restart availability and significantly reduces recovery time,
though the delay remains non-negligible.

CRIU, compared to Builtin, avoids expensive data marshal-
ing by directly saving contiguous memory pages to disk. As
a result, it improves downtime while achieving post-restart
availability and availability recovery time close to Builtin.

In contrast, PHOENIX often achieves the best trade-off
across all metrics—with downtime close to Vanilla, post-
restart availability similar to Builtin, and near-zero availability
recovery time.

Redis The general trend matches the overview. We run
YCSB with a 90%-10% read-insert Zipfian workload using 10
threads on a 6 GB dataset. Builtin Redis saves RDB snapshots
every 120 seconds (AOF not enabled).

Figures 1 and 12 show R4’s throughput behavior, and are
also representative of R1 and R3. Vanilla restarts in under
1 s but takes 25 minutes to reach 90% throughput. Builtin
incurs 53.5 s downtime for RDB loading, recovering 90%
throughput in 6 minutes. CRIU improves downtime by 2.8×
over Builtin but still adds delay. In contrast, PHOENIX restores
memory state directly, reducing downtime by 9× over Vanilla
and recovers pre-failure availability within 2 s.

R2 is a special case with heap corruption. PHOENIX imme-
diately decides to fall back after detecting the system in an
unsafe region, and therefore shows similar results as Builtin.

LevelDB We use LevelDB’s sequential fill benchmark to
insert 10 million 100-byte key-value pairs, with both mem-
ory table and compaction threshold set to 256 MB. Because
LevelDB always persists to a log, Vanilla is not applicable.

Builtin replays a ∼190 MB log, incurring ∼4.0 s of down-
time to restart and reach steady throughput. CRIU restores a
memory checkpoint and thus skips replay, but still resumes
from a stale snapshot. In contrast, PHOENIX recovers the
same progress as Builtin while achieving 14× shorter down-
time than CRIU and 130× shorter than Builtin, enabling the
fastest return to full availability.

Varnish and Squid We run Varnish and Squid as proxy
servers using Web Polygraph [60] with exponentially dis-
tributed page sizes and 80% cacheable content. Both are
configured with in-memory storage (no Builtin persistence).

For Varnish, applying CRIU disrupts master–worker co-
ordination, triggering a full restart and yielding availability
comparable to Vanilla. In contrast, PHOENIX preserves the in-
memory cache with only a small cleanup overhead (<0.8 s),
improving effective post-restart availability by 7.1× over
Vanilla and 4.7× over CRIU. For Squid, the gains are 1.5×
and 1.04×, respectively, restoring service to near pre-failure
levels almost immediately.
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Figure 11 shows VA3 (#2796), a deadlock that stalls all
client requests. The pool-herder watchdog terminates the
worker after 5 s of queue inactivity. Because PHOENIX dis-
cards temporary state (requests/queues), it breaks the dead-
lock and resumes high hit-rate service immediately.

XGBoost and VPIC We evaluate both systems on their sam-
ple workloads, with 6.1 GB memory footprint for XGBoost
and 2.9 GB for VPIC. Builtin uses periodic checkpointing.

Vanilla, Builtin, and CRIU all require re-computation to
recover lost progress, whereas PHOENIX resumes from the
last preserved stage within the same iteration, reducing effec-
tive unavailability by 19.8× (XGBoost) and 76.4× (VPIC)
relative to Builtin.

Figure 13 shows XGBoost’s progress timeline. The crash
occurs at 92 s. After restart, Builtin takes 35 s to reinitialize,
then loads a model checkpoint that is 20 s old, requiring an
additional 51 s to catch up 18 iterations. PHOENIX avoids
reinitialization and re-computation, resuming in ∼2.5 s and
finishing 49.1 s earlier than Builtin.

4.4 Large-scale Injection Test

A critical requirement of a successful recovery is that no bad
state should be preserved. Since applications spend only short
time windows modifying preservable data structures (§ 3.5)
and most crashes are caused by temporary state (Finding 1),
PHOENIX expects a high chance that preservable states are
all consistent at the moment of failure.

We conduct a large-scale random fault injection experiment
on four systems to show effectiveness of PHOENIX recovery.
We use deterministic workloads to allow cross-comparison
with the output of ground truth (no-fault) and vanilla (with

fault). We inject representative faults types (shown in Table 6)
using an LLVM IR-based approach [19, 50, 69].

Injection Method To effectively expose failures, we guide
our injector to only inject on those functions activated during
a vanilla workload. We first extract this information using
gcov. We assume that bugs are evenly distributed across all
instructions. In each run, we randomly select 10 LLVM IR
instructions from the function list to inject, and compile a
unified executable with four versions of functions: PHOENIX
and vanilla, each w/ and w/o fault. The original functions
are replaced with stubs that dynamically switches between
versions. At the beginning of each run, we launch the no-fault
version and execute half of the workload. We then signal
the application to switch to the fault-injected version. In the
next execution of the function stub, it calls the right injected
version of the function.

Correctness Validation For all systems, we request all keys
that should present after the workload completes to dump the
resulting dataset. We compare the end-to-end output from
PHOENIX against both the ground truth and the output from
faulty Vanilla execution. For Varnish and Squid, we shut down
the backend servers before re-requesting all URLs, to avoid
interferences. Our validation policy permits PHOENIX to re-
cover a partial dataset, as long as all present values exactly
matches the ground truth and contain no incorrect values.

Experiment We run injection experiments until we collect
1,000 failures, by excluding injections that do not trigger
observable failures (i.e., crash, freeze, or silent data corrup-
tion). Timeout watchdogs are added to force restarts in case
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Fault Method
Comparison inversion Example: > becomes <=
Missing assignment Removing Store instruction
Wrong operand Example: set operand to 0 or 1
Missing if statement Remove branch instruction
Uninitialized variable Remove first assignment after Alloca
Assign wrong result Store instruction writes 0 or 1
Missing function call Remove function call

Table 6. Fault injection types

System Rec. Chk. Fbk. Rate Add. Shd. Sil.
Redis (U) 901 95 4 90.1% 0 0 0
Varn. (U) 851 142 7 85.1% 0 0 0
Squid (U) 770 217 13 77.0% 0 0 0
LvlDB. (U) 765 208 27 76.5% 0 0 0
Redis (N) 934 / 66 93.4% 4 7 23
Varn. (N) 927 / 73 92.7% 15 0 0
Squid (N) 866 / 134 86.6% 7 0 0
LvlDB. (N) 851 / 149 85.1% 0 15 0
Redis (C) 181 15+2 2 89.6% 0 0 0
LvlDB. (C) 144 50+3 3 79.3% 0 0 0
Sum 7190 732 478 85.6% 26 22 23

Table 7. Large-scale fault injection. (U): with unsafe region, (N):
no unsafe region, (C): with unsafe region and cross-check. Rec.:
successful PHOENIX recovery. Chk.: fallback by check unsafe region
(+X by cross-check). Fbk.: fallback by crash after restart. Add.:
additional corruption caused by PHOENIX. Shd.: shared corruption
caused by Vanilla. Sil.: silent corruption not triggering crash or hang.

of hangs. Table 7 summarizes the results, including the num-
ber of successful PHOENIX recoveries (Rec.), fallbacks to
the application’s default recovery (Fbk.), and correctness sta-
tistics. Specifically, we report cases where PHOENIX causes
additional corruption compared to Vanilla, as well as cases
where both PHOENIX and Vanilla preserve corrupted state.
We compare two configurations: with unsafe region enabled
(U) and disabled (N), using the same set of faults across both.
We also perform experiment enabling both cross-check val-
idation and unsafe region (C) for Redis and LevelDB, each
collecting 200 failures.

Result Out of 8,400 total injection runs, PHOENIX recovers
7,190 times, all of which can finish the remaining workload,
achieving an 85.6% overall success rate. Of all fallback cases,
732 are proactively triggered by the unsafe region check,
while another 478 crash immediately after recovery and falls
back, avoiding the long-term carryover of bad state.

For Redis, disabling unsafe region (from U to N) con-
verts some unsafe region fallbacks into additional successful
PHOENIX recoveries and crash-after-recovery cases. Redis’s
unsafe region is conservatively instrumented by compiler,
covering more code than necessary and causing occasional
false positives. While disabling it improves recovery success
rates, it also allows incorrect state to persist. Thus, unsafe
region remains important for ensuring correctness in Redis.

Varnish and Squid shows similar behavior as Redis when
turning off unsafe region, but only without shared corruption

Method Redis LvlDB. Varn. Squid XGB. VPIC
PHOENIX 2.5% 1.6% 2.4% 0.3% 0.4% 8.8%
CRIU 29.5% 7.6% 14.4% 23.7% 43.7% 16.1%
Builtin 3.3% N/A N/A N/A 1.0% 5.0%

Table 8. Runtime overhead of PHOENIX, CRIU, and Builtin, com-
pared with Vanilla. PHOENIX has an average overhead of 2.7%.

System Footprint Preserved Cleanup Reuse Ratio
Redis 8,894.1 MB 8,038.4 MB 97.2 MB 90.4%
Varnish 1,358.9 MB 1,240.2 MB 8.43 MB 91.3%
VPIC 2,914.9 MB 2,437.8 MB N/A 83.6%

Table 9. Memory usage. Footprint: process footprint. Preserved:
selected preserved state (after cleanup). Cleanup: state freed by
mark-and-sweep. Reuse Ratio: ratio of preserved size over footprint.

cases, since both vanilla systems does not persist data on disk
and will always restart to empty memory state. Unsafe region
is effective to prevent adding additional harm.

LevelDB, unlike checkpoint systems that run periodically,
persists all transactions immediately to a log file. Therefore,
incorrect results already written to the disk will likely trig-
ger another fault after loaded from disk, even with vanilla
LevelDB. Although disabling LevelDB unsafe region does
introduce additional corrupted state, it is still helpful to avoid
the 15 corrupted cases that vanilla LevelDB also introduces.

Cross-check validation with unsafe region configuration
(C) was able to catch a few more potential bad state, before
they are accessed. Compared to only using unsafe region,
LevelDB reduces the rate of fallbacks due to accessing the
bad state. Over all, cross-check validation provides similar
successful rate as unsafe region.

4.5 Runtime Effect

Overhead PHOENIX adds minimal overhead during applica-
tion execution, and it only stems from malloc page tracking,
unsafe region marks, and stage marks.

We compare the runtime overhead of PHOENIX with Builtin
and CRIU recovery. Results are shown in Table 8. We com-
pare job completion time as end-to-end overhead for XGBoost
and VPIC, and use throughput for all other systems. Both
CRIU and Builtin take snapshots every 30 seconds. PHOENIX
and CRIU are tested without built-in recovery enabled.

On average, PHOENIX incurs only 2.7% overhead, com-
parable to Builtin mechanism (3.1%). In contrast, CRIU in-
troduces 22.5% overhead due to pausing the application. It
also disrupts ongoing connections by closing ports, which
can cause service interruptions for Varnish. PHOENIX avoids
such interruptions and maintains a much lower overhead.

Memory Reuse Table 9 shows the memory footprint, pre-
served state, and discarded state for evaluated applications.
PHOENIX reuses the vast majority of application state, with an
average 88.4% of memory safely reused. The small fraction
of discarded bad temporary state is precisely what enables
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PHOENIX to restore the application to a valid state, while
retaining nearly all of the original memory content.

5 Related Work
A rich literature exists on application checkpoint [12, 24,
39, 52, 55, 58, 63, 68]. Checkpoint is typically performed
periodically during the normal execution. When a failure oc-
curs, the application rolls back to the last checkpoint image.
Rx [56] additionally modifies the running environment in
the re-execution from a checkpoint to avoid the same failure-
inducing bug. Checkpoint is also used for process migra-
tion [8, 52] and debugging [26, 37, 65, 66]. Checkpointing
can incur high overhead. Different optimizations [31, 73] are
proposed to reduce its overhead.

The Recovery-Oriented Computing project [54] empha-
sizes designing systems to anticipate and recover from fail-
ures. One technique it proposes is microreboot [16], which re-
boots only individual application components. This technique
requires the application to adopt crash-only design [15] by
partitioning itself into loosely-coupled components, keeping
all state externally in a dedicated store, etc. Few applications
today employ this design due to the substantial restructuring
required. Orleans [13] uses a similar approach and restarts
by individual virtual actors. However, each actor still suffers
from the pitfall of checkpointing. An orthogonal line of work
provides sub-process isolation [36, 42] to contain failures of
tasks within an application.

Managed runtime languages [10] turn process crash into
exceptions, and allow killing a thread upon failure. However,
simply doing so does not enforce state consistency checking,
and thus has the same flaws as preserve-all approach.

A few works use state preservation across warm reboot to
recover FS or OS failures [11, 19]. Rio [19] uses extensive
crash tests to show warm reboot with preserved FS cache
achieves equivalently high reliability even without protection.
Recovery box [11] uses a stable area to selectively preserve
state that is unlikely to corrupt and uses checksum error de-
tection to determine fallback scenarios. Results of both works
align with our observation that achieves high success rate.

Several efforts [34, 46, 48] use persistent memory (PM) to
speed up application recovery. PM reduces the I/O overhead
in recovery compared to disk. However, it requires special
hardware and heavy porting efforts. Whole-system persis-
tence [49, 70] saves system state to non-volatile memory
upon server failure and allows fast recovery. It mainly targets
power failures and is not suitable to recover most software
failures because it saves all state including the buggy one.

SAP HANA’s Fast Restart option [6] speeds up startup by
saving data fragments on tmpfs in memory rather than on disk,
but it still saves data as persistent file. In contrast, PHOENIX
operates directly at the data-structure level, providing tighter
semantic integration with the application’s running state.

Optimistic recovery [21, 64] allows the system to proceed
asynchronously with potentially inconsistent state, and then

applies posteriori validation to roll back inconsistencies while
retaining consistent results. PHOENIX cross-check validation
is inspired by this design pattern and enables high availability.

Failure-oblivious computing [57] advocates continuing, in-
stead of crashing, upon memory errors by discarding writes
and fabricating read values to maximize availability. PHOENIX
also targets high availability but does so by providing a fast
recovery path while also aiming to preserve correctness.

Besides mitigating faults, restart is also commonly used
for software update. The cost of restart motivates solutions
for live updating [17, 27, 33, 51, 59]. They typically require
the software to reach a quiescent point before safely applying
the update or they allow the old and new versions to co-exist.

Goel et al. [28] explore using shared memory between the
old process and new process in the Facebook Scuba database
to copy tables and achieve fast restart during update. It shows
the benefits of preservation. However, it incurs excessive
copying overhead and requires extra physical memory during
restart. It also only studies one application. More importantly,
this approach is not designed for failure recovery and does
not handle the safety aspects of preservation.

VM-PHU [61] speeds up the host OS updates in Microsoft
Azure cloud by preserving the VM state in memory, reboot-
ing the host, and restoring the VM state. This preservation
approach only works for virtual machines.

To recover progress, lineage-based methods [71, 72] treat
computation outputs as immutable and recompute lost progress
from arbitrary steps based on computation graph. In contrast,
traditional parallel computing jobs update state in-place and
thus fall back on checkpointing. PHOENIX’s stage-based re-
covery enables rollback to one stage with minimal overhead.

6 Conclusion
Availability is critical for modern services, but is often hin-
dered by conventional recovery designs. We identify an op-
portunity to improve recovery by reusing correct in-memory
state. We present PHOENIX, a system that enables systematic
partial process state preservation. Evaluation on large server
applications and real-world failure bugs shows that PHOENIX
significantly reduces downtime, improves post-recovery avail-
ability, and maintains good correctness.
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