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Abstract
When a failure occurs in production systems, the highest
priority is to quickly mitigate it. Despite its importance, fail-
ure mitigation is done in a reactive and ad-hoc way: taking
some fixed actions only after a severe symptom is observed.
For cloud systems, such a strategy is inadequate. In this pa-
per, we propose a preventive and adaptive failure mitigation
service, NARYA, that is integrated in a production cloud, Mi-
crosoft Azure’s compute platform. Narya predicts imminent
host failures based on multi-layer system signals and then
decides smart mitigation actions. The goal is to avert VM
failures. Narya’s decision engine takes a novel online experi-
mentation approach to continually explore the best mitigation
action. Narya further enhances the adaptive decision capabil-
ity through reinforcement learning. Narya has been running
in production for 15 months. It on average reduces VM inter-
ruptions by 26% compared to the previous static strategy.

1 Introduction
Failures are common in large systems. High-availability sys-
tem designs require techniques that address a key question:
once a failure occurs, how to quickly detect and mitigate
it so the system can continue running? Mitigating a failure
here means attempting to make the failure symptom disappear
without necessarily diagnosing and fixing the underlying bugs
first. However, for a large cloud infrastructure like Microsoft
Azure that serves millions of customers running virtual ma-
chines and various software atop, only employing post-failure
detection and mitigation techniques is insufficient.

This is because if a system only takes mitigation actions
after a failure is detected, users may already be having bad
service experience as the system runs in a degraded mode (not
completely failing) [15, 17, 29]. Moreover, when a failure is
detected, the system will be under intense pressure to mitigate
the failure fast in order to minimize downtime; but in practice
failure mitigation takes time for large systems, and expediting
mitigation could even worsen the situation [12]. In addition,
our experience suggests that even short, mitigated failures can

be impactful to customers due to the interruptions themselves.
Therefore, cloud systems should also design techniques to

address the question of, whether a failure may be imminent,
and if so, what preventive actions should be taken to avert
this failure? Several recent works tackle the failure prediction
problem [14, 27, 38] in the context of disk failures. But they
focus on prediction alone, with the goal of alerting operators
or providing allocation hints [25]. The questions of how much
benefit does the prediction bring, and more importantly what
preventive mitigation actions should the system take in re-
sponse to predicted failures remain open. Answering these
questions requires a holistic solution—one that is closely in-
tegrated in the system’s control loop, which not only predicts
host failures in real time, but also automatically decides the
proper mitigation actions, measures the benefits, and continu-
ously adjusts its actions based on the measured benefits.

In this paper, we present NARYA to fill this aforementioned
gap. Narya is an end-to-end service with predictive and smart
failure mitigation fully integrated in the Azure compute plat-
form for its Virtual Machine (VM) host environment. The de-
sign goal of Narya is to prevent VM failures ahead of time and
enhance the self-managing capability of the Azure compute
platform for providing smooth VM experience to customers.

Narya’s design is informed by several observations we had.
First, while failure mitigation is a crucial step in cloud opera-
tion, the current practice is ad-hoc. To mitigate a (predicted)
failure, developers use static policies that prescribe actions
based on the symptoms and domain knowledge. While this
approach works for simple systems, it does not work well at
Azure scale. With multi-tenancy, heterogeneous infrastructure
components, and diverse customer workloads, it is difficult
to comprehensively categorize different failure scenarios in a
large cloud system beforehand and determine good mitigation
actions (or their parameters), especially without trying it.

Moreover, as the cloud system is constantly changing (soft-
ware/hardware updates, customer workload changes), some
mitigation action that worked well in the past may no longer
be optimal. As a result, developers keep reactively adjust-
ing the actions based on hind sights from service incidents.
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For example, initially restarting a host node upon receiving a
predictive failure signal may be effective as the system fail-
ures tend to be caused by some transient hardware issues;
but gradually permanent node failures become more common
so restarting is not the best mitigation action anymore—live
migrating the virtual machines from the node predicted to fail
to a healthy node may be a better action. Therefore, for cloud-
scale systems, we need smart and adaptive failure mitigation.

Our insight is that the effectiveness of taking some mitiga-
tion action in a complex and changing system is often prob-
abilistic as there are too many factors affecting it (network
condition, VM size, applications, hardware health, customer
activities, etc.), which may not be thoroughly accessed or as-
sessed. We usually do not know beforehand whether some
mitigation action is good or not, or whether there is a bet-
ter action, unless we try it. Consequently, explorations with
production workload is indispensable to determine the (near-
)optimal failure mitigation action. Nevertheless, we should
ensure that the actions taken maximize the expected effective-
ness (minimize the potential customer impact) over time.

Based on this insight, Narya takes a novel online exper-
imentation approach. In particular, Narya predicts whether
host nodes in the production fleet will likely fail and then
leverages A/B testing to continually experiment with different
mitigation actions, measure the benefits, and discover optimal
actions. The rationale behind the A/B testing strategy is that
it, in essence, introduces randomization that avoids biased piv-
ots of the diverse nodes, which helps surface the statistically
significant effective actions.

One important drawback of the A/B testing strategy is
its cost of exploring each action until statistical signifi-
cance is found and then always choosing the estimated
best action. This problem is essentially the classic explo-
ration–exploitation trade-off [32] in learning systems that
need to make decisions with incomplete information (about
the system stack, customer workloads, etc.), constant changes,
and uncertain pay-offs (whether the action will prevent future
failures). The dilemma is whether the learning agent should
repeat a mitigation action that has worked well so far, i.e.,
exploit, or it should try some novel choices in the hope of
getting better rewards, i.e., explore. We address this issue by
enhancing the Narya decision engine using a dynamic assign-
ment learnt through a multi-armed Bandit model [2, 33]. This
helps decrease overall cost by better leveraging the early cost
estimation of each action and by continuously exploring each
of them to adapt to system changes.

Narya has been running in production for 15 months in
Azure as part of the Gandalf [24] suite. Narya successful pre-
vents many VM interruptions for customers. In nine produc-
tion experiments that Narya runs for different failure types,
Narya on average reduces VM interruptions by 26% com-
pared to the previous static strategy. This reduction is close to
what the oracle optimal strategy could achieve (35%).

The major contributions of this work are:

• We propose a holistic failure avoidance solution that in-
cludes failure prediction, new failure mitigation actions,
and intelligent mitigation strategies.

• We design a novel approach of using A/B testing for online
experimentation with production workload to automatically
identify good failure mitigation actions.

• We explore a more advanced reinforcement learning ap-
proach to optimize choice of mitigation action.

• We evaluate the proposed solution in a large-scale, produc-
tion cloud service, Azure, to validate its effectiveness.

2 Background and Motivation

A traditional system’s operation cycle is as follows: a failure
is detected; developers diagnose the failure and find out the
root cause; a patch is written; the system is re-deployed. For
cloud systems, operating in this exact sequence is problematic
because the time it takes to identify the root cause and develop
a fix is usually long and exceeds the downtime budget. Instead,
once a failure is detected, some mitigation action like restart
will be applied first without necessarily knowing the bug.

2.1 Target System and Goal
We tackle the problem of preventive and smart failure mit-
igation for cloud systems. Our specific target system is the
VM host environment, a node, in the Azure compute plat-
form. The host environment is a complex stack consisting of
guest OSes, guest agents, hypervisor, host OS, host agents,
firmware, and hardware. The node is backed by locally at-
tached disks and remote virtual disks. Each node is connected
to various compute services, together referred to as controller,
that is responsible for provisioning resources and performing
management actions such as creating and destroying VMs.

Azure already employs layers of monitoring mechanisms
to actively detect if a host node has failed (e.g., via periodic
pings), and mitigate the failure with actions such as rebooting
the node. We aim to further develop techniques that predicts
whether a host environment might fail soon and automati-
cally decides an appropriate mitigation plan among multiple
choices. The end goal is to avoid future VM failure events.

2.2 Are Failures Predictable?
To predict failures, there are two basic requirements: (i) the
imminent failure is not abrupt; and (ii) there is telemetry
recorded to indicate the degradation. One type of predictable
hardware issue is certain hardware parts wear out. We could
predict using the age or the wear-out rate. Combined with
other system signals such as workload patterns, we can predict
if a host will fail soon. Resource leak, including memory/file
handle/network ports leak, is a common type of predictable
software failure. We could predict them using the resource
usage trend. If failures are correlated with certain hidden
factors such as timeout settings, bugs related to timers, and
release schedule, they may also occur on a predictable basis.
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Timestamp Event

03-14 18:00:00 A node with 16 VMs was predicted to fail with 0.7 prob.
03-16 01:09:12 Node agent crashed, 17 VMs offline
03-16 01:15:26 Controller probes to node agent timed out, retry
03-16 01:31:00 Node state marked by controller as unhealthy
03-16 02:07:37 Controller tried to recover the node through restart
03-16 02:23:02 Failed to receive node reboot success signal
03-16 02:23:33 VMs in the node were recreated in another node
03-16 04:40:17 Node was sent out for repair
03-16 06:13:21 Offline diagnosis finished, disk fault was suspected

Table 1: Events timeline for a production node.

2.3 Why Reacting on Predicted Failure?
Since predicted failure is about something (complete failure)
that has not occurred yet, one option is to only treat it as an
early warning and not act on it. After all, it is developers’ com-
mon mindset that “If It Ain’t Broke, Don’t Fix It”. However,
for cloud services, this mindset puts customers and their VMs
at the risk of suffering interruptions. With techniques such
as live migration which can migrate a VM from one node to
another with minimal customer impact, cloud vendor is in a
better position to help customer avoid failures.

To give an example, Table 1 shows a production case of
the timeline for events in a node. In this case, the node was
predicted to fail with a relatively high probability, but no
preventive action was taken. So both the existing VMs and
new VMs still run in this node. Later, this node indeed failed
(OS crash), which caused 17 VMs including 1 new VM to
be offline. The controller tried to probe the VMs and timed
out. Then it tried to reboot the node but failed. Finally, the
controller decided to recreate the VMs in another node. Sub-
sequent offline diagnosis confirmed the disk on the node was
indeed problematic. Had we taken some mitigation action
when receiving the failure prediction signal, we could have
saved the long VM disruptions and customer impact.

2.4 Why Static Mitigation Is Insufficient?
Intuitively each predicted failure should be handled in the
same way using an optimal method. Indeed, initially we used
a static strategy where all predicted bad nodes would be miti-
gated using the same plan: 1) block allocation on the node;
2) try to live migrate VMs; 3) wait for 7 days for short-lived
VMs to be destroyed by customers; 4) force migration of re-
maining VMs; 5) mark the node offline and send it for repair.
Although this plan looks reasonable, it quickly faces limita-
tions. Blocking allocation results in capacity pressure while
for some predicted failures, avoiding allocation may be better.
Some failures may be too severe to do live migration (e.g.,
broken disks). Forced migration causes unnecessary customer
impact if nodes are still healthy after 7 days. Marking nodes
offline is also suboptimal when capacity is low.

Using static assignment prevents us from knowing what
would have happened if we had chosen a different action,
and therefore from knowing how much customer pain we
saved or if we were using the best action. In addition, static
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Figure 1: High-level workflow of Narya.

mitigation get affected by system changes over time. With the
complexity of our cloud system, the effect of a rule, as well as
the telemetry that a rule relies on, is constantly changing. In
these cases, since static mitigation does not try other actions,
it could increase customer pain without us realizing it. For
example, a low CPU frequency can be a defense mechanism
from a CPU to indicate an imminent failure; detecting such
drop in CPU frequency and applying a mitigation action can
be beneficial. However, new improvements in the system
could voluntarily decrease CPU frequency to conserve energy.
In this case, the original rule could have a high number of
false positive in prediction results, and applying the same
action will very likely cause more harm than good.

Another limitation of static failure mitigation is that it cre-
ates tendency for developers to make ad-hoc modifications to
the mitigation assignment based on some isolated cases. No
mitigation action can be perfect and customers may complain
if they suffer from such mitigation. In such case, developers
tend to modify the rule to satisfy the customers. However,
without testing if that change does reduce the overall cus-
tomer pain, it is possible that the situation gets worse and the
policy might be switched back again when another customer
complains about this new policy.

3 Overview
We design Narya, an end-to-end service that is integrated in
the Azure compute platform, to predict host failures and au-
tomatically decide what mitigation actions to take for each
predicted failure. The design goal of Narya is to avert poten-
tial VM failures while minimizing the impact to customers.
Narya advances the current practice of failure mitigation in
two ways: (i) replacing existing static and ad-hoc mitigation
assignment to adaptive and systematic decision algorithms;
and (ii) transforming the traditionally reactive, post-failure
mitigation activity to proactive failure avoidance mechanisms.

3.1 Narya Workflow
Narya takes a novel online experimentation and learning ap-
proach to the failure mitigation problem. Figure 1 shows
overview of the high-level workflow in Narya.

Each node in Azure is deployed with monitoring agents that
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collect various telemetry signals about the host environment
(Ê, §4.1). The prediction component in Narya continuously
consumes these signals and predicts whether some node will
fail soon (Ë). The prediction is made by both static domain
rules ( 2.a , §4.2) and running machine learning inference ( 2.b ,
§4.3). Each prediction result is streamed into the decision
component in Narya as a mitigation request. Narya supports
two decision schemes: A/B testing ( 3.a , §6.1), and Bandit
model ( 3.b , §6.2). The decision component computes a proba-
bility distribution of applicable mitigation action choices (Í,
§5) and then picks an action based on the distribution. The
mitigation controller applies the chosen mitigation action to
the suspected node (Î). This whole process is an automated
feedback loop that optimizes a key objective metric—VM
interruption rate (§3.2). Narya observes (Ï) the effect of the
mitigation actions and adapts (Ð) future prediction and miti-
gation decisions based on the observations from production.

Building Narya to work for a production cloud requires
both algorithm designs and systems support. We first describe
the core prediction and mitigation algorithms in Section 4 and
Section 6, respectively. Section 7 describes the Narya systems
design and implementation.

3.2 Key Optimization Metric
Narya’s objective is to reduce and minimize the overall cus-
tomer impact caused by node failures on the fleet. Defining a
good cost metric for customer impact is critical for the Narya’s
decision engine to optimize that metric. In Azure, we focus
on the Annual Interruption Rate (AIR) defined as:

AIR =
VM interruption count in T

Total VM lifetime in T
×365 days×100 VMs

T is any given measured interval duration in days. VM in-
terruption in this paper mainly refers to reboots or loss of
heartbeats. Internally, we also measure performance drop
with a sub-metric we call AIR-blips.

We optimize this metric instead of the traditional availabil-
ity metric for a few of reasons. First, long-duration incidents
are now rare in Azure. VM interruptions become more com-
mon that require addressing. Second, short VM interruptions
can significantly disrupt user experiences, e.g., for gaming-
type applications. Third, for VMs that run applications like
databases, even if the VM only experiences a short interrup-
tion, the applications take time to recover, which translates
into a longer user-perceived interruption. Fourth, based on
communications with customers, customers can be more an-
noyed if their VMs get frequently interrupted when compared
to a single longer-time interruption.

3.3 Challenges
We need to address several design challenges. First, failure
mitigation has to act with incomplete information since the
underlying root cause is not known. For Narya, this challenge
is even more pressing since the failure has not occurred yet.

Second, due to the massive scale of a cloud system, there
are many factors to consider in the decision logic. A decision

may work well for some nodes but not others. If not careful,
some corner cases can mislead or bias the decision logic.
Narya must be robust enough while still being flexible.

Third, our experience suggests that when incorporating fail-
ure prediction into a production cloud system, false positives
are unavoidable due to the complex system environment, large
number of noisy signals, unexpected customer workloads, etc.
If the system blindly trusts the failure prediction results and
reacts, it could cause unnecessary disruptions. When consum-
ing the prediction results, the mitigation mechanisms should
take this into account and operate in a way that minimizes the
impact due to unavoidable false positives.

Lastly, failure mitigation is a mission critical procedure. If
not designed well, a decision engine may do more harm than
good. Ensuring safety should be a top priority for Narya.

4 Predicting Node Failures
The first step in Narya is to predict a host failure before it
occurs. In this Section, we describe two prediction methods
Narya uses: (1) static threshold rules written by domain ex-
perts; (2) machine learning model-based prediction.

4.1 Input Signals
Narya consumes telemetry signals from the entire stack of the
host environment to make informed prediction. For hardware
and firmware, the monitoring agents collect low-level logs
from disk SMART attributes, memory (e.g., uncorrectable er-
rors), CPU (e.g., machine check error), motherboard (e.g., bus
error), etc. A higher-level source of signals comes from device
drivers, e.g., timeout events. Repetition of such events is often
an indicator of an imminent failure. Faults in individual com-
ponent do not necessarily cause customer impact. Some could
be transient that would go away after retries. Others may be
tolerated by redundancy. Narya further consumes critical OS
events and aggregate application performance counters.

Another important source of signals used by the predictor
are results from the control-plane operations. For example,
repetitive VM creation operation errors could indicate serious
host issues even if the host still appears to be running. Such
signals help reduce the observability gap [16].

4.2 Rule-based Prediction
Rule-based prediction leverages domain knowledge from
hardware, firmware and software experts. We analyze the
common failure patterns and the available telemetry signals
to predict failures that have significant customer impact. For
example, in some cases, CPU Internal Error (IERR) is a good
indicator that the node will fail again soon; a prediction rule
could be marking the node if IERR occurs twice within 30
days. Rules are typically written as Json files, Python scripts
or sometimes C++. Since rules are manually written, they
are simple and easy to understand. The prediction rules are
deployed directly in the host and can be executed fast.
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Figure 2: Prediction horizon and label timeline. t1: host failure time.
t2: component permanent failure time.

Rule-based prediction works best for definitive signals that
indicate some severe issue with high confidence. An exam-
ple is the AvailableSpare signal in NVMe device health log.
When it drops below a certain threshold, we know the device
is almost at the end of its life.

Since many failure signals are not definitive, rule-based
prediction cannot cover a wide range of imminent failures.
In addition, the prediction may come late and do not provide
enough lead time for the mitigation engine. The number of
prediction rules also keeps growing, which becomes a burden
to manage and tune. We have a total of 51 rules in use.

4.3 Learning-based Prediction
To address the limitation of rule-based prediction, Narya em-
ploys an additional learning-based predictor, which analyzes
more signals and patterns during a larger time window. It can
predict many complex host failures. It also can predict earlier,
thus leaving longer time for the mitigation engine to react.

Prior work predict disk failures [14, 27, 38] and node
faults [25] with supervised learning. Our learning-based pre-
diction aligns with prior solutions. A main difference is that
we focus on overall host health and failures that result in cus-
tomer impact, instead of failures of individual components.
Because of this, Narya analyzes more diverse signals across
layers such as control-plane operation signals.

Prediction Horizon and Label. Deciding the labels to use
for learning is crucial for Narya. In prior work that predicts
hardware failures for alerting, the positive labels are signals
close to when the hardware is completely broken. For Narya,
the host view of a failure is different from individual com-
ponents’ view. The host failures could be unresponsive host,
VM creation failure, host OS crash, etc. In our observation,
they happen much earlier than the permanent failure of a com-
ponent (e.g., disk unusable). As Figure 2 shows, if we assign
positive labels from time t2 (permanent component failure),
it can yield late prediction which comes after host failure at
time t1. The consequence is that the prediction does not give
enough time for Narya to take proper mitigation actions.

Additionally, certain faults might not be a problem to the
source component but could be problematic from host’s view.
For example, a series of memory correctable errors might
seem fine for an ECC DRAM because they are corrected. But
the host may already suffer slowness and impact VMs.

To get accurate and useful prediction result, we only use
host failures that result in customer impact and are later con-
firmed to be caused by some hardware component faults dur-
ing diagnosis. For a given host failure, if it occurs at time t, we

Device 
signals

Driver
signals

…

OS
signals

Dimension 

Adapter Layer

Spatial Info 

Encoder

Temporal Info 

Encoder

Fusion

Layer

… …… …

will fail

healthy

Figure 3: Deep learning model structure.

assign positive (failure) labels for signals from t−1 to t−n,
where n is the prediction horizon and using an hour unit. We
assign negative (normal) labels for signals from t− (n+1),
. . . We also sample negative labels from healthy nodes.

In production, our prediction horizon is set to 7 days. We
made the choice based on how discriminative the feature will
be given different horizons. Specifically, we looked at the
feature distribution of failed nodes and measured the same
distribution of healthy nodes. We then measure the similarity
between the two distribution groups. Beyond 7 days, we could
not observe a significant difference.
Machine Learning Model. With the signals, labels, and host
metadata, Narya trains a binary classifier. The predictor out-
puts the failure probability of a host (we use 0.5 as the cutoff).

To train the classifier, we use the gradient boosted tree
model [18] commonly used in supervised learning, which
combines decisions from a sequence of simple decision trees
with a model ensembling technique called gradient boost-
ing [10]. This simple model works fine for our scenario in
terms of its predictive power, but we have to carefully craft ag-
gregated features from the signals. We engineer 2k+ features
from 100+ time series data. Those engineered features are
combined with other categorical features to build the learning-
based model feature set.

We further explore reducing the feature engineering efforts
by directly learning the features with an attention-based deep
learning model [20, 35]. At a high level, we aim to learn
both spatial features and temporal features. Spatial features
compare one component to its neighbors. For example, one
host often has multiple disks configured under RAID 0, thus
they are expected to perform similarly. If one disk performs
worse than its neighbors, it could indicate imminent host
failures. Attention-based deep models are designed to capture
such patterns so that more weights (attention) are assigned
to anomalous neighbors. The temporal features characterize
changes in components over time.

Figure 3 shows the structure of this model. First, we use
a dimension adapter layer to unify the dimension of signals
from different sources. Next, we employ a spatial information
encoder based on self-attention. It calculates weights of a
component’s neighbors. The weighted sum of the neighbors’
feature vector represent its spatial information. Then, we use
the temporal information encoder, which consists of positional
encoding, self-attention, and location-based attention layers.
Finally, we employ a fusion layer to do binary classification.
We omit the attention implementation details as they are based
on an existing technique proposed by Lee et al. [20].
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Action Description

Pr
im

iti
ve

Avoid Deprioritize new VM alloc. on this node
Unallocatable (UA) Block new VM allocations on this node
Live Migration (LM) Migrate VMs to other nodes on the fly
Service Healing (SH) Discon. VMs, move them to healthy nodes
Soft Reboot (SR) Reload host OS kernel, VM states preserved
Human Investigate (HI) Shut down node and send it to diagnostics

C
om

po
si

te UA-LM-HI Block alloc., attempt LM and HI after T
UA-SR Block alloc., attempt soft reboot
UA-LM-RH Block alloc., LM and unblock after T
Avoid-RH Avoid alloc. to this host if possible

Table 2: Primitive and composite mitigation actions for Narya. Com-
posite actions are sorted by decreasing priority.

Overall, this model achieve 5–10% improvement compared
to the decision tree model with hand-crafted features.

5 Mitigation Actions
When a host is predicted to fail, Narya chooses among several
possible actions. Table 2 lists the main primitive actions in
Azure. Mitigating a failure often requires multiple primitive
actions. An aggressive goal for Narya is to explore the actions
arbitrarily and figure out the optimal combination. But this
could potentially bring significant customer impact. Instead,
Narya mitigation engine focuses on exploring pre-defined
composite actions (Table 2). This set of composite actions is
constantly enriched with new combination and by modifying
parameters (e.g., unallocatable duration).

Live Migration moves a running VM from one host to an-
other with minimum disruptions. The migration process in-
volves transfer of the VM’s memory, processor and virtual
device state [7]. The LM engine iteratively copies the VM’s
memory pages while maintaining a dirty page set for the VM
on the source host. Based on the dirty page rate, network
bandwidth, the engine determines the maximum iterations
to stop the VM. After the VM is stopped, the LM engine
synchronizes the dirty state with the target and resumes the
VM on the target host. Note that not all VMs are eligible for
LM and LM could fail for various reasons.

VM Preserving Soft Reboot preserves the VM state across
a reboot of the host OS. At a high level, the host OS kernel is
reloaded into memory, the VM memory and device state are
persisted to the newly loaded kernel. The host reboots into the
loaded kernel while preserving the persisted state. Once the
reloaded kernel starts, the persisted state is restored and the
rest of the state in the prior kernel are discarded. The restored
VM experiences a brief pause similar to the live migration.

Service Healing is used to restore the service availability of
unhealthy or faulted VMs. Live Migration can move running
VMs transparently, but it could fail or cannot be applied due to
certain constraints such as network boundary. Service healing
works for more general scenarios. The VMs will be isolated by
powering down or disconnecting from network. The controller
generates new assignment of the VM to healthy nodes. During
the process, there is some interruption.

Mark Unallocatable blocks allocation of new VMs to a host
for some time T (default 7 days). Composite actions typically
start with marking a suspected host unallocatable. In UA-LM-
HI, after marking host unallocatable, the controller attempts
to live migrate the VMs on this host to other hosts. After all
VMs have been migrated or destroyed by customers or this
host fails, the host will be sent to diagnostics. If at the end
of the unallocatable period T some VMs are still running
(e.g., because they are not eligible for LM) we service heal
them before pushing the host to diagnostics. UA-LM-RH is
a variant of UA-LM-HI where we unblock allocation (reset
node health) at the end of T . In UA-SR, the controller blocks
the allocation and then try the kernel soft reboot action. If
the soft reboot succeeds, the controller unblocks allocation.
Otherwise, we use a fallback strategy, typically LM-HI.

Avoid informs the allocator to try to avoid adding new VMs
on this host. Blocking allocation has a strong impact on ca-
pacity since the host is not eligible for getting new VMs.
Thus, the number of hosts that can be marked unallocatable
at the same time is limited. Avoid action provides a weaker
constraint. The behavior on host failure is still to send it to
diagnostics. At the end of T , we reset the node availability.

NoOp is a special action for predicted failure, in which the
controller does not take any action. This is the baseline to
measure the benefits of prediction and taking actions.

6 Decision Logic for Adaptive Mitigation
With different prediction rules/models as well as different mit-
igation actions, relying on static assignment based on domain
knowledge to map each prediction to an action can soon get
intractable and ineffective. This motivates the design of Narya
decision engine for adaptive mitigation.

6.1 Online Experimentation with A/B testing
One straightforward way for choosing mitigation action is
to estimate offline the impact for each possible action for a
predicted failure. In our experience, given the complexity of
cloud systems, it is extremely hard to estimate the impact of
actions and know which one performs best without trying
them in production. Based on this insight, Narya takes an on-
line experimentation approach to evaluate different mitigation
actions by testing them at scale.

A/B testing, also called online experiments, is widely
used [19] in front-end designs to test the effect of UI fea-
tures. Narya adopts the A/B testing methodology and adapts
it for discovering good mitigation actions. In classic A/B test-
ing, one experiment is about one UI feature and each unit is
a user. For Narya, one experiment is about the mitigation of
one failure prediction (e.g., CPU IERR, slow memory access
latency), and each unit is a failure mitigation request about a
node marked by the corresponding prediction rule/model.

The workflow of the A/B testing in Narya is as follows: (1)
each predicted node is assigned to different action groups with
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equal probability (2) after taking each action, we measure the
customer impact within an observation window; (3) we use
hypothesis testing to test if an action yields significantly less
customer impact than others; (4) once statistical significance
is reached, we consider this least-impacting action optimal
and apply it for all nodes; (5) we keep monitoring the cus-
tomer impact per node for the used action; (6) if customer
impact significantly increases, we run a new A/B testing ex-
periment to validate that the action is still optimal.

Cost. The cost (=−1× reward) models the customer impact.
It should balance the trade-off between key metrics of our
system. The pros and cons of each action should be modeled
into the cost to correctly optimize for the mitigation action.
We use the number of VM interruptions in the node during
an observation window and the VM interruptions in nodes to
which we migrated VMs in live migration or service healing.

An additional constraint we need to consider is capacity. As
capacity does not directly impact customers and is not visible
at the node level, it cannot be easily added into the cost. We
currently incorporate the constraint by limiting the number of
nodes that can be marked unallocatable for the same rule in the
same cluster at the same time. With this, capacity indirectly
impacts the cost of marking nodes unallocatable.

Assignment Strategy. A crucial point for A/B testing is to
decide for each node marked by the failure predictor, in which
experiment group should it go to. In classic A/B testing, each
experiment unit is assigned randomly, based on the assump-
tion that the units are independent and identically distributed
(i.i.d). For Narya, we make several changes.

The same node can be marked by the same prediction
rule multiple times during an A/B experiment. In this case,
if Narya assigns it different mitigation actions, e.g., assigns
node X in action A group at time t1 and then to action B at
time t2, the i.i.d assumption can be violated. This is because
the underlying node condition at t1 and t2 could be highly cor-
related, especially for hardware issues. Then the observations
from the treatment and control group are correlated.

To address this issue, we introduce sticky assignment: for
each node, the group is determined through the hash of the
node Id and experiment name (Figure 4); then, if a node is
assigned to action A for an experiment, it will always take
action A for subsequent requests.

Classic A/B experiments are typically done sequentially.
In our case, sequential experimentation takes too long; so
Narya allows different experiments to take place concurrently.
While most experiments are independent, some experiments
could have prediction rules that are correlated. In this case, it

UA-SH-

HI group

NoOp 

group

…

…
A1 A2

Unrelated reboots

A1 NoOp action time

A2 UA-SH-HI action time

DP E
P Prediction time
D Decision time

E End of observation 

Figure 5: Using decision time as the start of observation window.

is important to test all possible action combinations to analyze
their compound effect later. For example, with experiment X
testing actions {a,b} and a correlated experiment Y testing
actions {c,d}, we need to have observations that take each of
the four scenarios: (a,c), (a,d),(b,c), (b,d).
Action Overriding. Since many fault handling policies, in-
cluding our A/B experiments, can take place concurrently, a
host can potentially be marked by several prediction rules. As
a result, the host might need to follow different composite
actions at the same time. A common reason for this is the
incomplete information factor (Section 3.3). To handle this
situation, Narya uses a specific override logic based on the
priority from the order in Table 2. When we try to assign a
node with a lower-priority action than its current one, we skip
it. In case of equal priority, Narya honors the older actions.
The rationale is that later prediction can often be a side effect
of the earlier one. Since we often do AB testing between
actions with different priorities, it is critical to also observe
cases where the action was skipped or later overridden.
Effect Observation and Attribution. Depending on the
complexity of the actions, some need longer time to get trig-
gered. In the time between the decision and the start of the
action, unrelated VM interruptions can happen. However, to
fairly compare action, we should still count the cost in this
time gap because, for instantaneous actions, it would be im-
possible to differentiate the costs caused by the action from
the unrelated ones. Like for overrides, we monitor decision
instead of action, hence we use the decision time instead of
the action time as the start of the observation window. Fig-
ure 5 shows an example where if we used the actual action
time we would ignore some unrelated reboots for one action
and not the other, while they happen in both groups.
Hypothesis Testing. After collecting the cost metrics for each
action, the decision engine performs hypothesis testing to
decide whether an action is optimal and the experiment can
be stopped. Since our cost function is complex and depends
on external variables, we simplify the hypothesis testing by
assuming that the number of VM reboots per node is i.i.d
and follows a normal distribution. Since different actions
can highly change the VM reboots per node, we will not
assume equal variance for the different actions. Under these
assumptions, we use Welch’s t-test [36] when testing for two
actions and Welch ANOVA test for 3 and more. In the latter,
we use post-hoc analysis to remove all statistically worse
actions until one action remains.

6.2 Bandit Modeling
One drawback of A/B testing is its static group assignment.
Before statistical significance, we do not leverage the esti-
mated difference between the groups to minimize our cost,
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and once an experiment reaches statistical significance, we
will almost always use the discovered optimal action. This
is essentially the classic exploration-exploitation dilemma.
Naturally, we explore modeling the adaptive mitigation as a
Multi-Armed Bandits problem [32, 33], where we aim to min-
imize the customer impact over time by ensuring a balance
between exploring potential better actions and exploiting the
discovered best action. At training time, we observe tuples
(node, rule, chosen action, cost) to estimate the proba-
bility to choose each action, while at serving time, we match
a request tuple (node, rule), to the learnt action.

Actions. The output of the bandit model is the composite
action we want to attempt. The available actions are typi-
cally defined per experiment based on offline analyses of the
prediction signals characteristics: false positive ratio, time to
failure/impact and actions feasibility (Section 5).

Exploration Algorithm. To minimize customer impact over
time, we face the classical exploration-exploitation trade-off.
We need to explore different actions to see which one mini-
mizes the customer impact but at the same time we want to use
the action with minimum estimated cost as much as possible.
In other words, we need to balance between short-term and
long-term benefits. We experimented with multiple different
exploration models including Epsilon Greedy and UCB, and
decided to use Thompson Sampling model since it provides
more explainability and continuous probability changes. In
Thompson Sampling, we model the reward as a function of ac-
tions and a model parameter and choose the action according
to the probability that it maximizes expected rewards. This
Bayesian approach updates the prior using observations of
actions taken and chooses each action with probability equal
to the chance that it minimizes the expected cost:

P(a∗) =
∫

I
(
E(c|a∗,θ) = minaE(c|a∗,θ)

)
P(θ|obs)dθ

where P(a∗) is the probability to choose action a∗, θ is a
hidden parameter, c is the cost and obs are the past observation
as list of tuples (ai,ci). Our technical report [?] describes in
more detail the Thompson Sampling algorithm in Narya.

6.3 Extension to Bandits
Compared to traditional Bandits, our system faces several
challenges. In addition to the effect observation solution de-
scribed in Section 6.1, we made 4 main adaptations as follows.

Accommodate Temporal Changes. Since our system can
change in time, older observations will gradually become less
and less relevant. To account for this factor, we use an expo-
nentially decaying weight for observations to focus on recent
data. We will apply a multiplying weight to past observation
in the format of decay = σT−Tobs , where σ is the decaying
factor, T is the current time and Tobs the time of the observa-
tion. We set σ by default to 0.99 based on simulation-based
experiments and so that the weight would be close to 0 after
3 months which is our typical retention policy. In the case of

Thompson Sampling with Gamma Prior, the distribution to
sample from becomes:

P(θ|a,obs)∼ Γ

(
1+ ∑

i,ai=a
ciσ

T−Ti ,1+ ∑
i,ai=a

σ
T−Ti

)
Delayed Reward Collection. A key challenge in our settings
is the potential long time between the action taken and its
impact. This forces us to observe for at least 10 days and up to
30 days the impact of choosing each action. This observation
window highly depends on the duration of the action and
its effect: UA-LM-HI for 7 days would require around 10
days while Avoid-RH for 15 days would require a full 30
days to observe potential failures following the health reset.
The drawback of a long observation window is the delay
for the reward to be integrated into the model. Thus, wrong
estimation could be used for a while before the observed cost
can readjust the probabilities. One way to counteract this
effect is to observe the reward as it comes. But we can suffer
from the opposite effect of getting biased by reboots close
to the decision time. Our experience suggests that we need
to wait for the full initial observation window and then can
collect partial rewards incrementally.

Bandit stickiness. Since the probability to choose each action
over time changes, we cannot rely on a hash function like in
A/B testing to ensure a node is always assigned to the same
action. We define the bandit stickiness for time T as reusing
the previously chosen composite action if the node has an
available decision for the same rule within the T time window.

Deal with Unexpected Spikes. Another potential issue in
our system is the unexpected spike of VM interruption events
that could affect one action group more than the other. One
approach would be to perform an outlier removal step before
using such observation, but in that case it could also filter out
spikes inherent to a specific action, which should be integrated
into our learned model. We address the issue with the safe
guards mechanism described below.

6.4 Safe Guards
Safety is a top priority in Narya mitigation decision logic.
We take several measures to ensure safety. In addition to
action overriding (Section 6.1), we also apply safety con-
straints—domain-specific restrictions to prohibit certain ac-
tions in some failure scenarios. Narya decision engine also
requires a minimal number of observations before following
the recommendation from the Bandit. The Bandit model will
output a premature flag for insufficient observations, in which
case we would fall back to default action probabilities simi-
larly to A/B testing. This also helps dilute the potential effect
of spikes in a larger observation set.

Moreover, we support configuration of minimum and max-
imum constraints for each action probability. The maximum
constraint limits the possible reactions to high cost, while the
minimum constraint guarantees some exploration for actions
that could seem irrelevant at a specific time. In practice, any
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Figure 6: Narya system architecture, which consists of the predictor,
mitigation engine and learner. The ML models for the prediction
and mitigation are stored in a model serving platform [8].

experiment for which we expect a potential change in the
system should keep a minimum probability for each of the
allowed action so that it will continue observing the effect of
such action. Experimentally, We found that using 10% explo-
ration when nodes flagged per day is less than 100 and 5%
when it is higher yielded the best results.

7 Narya System Design and Implementation

In this Section, we describe the system support for Narya.
Figure 6 shows the system architecture. Narya is deployed in
each data center region of Azure compute. The Narya system
must be able to process the massive signals and requests from
the entire fleet with low latency and reliability.

7.1 Failure Predictor
Azure deploys various agents in each node to monitor the
health of the host environment. The Narya predictor ingests
health signals from these monitoring agents and runs rule-
based prediction and ML-based prediction (Section 4).

Rule-based prediction has low cost and high priority. Thus
its prediction logic is executed directly in the host. The ML-
based prediction inspects much more signals such as per-
formance counters and runs more complex prediction logic.
Thus, the ML predictor is implemented as a centralized ser-
vice. It collects raw signals from monitoring agents using
micro-batches (small groups) and incrementally processes
them. Open source technologies are used for ML modelling.
LightGBM is used for decision tree model and PyTorch for
deep learning model. The ML inference tasks run as an hourly
Spark job, which reads the most recent signals and the trained
ML model to compute failure probability for each host.

Pub/Sub Service. A mitigation request is created if a node
is predicted to fail with high probability. The predictor pub-
lishes the request along with metadata information about the
host (e.g., hardware generations, OS version) to a central pub-
/sub service, which we implement on top of Kafka [1]. We
choose Kafka because it allows scalable, low-latency, and
real-time streaming processing to deliver the mitigation re-
quests quickly. Also, our computation pattern involves many

"HW_Triage": { 
  "Type": "Selection",
  "ChildSelector": [{
    "ShouldSelect": "C#|Request.FaultedHwHealthGrade == 100",
    "Child": "HW_Try_HI"
  }, {
    "ShouldSelect": "C#|Request.FaultedHwHealthGrade == 75",
    "Child": "HW_Try_Unallocatable"
  }]
}
"HW_Unallocatable_WithRecovery": {
  "Type": "Action",
  "Actions": {
    "MarkNodeUnallocatableAction_WithRecovery": {
      "Action": "MarkNodeUnallocatableAction",
      "Input": {...}
    }}
}

Figure 7: Example of mitigation policy tree nodes.

data producers for a small number of consumers, which is a
main scenario Kafka is designed for.

7.2 Mitigation Engine
The mitigation engine is a core component of Narya. Inter-
nally, it is composed of four major microservices. These mi-
croservices communicate with each other and other services
in Azure using REST APIs.

Create Mitigation Job. The Request Handler microservice
consumes mitigation requests from the Pub/Sub service. Upon
receiving a mitigation request, it creates a mitigation job with
a job Id. This job Id is used by other micro-services to track
the mitigation and query its progress.

Instantiate Mitigation Policy. For a new mitigation job, the
Policy Generator creates a mitigation policy, which maps the
information from the request to the action to take. It is repre-
sented as a decision tree. There are two types of tree nodes:
a Selection node, which chooses the tree node to visit next
based on some C# predicate; an Action node, which executes
a user-defined C# function. The decision tree structure allows
us to easily specify the decision logic. For example, we can
decide mitigation actions based on failure types (software or
hardware), fault codes (e.g., Req.FaultCode == 0x123), clus-
ter types (storage or compute), hardware generations (e.g.,
HostNode.Gen != "ABC"), etc. Figure 7 shows an example.

The policy is derived from a template (Json configuration
file). For A/B testing, the action distribution is specified in
the template. In the Action tree node matching a mitigation
request, the node’s C# function samples one mitigation ac-
tion from the distribution. For Bandit, the Action tree node
dynamically generates the distribution based on contextual
information. In particular, it calls a ML model serving plat-
form, Resource Central [8], with relevant features such as the
fault code, VM count, etc. The platform returns an exploration
setting—a probability distribution over mitigation actions.

The policy generator then applies safety constraints on the
retrieved exploration setting to obtain an adjusted action prob-
ability distribution. Additionally, the mitigation policy allows
imposing rate limit for a tree node to avoid excessive mitiga-
tion that could cause capacity issue or cascading failures.

Walk Policy Tree. The policy generator further traverses the
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policy tree in DFS order and creates an action plan. Dur-
ing this process, the generator performs many steps such as
checking predicates, checking rate limit condition etc. If a
node is entered, the generator first checks if we need to ap-
ply sticky mitigation action (Section 6.1) and if there were
decisions made within certain period of time for the same
experiment and tree node. In that case, the last mitigation
action is retrieved from a distributed storage service.

Otherwise, one action is sampled based on the probability
distribution from the config if in A/B testing mode and from
Resource Central if in bandit mode. If there is insufficient data
learned in bandit mode, a specific flag is returned to indicate
the Bandit model is pre-mature. The generator then falls back
to use the action probabilities from A/B testing mode. This
allows us to bootstrap bandit learning from A/B testing safely,
especially considering the delayed cost in the feedback loop.
We follow the same fallback strategy if there is any error in
calling the model serving platform.

Carry out Action Plan. The Action Orchestrator microser-
vice is responsible for carrying out the action plan from the
policy tree walk session. This step involves making API calls
to the corresponding compute managers since different ac-
tions may be implemented by different managers. The orches-
trator executes actions asynchronously to avoid blocking.

Log Actions. Logging in general is very important for data
analysis, Bandit training, and counterfactual evaluation of
different mitigation policies. The logging format for Bandit
learning is special since it requires not only recording the
chosen action but also the associated probability. In particular,
the mitigation engine will log the action timestamp, experi-
ment name, model type, model name, model version, action
distributions, chosen action, chosen action parameters, etc.

Track Node Health. The Health Tracker tracks node and
VM health information during the mitigation process. For
example, while rebooting a node, if we get a new signal (e.g.,
a WindowsEvent) that it is a hardware issue, then we can HI
the node early instead of waiting for reboot to fail/timeout.

7.3 Learner
Learner is a centralized component in Narya. It learns the
effect of mitigation action across different data center regions.
Compared to a regional learner design, a global learner has
the advantage of observing more data points and hence more
confidence in the cost estimation. Additionally, a mitigation
effect change in certain region due to software/firmware up-
dates could be quickly learned and applied to other regions
rolling out the same updates.

The learner runs two main jobs: cost collection and Bandit
model training. The cost collection job retrieves the mitigation
engine’s decisions from the logs. This information is then
correlated with the VM availability measurements and other
important information (LM status, VM workload, etc.) to
determine the cost of the mitigation action for training. The
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Bandit model training runs on a Spark cluster. The output
model of the learner is a categorical distribution, which the
model server can easily draw samples from.

8 Evaluation

Narya has been running in production since June 2019 to
prevent VM interruptions in Azure compute platform. Our
evaluation answers several questions: (1) how effective is
Narya in averting VM interruptions? (2) how accurate and
timely is the failure prediction? (3) how does Bandit model
compare with A/B testing?

8.1 VM Interruption Savings
The main metric we use to evaluate the effectiveness of Narya
is the VM Annual Interruption Rate (AIR) (Section 3.2). We
measure the delta between the AIR using the old static as-
signment and the AIR under new mitigation decisions from
Narya. We specifically compute three metrics: the estimated
daily AIR savings, the oracle daily AIR savings (savings if
we already knew what was the best action), the regret (how
much additional AIR we could have saved). The estimated
daily AIR savings (Ŝ) is obtained by comparing the impact
of each tested action to the impact of the original action pro-
jected on the whole fleet. The oracle daily AIR savings (S∗) is
estimated by mapping the best performing action to the whole
population compared to the original action on the whole fleet.
Our technical report [?] shows the formulas to calculate Ŝ and
S∗. The regret is the expected difference between the reward
sum associated with an optimal strategy and the sum of the
collected rewards. We consider R = S∗− Ŝ to be our AIR re-
gret, meaning how much additional AIR we could have saved
if we knew the best action all along.

Due to the confidentiality nature of AIR, we report Ŝ,S∗,R
as relative percentages compared to the overall AIR con-
tributed by all of our target failure types (host failures caused
by various hardware problems). For the month of March
2020, Ŝ is a 26.2% improvement, i.e., Narya successfully
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decreases AIR by about 26.2% compared to the static strat-
egy. We also provide the per-experiment improvements in
Figure 8. This shows, for each AB or bandit experiment what
percentage of VM interruptions were prevented compared to
using the original strategy. 63019E11 constitutes the largest
savings since the AB testing experiment was already using
the best action. For the same period, S∗ is 35.4%, meaning
the best AIR reduction percentage we could possibly achieve
(if we use the optimal action); R is 9.2%.

Although a 26% might not seem big, given Azure’s scale, it
represents a large number of VM reboots, each highly impact-
ing to customers. The ad-hoc mitigation strategy has already
been tuned for years, and the overall availability of Azure is
already high. Therefore, the comparison baseline is not low.
Also note that the oracle saving 35% is only with respect to the
online experiments we have run. With new prediction rules
for more failure types and new actions, Narya can potentially
yield further improvement.

8.2 Savings Trend Over Time
Figure 9 shows the AIR improvements over time. Overall, the
savings fluctuate between 20% to 40%. July saw a sudden
jump. This is because one major firmware fix occurred in
the June-July time period. One rule started marking much
more nodes, including nodes considered false positives (not
likely to fail soon). This largely increased Ŝ as the old policy
was very sensitive to false positives. However, our anomaly
detection caught this issue. We probably would have fixed
the policy if we were using it. We report in Figure 9 the
corrected savings assuming that fix. In addition, this firmware
deployment fixed a driver issue for which our mitigation was
reducing much AIR by predicting failures in advance. As a
result, our savings decreased in July and August.

8.3 Accuracy and Timeliness of Prediction
We first measure the precision and recall of the Narya failure
predictor. There are multiple rules or models to predict differ-
ent types of host failures. For a prediction rule/model r, we
define the prediction precision as F+D

N , where N is the total
number of hosts marked by r; F is number of hosts that fail
and are diagnosed to be indeed caused by the suspected fault;
D is number of hosts that Narya successfully mitigate and
the suspected fault is later confirmed. The recall is defined as
F+D

M , where M denotes the number of host failures that are
diagnosed to be caused by fault type that r represents.

The overall precision is 79.49%, while the overall recall is
50.7%. While the false positive rate (20.51%) is not small,

we note that failure prediction in a large-scale, complex, and
frequently changing cloud like Azure is an extremely chal-
lenging problem. Narya is designed with the expectation that
false prediction is unavoidable and employs several measures
such as low impact actions, safety constraints, longer obser-
vation window to minimize the impact of false prediction.

We further evaluate the contribution of different signals
(features) to the prediction accuracy. We calculate the feature
importance using the SHAP method [28], sort features by their
importance, and group them into 10 bins. We then evaluate
the precision and recall (F1-score) using individual bins or
aggregate bins (features from bin #1 to #N). Figure 10 shows
the result. We can see that some features are more important
than others. The first bin in particular contributes significantly.
Examples of features in the first bin include read error rate,
flush count, AvailableSpare, HostReadCommands, etc.

Besides precision and recall, for Narya, It is crucial to con-
sider the prediction lead time (or time to failure) defined as
the duration between the prediction time and the failure time.
A larger lead time gives Narya more time to take preventive
actions. Figure 11 shows the CDF of the ML prediction time
to failure with a median lead time of 2.44 days. Figure 12
compares the timeliness between the ML-based prediction
and rule-based prediction: ML-based prediction provides sig-
nificant advantage in timeliness.

We measure the quantitative benefit of early prediction to
live migration success. For nodes predicted to fail, the average
successful live migration per node is 5.57. With a smaller lead
time, the successful live migration per node gets down to 3.

8.4 Comparing AB Testing and Bandit
Next we compare Narya Bandit and A/B testing in finding
the optimal mitigation action. To do so, we compare the used
strategy to the other possibilities. For mitigation requests that
go through A/B testing, we use off-policy learning of Bandit
based on observed A/B data. Similarly we compare the Bandit
output to a static A/B policy. We then use counterfactual
estimation [32] with Inverse Propensity Score to estimate the
cost of running Bandit in place of A/B testing. Over the 2
months period of February and March 2020, using Bandit
instead of A/B testing for ongoing experiments could have
helped decrease the number of VM interruptions by 14.4%.
The breakdown per experiment can be found in Figure 13.
Note that A/B testing compared to bandit is safer and allows
for more than one cost metric.
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Min Median Max No Convergence Ongoing

12 days 29.5 days 140 days 2 experiments 3 experiments

Table 3: AB testing experiments convergence time.

8.5 Convergence to Optimal Action
Table 3 shows the convergence time of A/B testing for dif-
ferent experiments. The variance of the convergence time
is big, because we need to accumulate enough samples. For
different rules, the time it takes to collect the samples differs
a lot. Two experiments did not reach convergence at the end
of experiments. No convergence usually indicates that there
is no significant difference among the experimented actions.
For Bandit, we compare its behavior with A/B testing through
simulation with production data (details in report [?]). Bandit
can achieve a much faster convergence to the best action. Fig-
ure 14 shows the result. Bandit converged in around 50 steps,
while AB testing would converge in 125 steps. Faster con-
vergence also yields more AIR savings. As Figure 15 shows,
Bandits yields much fewer reboots than AB testing.

8.6 Case Studies
Blobcache error is a symptom that can caused by hardware
issues or some recoverable faults. The original mitigation
policy was UA-LM-HI. We wanted to test if we could avoid the
impact of service healing at the end of the unallocatable period
and try to reset node health (unblock allocation) instead. We
used an AB testing experiment to compare the VM reboots per
node when using UA-LM-HI and UA-LM-RH. The experiment
started on 03/10 and statistical significance was reached on
03/25 and observed on 04/02. We were able to save 25.2%
AIR compared to the old policy during this period. Once, we
adopted the new policy (config change to make it 100%) and
deployed it to production, it saved 50.3% of AIR associated
with this type of failure.

E11 is a Windows event indicating a disk controller error.
When this event occurs, it generally means that the hard disk is
experiencing some issues most likely indicating an imminent
failure. Using offline correlation analysis on non-empty nodes
with no prediction from other rules/models, we found that
85% failed in the following 7 days, with a majority in the first
few hours. Although the lead time was small, it should have
sufficed to migrate some VMs in each of these nodes.

We started our first AB testing experiment on 2019-07-
25 to try our UA-LM-HI policy over NoOp. To our surprise,
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Figure 16: Action probability change using Bandit decisions.

we did not see the significant impact we imagined. Upon
analysis, it appeared that few of the VMs could live migrate,
mostly because the node failed too quickly or the disk state
was already too bad to succeed in live migrating the VMs.
However, after a few month of AB testing, the difference in
reboots revealed to be significant mostly through short lived
VMs getting stopped and repeated failure being avoided by
the unallocatable policy. The experiment was ended on 2019-
12-12 with approximate daily AIR savings of 28% for such
signature.

We started another AB testing experiment on 2020-01-11
to test the use of soft reboot to mitigate some of these issues,
following a few positive offline test. Contrary to our belief, we
observed no significant improvement, even a slightly larger
VM reboot per node in the UA-SR action. In total, 51 nodes
tried the SR primitive action, with none of them succeeding
because some pre-checks were not met. This shows the im-
portance of AB testing all potential new actions before using
them on the whole fleet.

I/O Timeout We started an AB experiment between UA-
LM-RH and NoOp actions on 2020-01-11 for an I/O timeout
prediction rule. At first, NoOp seemed to be the better option,
although not significantly. In late March, the UA-LM-RH ac-
tion started being consistently better and led to us to switch to
Bandit. As Figure 16 shows, we can see a clear switch from
choosing NoOp to choosing UA-LM-RH for that time. Even
though we are unsure as to what system changes trigger the
probability change, our Bandit model picks up the changes
and adapt. Using counterfactual estimation, the results show
the Bandits adaptation yields savings of 3.7%–13.9% com-
pared to both static policies.

8.7 Reward Collection Schemes
We compare three possible reward collection schemes: (a)
delayed reward collection; (b) immediate reward collection;
(c) incremental reward collection.

Delayed reward collection (§6.3) is our default scheme. In
(b), we associate VM interruption costs with an action on the
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Figure 17: Probabilities in taking two actions using delayed versus
immediate reward collection. Action1 is optimal.

day where the action is completed, and we update the Bandit
model. In (c), we update and associate the cost daily.

Across different A/B testing experiments we run, the three
schemes have varied effectiveness. But overall delayed reward
collection outperforms immediate scheme. In particular, (b)
yields an average 7.12% AIR improvement, while (a) yields
an average 8.50% AIR improvement. This is because immedi-
ate reward collection can be easily affected by noises and does
not account for action impact that takes a while to manifest
itself. Figure 17 illustrates the comparison in one experiment.

We expected that the incremental scheme (c) would per-
form slightly better than (a), since it could use more infor-
mation and would not need to wait for the full observation.
Contrary to our expectation, in our experiments, the incremen-
tal scheme performs slightly worse than the delayed scheme,
with a 8.45% AIR improvement. One reason is that, if the
environment is relatively steady, adding partial observation
does not provide much new information. Additionally, the col-
lected cost from the partial schema might not be distributed
evenly across the observation window. In this case, the in-
cremental scheme would be misled by partial observations.
However, the incremental scheme does have the advantage
of a faster response to system changes, since it can make
decisions based on the latest cost data.

8.8 Safe Guards
The safe guards can influence the system in many ways. First,
it allows a constant exploration of all action to enable timely
adaptation to system changes. In the I/O time out case studies,
the bandit could not have readjusted to use UA-LM-RH, hence
losing 3.7% of cost. Second, it prevents early convergence
to a wrong policy. In the E11 case study, when simulating
the bandit without safe guards, we converged (probability >
0.95) to use a single action in 27% of cases, 19% of which
was UA-SR, the worst action. Third, safe guards decrease the
impact of unexpected spikes. In the IO timeout experiment,
on 2020-04-25, cascading failures resulted in 106 VM inter-
ruptions on a single node for the NoOp group. Although this
significantly impacted the probability to choose NoOp, we
still keep exploring that option.

8.9 Scale and Performance
Narya runs in each data center region of Azure. The mitigation
engine handles hundreds to thousands of requests daily. The
failure predictor processes tens of TBs of health signals per
day. Figure 18a shows the number of daily mitigation request
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Figure 18: Mitigation request handling sessions

sessions (including all fault handling), and the number of
requests that go through our A/B testing experiments and
requests handled by our Bandit model. Figure 18b shows the
CDF of the session duration of the mitigation actions.

9 Discussion and Limitations
Lessons. We share some operational issues and summarize
the lessons we learned from running Narya in production.

First, given the sheer complexity of Azure cloud infrastruc-
ture, it is inevitable that some Narya decision could go wrong.
We encountered two kinds of service misbehavior: (1) some
prediction rules are outdated and incorrectly mark many nodes
in a short period of time; (2) an increase of customer impact
that is not incorporated within the cost model. For (1), the
issue would impact AB testing and cause Bandit to take time
to adjust. Our rate limit mechanism described in Section 7.2
would help. We also designed a separate anomaly detection
algorithm to catch such misbehavior so we can pause and
refine the offending prediction rules. To overcome (2), we
added monitoring of the support tickets filed by customers.

Second, as Narya consumes telemetry signals from the
whole stack, Narya may be broken if the updates of host
OS, firmware, and hardware involve uncoordinated schema
changes. We recently had an issue in which the schema change
of a few critical OS signals was not captured by Narya. Our
monitoring component caught the issue and we had to patch
Narya. Besides schema changes, the data and label quality
may also fluctuate due to improvements or regressions of
tracing capability introduced by different component teams.

The aforementioned challenges can be addressed if the
cross-team collaboration and communication are perfect,
which unfortunately is not realistic in large organizations.
Through continuous learning from failures, we build multiple
channels based on social alignment principles to include rele-
vant component teams, so that the right team can be involved
in time to avoid broken contract, adjust prediction rules, etc.

While we try to ensure sufficient communication, we can-
not just rely on it. We build a comprehensive monitoring
pipeline that detects anomalies at all layers for Narya, from
input data to prediction results, mitigation actions, etc. We
proactively investigate alerts and follow up on issues caused
by external dependencies or fix Narya’s own defects. More-
over, we re-train our ML model on a regular basis to accom-
modate the evolution of telemetry data and label quality.

Third, Narya may output unexpected decisions, which re-
quire verifying its correctness and diagnosing the root cause.
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In general, diagnosing issues in Narya’ Bandit decisions is
easy. The exploration model is explainable and solely de-
pends on the total VM reboots observed and the total nodes
observed. Any unexpected change in probability can be traced
down to the observations that had large customer impact.

Limitations. We describe several limitations of Narya. While
Narya can be fully automated, it currently still involves some
human intervention to analyze the experiment results and up-
date the system. This is because our cost model for customer
impact is incomplete. We believe limited human intervention
is key to catch any gaps in customer complaints and improve.

We currently focus on predicting and mitigating hardware
or firmware-induced VM failures. We plan to extend Narya to
software-induced VM failures. While generic software failure
prediction is very challenging due to their frequent changes
and complex dependencies, there are potentials for addressing
issues like memory leak, repeated crashes, and timeout bugs.

The multi-armed Bandits model we use has the advantage
of simplicity and easy explainability of the mitigation deci-
sion. However, this model can segment the data. In particular,
Narya divides nodes into different experiments based on fault
code and node metadata (e.g., h/w generation). But mitigation
actions for nodes from different experiments may share the
same characteristics, which may not be learned because each
model is trained separately. We are exploring the contextual
Bandit model [23] to leverage context information like node
features to the model input.

10 Related Work
Our work is related to three subareas in system resilience:
failure detection, prediction and mitigation. Failure detection
has been extensively studied, while failure prediction and mit-
igation are not as well explored. Narya’s major contribution
is improving the latter two in the context of a large-scale, pro-
duction cloud VM infrastructure, and designing an end-to-end
preventive mitigation service to achieve failure avoidance.

Detecting crash failures reliably and quickly in asyn-
chronous distributed systems is a classic topic [3, 5, 6, 9, 13,
22, 34]. Recent work has discussed the prevalence of gray
failures [11,17,26] in cloud. Panorama [16] proposes to lever-
age observability to detect gray failures [17]. Narya focuses
on predicting failures ahead of time. Many of the failures we
target fall into gray failure category. But our aim is to identify
risky hosts before they cause customer impact.

Several recent work proposes using machine learning to
predict disk failures [14, 27, 38] and node faults [25]. Narya
predictor aligns with these solutions’ basic approach. But we
focus on predicting failures in the complex VM host envi-
ronment as a whole and only those with customer impact.
Additionally, we design the prediction pipeline to closely
integrate with the mitigation engine.

The Recovery-Oriented-Computing project [31] advocates
the importance of failure mitigation, particularly reboot [4].
Piegon [21] proposes to expose uncertainty of failures to

allow better failure reactions for applications. But applications
have to manually decide whether to wait or start recovery.
IASO [30] is a framework for detecting fail-slow issues and
supports mitigating slow issues with multiple options such as
process restart or VM shutdown. But it relies on customers to
manually configure the mitigation option.

NetPilot [37] aims to automate the failure mitigation in a
data center network by determining the suspected network
devices and mitigating failures based on estimated impact.
Narya differs with NetPilot in several ways. First, Narya tar-
gets automating the failure mitigation of a system with het-
erogeneous components and complex stack. In our setting,
estimating the impact of an action offline is challenging and
often mismatches with production observations. Narya takes
an online exploration and learning approach. Second, the mit-
igation actions available in NetPilot are few and simple like
device restart. Narya needs to consider diverse and complex
actions. Third, Narya aims to avoid failures whereas NetPi-
lot focuses on mitigating failures that have occurred. Lastly,
Narya is deployed in production at large scale.

A/B testing experimentation is a common practice to test
the effects of UI features using production data (user requests).
The idea is simple, but it often yields surprising power [19].
Thus, leading companies conduct thousands of A/B exper-
iments annually. Narya mitigation engine adopts the A/B
testing methodology in a novel way to the failure mitigation
scenario with several changes. Narya also adopts multi-armed
Bandits reinforcement learning [32]. Our contribution is ad-
dressing several unique challenges and the system support that
make the approach work in a large-scale, production cloud
infrastructure to avert real cloud VM interruptions.

11 Conclusion

We investigate an important topic in fault-tolerant system
designs—failure avoidance—in the context of cloud infras-
tructure. Drawing from our experience in operating a large
production cloud system, we propose a novel online experi-
mentation and learning approach to tackle this problem. We
present Narya, an end-to-end service consisting of failure pre-
diction and smart mitigation. Narya continually evaluates the
optimal action in production using A/B testing and Bandit
models. Narya has been running in Azure compute infrastruc-
ture for 15 months and yields a 26% improvement in reducing
VM interruptions compared to previous static strategy.
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