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Abstract
Debugging a failure usually requires reproducing it first. This
can be hard for failures in production distributed systems,
where bugs are exposed only by some unusual faulty events.
While fault injection testing becomes popular, existing solu-
tions are designed for bug finding. They are ineffective and
inefficient to reproduce a specific failure during debugging.

We explore a new type of fault injection technique for
quickly reproducing a given fault-induced production failure
in distributed systems. We present a tool, Anduril, that uses
static causal analysis and a novel feedback-driven algorithm to
quickly search the enormous fault space for the root-cause fault
and timing. We evaluate Anduril on 22 real-world complex
fault-induced failures from five large-scale distributed systems.
Anduril reproduced all failures by identifying and injecting
the root-cause faults at the right time, in a median of 8 minutes.

CCS Concepts: • Software and its engineering→ Software
testing and debugging; • Computer systems organization
→ Reliability.
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1 Introduction
Failures in distributed system are notoriously difficult to debug.
Reproducing a failure is often the first step in debugging. An
effective reproduction should recreate not only the superficial
symptom but also the exact buggy workflow to help developers
pinpoint the root cause. The failure reproduction should also be
quick to enable timely fix and minimize downtime. Achieving
both properties is difficult due to the limited information
available. A study of production distributed systems found
that “developers spend a vast majority of the resolution time
(69%) on reproducing the failure” [59].

Reproduction is particularly challenging for production
failures triggered by external faults, such as disk error, network
fault, and a broken dependent service. These fault-induced
failures are common in large distributed systems, which have
many dependencies on fault-prone hardware and software [18,
30]. Such a failure cannot be reproduced even after developers
succeed in constructing a suitable workload, because the bug
is only triggered by a specific fault at specific timing.

Specific faults can be triggered with fault injection tools;
however, existing solutions are designed for testing and achiev-
ing good coverage, rather than for reproducing a specific
failure. Some existing tools rely on users to specify faults to
inject [22, 26, 36] or target certain types of fault-handling
bugs [31]. They are not suitable for reproducing failures whose
root-cause faults are not known yet. Other tools can iterate
through possible faults systematically [10, 12, 17, 35, 47, 53]
or randomly [6]. However, the space of possible faults can be
prohibitively large in distributed systems as faults can happen
at numerous execution points and each point can be executed
many times. Therefore, it is not surprising that they can hardly
inject the exact root-cause fault and/or timing.

Prior efforts on failure reproduction focus on deriving the
inputs or thread interleaving [5, 29, 54, 55]. Deterministic
replay [20, 28, 32, 51] can faithfully replay a multi-threaded
failure execution, but with expensive modification to pro-
duction environment and with high performance overheads.
Pensieve [59] is a non-intrusive tool to construct a workload,
consisting of a sequence of external APIs, based on a failure
log. These solutions cannot reproduce the fault-induced fail-
ures due to the lack of proper fault events. Simply combining
such solutions with existing fault injection tools will face
similar inefficiency limitations as described earlier, because
fault injection now becomes the bottleneck.

46

https://doi.org/10.1145/3694715.3695979
https://doi.org/10.1145/3694715.3695979
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694715.3695979&domain=pdf&date_stamp=2024-11-15


In this paper, we explore a novel fault injection technique
that is tailored for reproducing a specific fault-induced failure
in production distributed systems. We aim for both faithfully
reproducing the buggy workflow and doing so quickly. The
key challenge is to identify the root-cause fault in a large space
of possible faults and their timing. This is hard even when
the given failure log contains relevant exceptions. Production
logs contain abundant noisy error messages. Many exceptions
are also transient or do not cause immediate failure [24, 34].
Simply injecting exceptions in the failure log is insufficient or
inefficient to reproduce complex fault-induced failures.

Our key insight is that many faults have correlated effects
to the system behavior, so we can use the runtime information
from one injected fault to estimate how likely it is for its related
faults to reproduce the target failure, without actually injecting
them. In utilizing this insight, our main contributions are to
define what runtime information can capture this correlation,
how to use it to rank unexplored faults by their likelihood of
reproducing the failure, and how to update the ranking after
each fault injection. This is challenging because we need to
reason about the dynamic effect of a fault and determine the
likelihood that this fault will reproduce the failure, without
actually executing the workload and injecting that fault.

We devise a novel feedback algorithm to overcome this
challenge. The algorithm starts with assuming that each of the
selected log messages is important and computes priorities
for the fault sites based on their causal connections to the
messages. It then iteratively injects a high-priority fault, and if
it does not reproduce the failure, uses the runtime information
from that unsuccessful injection to re-rank the remaining
faults before continuing with the next iteration.

To further improve the reproduction inefficiency, we use
static analysis to prune fault sites that are irrelevant to a
given failure. Nevertheless, since static analysis techniques
are known to incur inaccuracies when applying to distributed
systems, we only perform basic, conservative analysis. The
static analysis step is designed as an optimization, while our
dynamic exploration with feedback is the core.

We implement our solution in a tool called Anduril and
evaluate it on 22 real-world fault-induced failures that we
randomly sample from five large-scale distributed systems.
Some evaluated failures took expert developers days to re-
produce. Anduril successfully reproduced all the failures
by identifying and injecting the root cause faults at the right
timings, in a median time of 8 minutes. In comparison, the
state-of-the-art solutions reproduced only 4 of the 22 failures
respectively, and took 6× - 280× longer time. Interestingly,
for five evaluated failures, Anduril’s reproduction results
identify new root causes that are overlooked in developers’
manual analyses, and reveal flaws in the original patches.
In three of them, the issues exist in the latest versions, and
developers confirmed our findings to be new bugs.

The main contributions of this work are as follows:

• We explore a new fault injection technique for reproducing
a specific fault-induced failure in distributed systems.
• We design and implement Anduril, a targeted fault injec-

tion tool that uses a combination of novel dynamic feedback
algorithms and static analysis to quickly search the large
fault space for the root-cause fault and timing.
• We evaluate Anduril on complex fault-induced failures,

and show that it efficiently reproduce these failures.
Anduril is available at https://github.com/OrderLab/Anduril.

2 Background and Motivation
Problem Statement. We consider the problem of reproducing
a production failure of a system 𝒮 caused by unhandled or
poorly-handled faults. We call such failures as fault-induced
failures. Our problem takes the following as inputs:
(1) 𝒮’s code that we can analyze, instrument, and run offline.
(2) a failure log file from production, where the deployed 𝒮

is not instrumented by us. It may contain many irrelevant
log messages and we do not expect the user to filter them.

(3) a driving workload, which can be any that triggers the fault
location, not necessarily the exact production workload
trace. There are several sources to obtain the workload:
(a) reuse existing tests. Mature systems usually have tests
with good coverage that are likely to exercise the affected
feature; (b) leverage tools that sample online workload [4]
or generate inputs [59] automatically; (c) construct a work-
load based on the symptoms. For example, if the symptom
is the replication thread getting stuck, a developer can con-
struct a write workload that exercises replication. This is
often the first step for a developer trying to reproduce a fail-
ure. Anduril fits in this workflow and gets invoked when
the developer has succeeded in workload construction but
still cannot reproduce the symptom.

(4) a user-defined failure oracle, which encapsulates the
key failure symptoms, such as a specific log message,
a stacktrace that may or may not be in the log file, or an
external state such as a corrupted data file. Our definition
of failure reproduction is with respect to the oracle: the
failure is reproduced if the oracle is satisfied.

Given the above inputs, our goal is to efficiently identify
a root-cause fault that, when injected at a specific system
execution point under the workload, can satisfy the oracle.
Since the failure is fault-induced, injecting the root-cause fault
is critical for the reproduction—the oracle is not satisfied by
executing the workload without faults or with a wrong fault.
Scope. We target systems written in languages such as Java or
.NET that capture faults as exceptions; hence faults are injected
by throwing the relevant exception. We focus on failures with a
single root-cause exception, which are common in practice. It
is reflected in our evaluation datasets, which are user-reported
failures that require extensive developer efforts to troubleshoot.
To further confirm the significance, we conducted an empirical
study. Specifically, we randomly sampled 50 failure cases from
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long get(long timeoutNs) {
  if (!doneCondition.await(timeoutNs))
    throw new TimeoutIOException(
      "Failed to get sync result");
}
void waitForSafePoint() {
  consumeExecutor.execute(consumer);
  while (!readyForRolling)
    readyForRollingCond.await();
}
void consume() { // invoked multiple times
  if (writer.getLen() > lenAtLastSync) {
    sync(writer);   
  } else if (unackedAppends.isEmpty()) {
    readyForRolling = true;
    readyForRollingCond.signalAll();
  }
  // remove batchSize unacked entries 
  appendAndSync();
}

// invoked many times from many places
void channelRead0(PipelineAckProto ack) {
  if (getStatus(ack) != Status.SUCCESS)
    throw new IOException("Bad response");
}

symptom log msg
stuck

via a deep chain, unackedAppends 
could not be emptied

root-cause fault site

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Figure 1. Simplified code for a real HBase incident [21].

Zookeeper, HDFS, HBase, Kafka, Cassandra and analyzed
them to check if the failures were induced by external faults,
and if so, how many external faults were involved. We found
that external faults triggered 41 of the 50 failures, and 39 of
these 41 failures were induced by only one fault. Only two
failures involved more than one root-cause fault.

2.1 A Motivating Example
We illustrate the challenges of reproducing fault-induced
failures with a real-world incident in HBase [21]. A user
reported that the HBase region servers (RS) in their cluster
got stuck for several hours. The user examined the log file and
found a TimeOutException warning when the RS tried to
write a flush marker in the Write Ahead Log (WAL). The user
also checked the stack trace and found that the WAL consumer
thread was still alive. This is puzzling, because the consumer
thread, if alive, should sync the WAL append request to HDFS
and the TimeoutException should not occur. To debug this
failure, developers had to reproduce it. But after constructing
a workload, developers still could not reproduce the symptom.

This failure is likely fault-induced, so we try to reproduce it
with Anduril. Since WAL rolling (switching to a new WAL
file) is common in HBase, we use an existing test in HBase
(TestReplicationSmallTests) as the workload. We use
an oracle that indicates successful reproduction when the
log file contains the timeout exception warning and the stack
trace shows that the log roller is stuck at waitForSafePoint,
as observed by the user. Anduril successfully reproduces
the failure and identifies the root-cause fault. Its finding is
consistent with what developers found out after 19 days of
digging and discussions with the user.

HBase uses HDFS to store and access WAL files. To tolerate
intermittent HDFS failures, developers designed a recoverable
stream that would break upon faults and notify the upper layer
to roll the writer and create a new stream. However, there exists

a rare and fatal fault situation: (1) HBase creates the WAL
file successfully; (2) The stream to HDFS breaks temporarily;
(3) All subsequent asynchronous WAL entry appends by the
consumer fail and move to unackedAppends (a queue) for
retry. Moreover, the entries in unackedAppends exceed the
batch size; unackedAppends queue keeps track of the append
to WAL requests that are being processed by the underlying
HDFS. (4) HBase creates a new writer and a new stream;
(5) With the new stream, HBase retries the failed append
entries and removes the acked ones from unackedAppends
in sync(). Since only batchsize entries can be appended in
one sync, it needs multiple rounds; (6) However, just at this
time, a log roller or RS shutdown calls waitForSafePoint.
Then, as Figure 1 shows, unackedAppends needs more than
one consume() to empty, so the consumer gets stuck in a
stale state with waitForSafePoint. It neither signals the
condition nor does the sync in any later invocation and cannot
recover. Even RS shutdown gets stuck at waitForSafePoint.

Anduril reproduces the failure by injecting the root-cause
IOException at the right call site of channelRead0 (line
34 in Figure 1) at the right timing described above.

This example shows several challenges in reproducing fault-
induced failures. First, fault injection is necessary to reproduce
the failure. Simply executing a workload that creates the WAL
file and then writes to it does not trigger the failure. This
explains why the existing tests did not expose the failure.

Second, the space of possible faults and their timings can be
very large. Different versions of HBase we experimented with
contain 18 K–28 K static fault sites, i.e., code locations that can
throw exceptions. Many of these fault sites execute multiple
times. This makes the space of static and dynamic fault
injection sites very large. For example, the developer-provided
workload that triggers the above HBase failure executes 1 K+
static fault sites 208 K+ times. Moreover, the root cause fault
site is executed 1 K+ times and only 2 of these dynamic
instances would satisfy the oracle. Exhaustively trying each
of them is prohibitively expensive since each injection needs
to be accompanied by an execution of the workload.

Finally, the root-cause fault and timing may not be readily
identified by the logs. The logs from the above failure might
suggest killing the single consumer thread when it is appending
a WAL entry, so that the other side receives no response and
throws a TimeOutException. But this fault must be injected
only when a WAL file is being rolled over—the log rolling
would not get stuck by injecting the fault at another time. Even
after figuring out the proper timing, we have only reproduced
the superficial symptom but not the underlying root cause
fault: the stale state that prevents the consumer from resuming
the log rolling or retrying the failed WAL appends.

To faithfully reproduce what happened, we need to further
go back to other code regions responsible for manipulating
WALs. There are many such static and dynamic execution
points across different functions. The fault must happen in the
RPCs to HDFS when writing WAL appends, and should not
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happen in the creation or closing of the file. Additionally, it
should cause the failed appends to exceed the batchSize before
the log is rolled. An experienced developer may eventually fig-
ure out the precise fault and its timing after manual reasoning
about a vast amount of code and repeated experiment attempts.
This process is extremely time-consuming and error-prone.

In practice, a complex failure can take experienced devel-
opers many weeks to reproduce [44]. Existing fault injection
tools do not help much: given the large number of possible
faults and their timings, it would take them a long time, if not
impossible, to faithfully recreate the buggy execution.

2.2 Our Observation and Key Idea
We treat the task of failure reproduction as a search problem,
where the goal is to quickly find the root-cause fault of a given
failure from the space of all possible fault candidates. The
space of all faults can be prohibitively large, and injecting a
fault while executing the workload can be expensive; therefore,
exhaustively exploring the space is not practical.

Although ideal, reproducing a production failure in a single
attempt is usually hard due to the limited information available.
Our key idea is to use the feedback from one failed injection
to prune or deprioritize other similar faults without actually
injecting them. Our insight is that the effects of multiple
faults are often correlated—i.e., they cause similar program
behavior, such as executing the same catch block and printing
the same log. In such a case, if injecting one fault does not
reproduce the target failure, we can conclude that the other
fault that produces similar program behavior is unlikely to
reproduce the failure, without actually injecting the fault. This
allows us to explore the fault space in multiple rounds: in each
round, we inject a fault that is likely to reproduce the failure;
if the attempt is not successful, we use the resulting program
behavior as feedback to deprioritize some of the unexplored
faults that are likely to generate a similar program behavior.

Note that our idea of feedback-driven fault injection is
different from the feedback used in fuzzing testing [60]. These
techniques use feedback to improve code coverage for finding
more bugs, while we use feedback to identify faults that are
most likely to reproduce a target failure. The distinctions
require fundamentally different feedback designs.

3 Overview of Anduril
Anduril is a fault injection tool with the unique ability to
reproduce a specific fault-induced failure that occurred in
production. It aims to not only successfully reproduce the
failure, but also achieve so quickly. Whether a given failure is
fault-induced or not may be unknown. After developers make
best efforts in constructing workloads and observe that the
failure still could not be reproduced, they can assume that the
failure is likely fault-induced and invoke Anduril.

At a high level, Anduril achieves efficient search in a large
fault injection space through two levels of techniques: (1) static
reasoning of the system code to deduce the potentially causal

Failure log 

Instrumenter

System code

f1

f2

f3

o1

o2

o3

static causal graph

Explorer

Workload

reproducedunsuccessful

Repro run logs 
(from instrumented system)

Update 
priorities

Instrumented 
system

Fault location 
and time

feedback 
loop

decide

(from production)

{ }

Failure
oracle

{  }

run

Symptoms script

Figure 2. Anduril’s architecture and workflow.

fault candidates for a given failure; (2) dynamic adjustment
of the priorities for the fault candidates during the injection
experiment. The former produces a conservative and imperfect
static causal graph. The latter is key to Anduril.
Workflow. Anduril contains two major components, Instru-
menter and Explorer (Figure 2). Instrumenter receives the
system bytecode and the failure log file from production. It per-
forms static analysis and computes a causal graph consisting
of program points potentially related to the failure symptom.
In addition, it inserts code snippets into the system for (1)
injecting a fault to throw a desired exception, and (2) logging
additional information to facilitate the feedback algorithms.
Note that Anduril does not instrument the production system.
Its input failure log is from the uninstrumented system.

Explorer’s goal is to quickly search for the location of the
root-cause fault as well as the timing for injection. It takes as
inputs the static causal graph, a workload, the failure log, and
an oracle. Explorer proceeds as follows:
1. Run the workload on the instrumented system without in-

jecting any fault to generate a log file. Other than system’s
log messages, the file will also contain all the fault candi-
date instances that are exercised by the workload because
Instrumenter injects those logging.

2. Compute initial priorities of all fault candidate instances
based on the causal graph, the log file from step 1, and the
failure log (from production system w/o instrumentation).

3. Pick the highest-priority candidate instance, run the work-
load, and inject the fault accordingly.

4. Invoke the oracle to check if the failure is reproduced.
4.a If so, generate a script that deterministically injects the

root-cause fault and reproduces the symptom.
4.b If not, re-compute the priorities based on the logs from

the failed attempt and causal graph. Go back to step 3.
5. If all possible faults are explored or a user-specified limit

is reached, report that the failure cannot be reproduced.
4
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Efficiency. Efficiency is measured by two metrics: (1) absolute
time from step 1 to 4.a, which includes inherent costs of
running the workload; (2) number of rounds, one round being
from step 3 to 4, which reflects the speed of feedback.
Defining Feedback. An important question is how to construct
the feedback from an unsuccessful injection. Our intuition
is to extract the effect of a fault on the program’s execution,
which we call a fault’s traits. When a fault is injected and it
cannot reproduce the failure, we compare its traits with the
other faults’ traits. If they are similar, the other faults might
not reproduce the failure either, so we can deprioritize them.

While a full execution trace (sequence of instructions,
memory state, etc.) can serve as fault traits, acquiring it
requires intrusive recording, which slows down the experiment
and can distort the execution. Moreover, we would need to try
a real injection for each fault, which contradicts our goal.

Instead, we use lightweight observables of an execution to
determine the fault traits. We specifically choose log messages
as observables for several reasons. First, during the explo-
ration, we can easily collect them. Second, the execution of a
distributed system node can be abstracted as a state machine,
and it is a common practice for developers to log when a node
enters a new state. Third, we can statically estimate the log
messages that an unexplored fault can cause. The challenge for
Anduril is to maximize the feedback from those observables,
which contain limited information and can be noisy.
Assumptions. Anduril relies on the assumption that the
system logs enough information to distinguish faulty and non-
faulty executions. This is common in real-world production
systems, where developers use discriminative logs, which are
unique to failures, to help troubleshooting. Anduril is not
the only solution that depends on the quality of logging. Many
other debugging and reproduction solutions, such as Pen-
sieve [59], also require some useful log messages. Anduril
does not assume that the log messages reveal the exact fault
causing a failure; such failures are easy to reproduce.

Anduril currently performs a single injection in each
round, so it only target failures with a single root-cause fault.
A system may fail due to an unhandled fault, along with
other faults that are tolerated by the built-in error handling
mechanism. Since these handled faults do not contribute
to the failure, Anduril can still reproduce such a failure.
Furthermore, if a root-cause fault causes multiple exceptions,
Anduril will also reproduce these exceptions and the failure,
as long as it injects the root-cause fault correctly. The failures
that Anduril cannot reproduce are those that need multiple
root-cause faults that do not have causal dependencies.

To use Anduril, a developer does not need to know if the
failure is caused by a single root-cause fault. She can first apply
Anduril since single-fault-induced failures are common. If
Anduril fails to reproduce the symptoms, the failure may
be caused by multiple faults. In such cases, Anduril may
produce logs close to production failure logs. These logs can

guide developers to apply Anduril iteratively, fixing one fault
at a time in the workload and rerunning Anduril.

A target failure may be caused by a concurrency bug com-
pounded with a fault. For such cases, Anduril assumes that
the workload provided enforces the specific thread interleaving
in which the root cause fault sites are traversed and focuses
on deducing the correct fault under the schedule to reproduce
the failure. How to deduce the specific thread interleaving for
a concurrency bug is an orthogonal problem and still actively
researched [23, 41, 45]. A future work direction is to develop
solutions that explore the space of thread interleaving and the
space of faults together to reproduce such failures.

4 Instrumenter
In principle, Anduril can explore all possible faults in the
target system, and rely on its dynamic feedback loop to identify
the root-cause fault. However, this is wasteful, because not all
faults are related to the failure we try to reproduce. Therefore,
Anduril starts with a subset of faults.
4.1 Computing Causal Graph
To determine the subset of faults to explore, Anduril com-
putes a static causal graph for given observables, i.e., a list
of log messages. We will explain in § 5.1 how we derive
this list. For each observable, Anduril identifies what fault
sites—program points that can throw exceptions—are causally
related to it. A fault site is causally related to an observable if
an exception at that site can result in the observable to appear.
Just extracting exceptions in the failure log is insufficient
because the system may not log an exception that it think can
be handled but that turns out to be the root cause.

A standard static approach performs complete data-flow
analyses, e.g., computing the program dependence graph [15]
or program slices [52] from a logging statement. For large dis-
tributed systems, such analyses are expensive. Moreover, they
can miss complex causal relations common in large systems,
e.g., due to dependencies from callbacks, third-party libraries,
external modules, RPCs, etc. To address this issue, Anduril
uses the jumping strategy proposed in Pensieve [59]. For
example, given if (x==y), we directly search for program
points across functions that write to x or y, and treat them to
be possibly causal. Although this strategy can produce false
dependencies, it captures complex dependencies that would
otherwise be missed. Such a trade-off matches Anduril’s
design of relying on its dynamic feedback algorithm to identify
the root-cause fault from a large space of possible faults.
Causal Analysis. Using this strategy, we compute causality
for a node (program statement) 𝑠 by recursively identifying the
causally prior nodes for 𝑠 depending the node type. We extend
the algorithm in Pensieve in two important ways. First, we
add to it exception flow analysis that is crucial to reason about
root causes faults. Second, instead of generating one chain,
we derive many chains and combine them into a DAG where
source nodes represent fault sites and sink nodes represent
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statements that produce a given list of log messages. The
following three node types are similar to the ones in Pensieve.
• A location node represents a program point being executed.
We compute its causally prior nodes by using control-flow
analysis to find its dominators, which may be a condition, an
invocation, or a handler node. We represent program points
that generate the initial list of log messages as location nodes.
• A condition node represents a program point executed that
requires the satisfaction of a boolean expression. Its causally
prior nodes are computed in two ways. First, we consider the
condition node as a location node, and compute its causally
prior node as described above. Second, we use a slicing
analysis to find the location nodes that can potentially satisfy
the boolean expression. The extracted nodes may include
location nodes, condition nodes, and invocation nodes.
• An invocation node represents the program execution reach-
ing a method invocation statement. Its causally prior nodes are
computed by a call-graph analysis that finds location nodes
representing the code locations that invoke this method.
Exception Analysis. Anduril introduces four new nodes.
• A handler node represents reaching the entry point of an
exception handler (i.e., catch block). Its causally prior nodes
are computed by finding the locations that throw certain excep-
tions caught by this handler. We develop an interprocedural
exception analysis that computes 1) for each method, what
exceptions could be thrown from the method and from what
locations; 2) for each local variable carrying the value of an
exception, the potential types of this exception, the data flow
of this variable, and the location where the variable is thrown.

In addition, our exception analysis handles cross-thread
exception propagation due to asynchronous programming
common in distributed systems. For example, in Java, a thread
may wrap a task in a Callable, submit it to a new thread, and
later wait for the returnedFuture to finish. If something wrong
happens in the task execution, the waiting thread would get an
ExecutionException, but the underlying fault is inside the
scheduled task. Anduril analyzes the inner scheduled code,
according to the future semantics, to augment the control and
data flow of the exceptions for the causal graph.

The computed causally prior nodes may be location nodes
and three kinds of exception nodes described below.
• An internal-exception node represents an exception be-
ing thrown by an invocation to an internal method that is
implemented by the system, but that method is not the ori-
gin of the thrown exception. The exception being thrown is
propagated from invocations within the internal method. For
example, an invocation to an internal method process throws
a SocketException, because process invokes another in-
ternal method send, which in turns makes a library call that
throws this exception. We distinguish an internal-exception
node, because although it has an exception thrown, it is only
propagating the exception. Treating it as a fault site to inject
would be superficial. We need to continue the causal analysis.

Algorithm 1 Build static causal graph
Input: System code 𝑆; a list of log messages 𝐿
Output: Causal graph 𝐺 = (𝑉 , 𝐸)

1 𝑝𝑟𝑜𝑔_𝑠𝑡𝑚𝑡𝑠 ←Map(S, L)
2 𝑞 ← NewNodes(prog_stmts, LOCATION)
3 while 𝑞 ≠ ∅ do
4 𝑛𝑜𝑑𝑒 ← 𝑞.𝑝𝑜𝑝 ()
5 if node.type ∈ {NEW-EXCPT, EXT-EXCPT} then
6 continue
7 𝑐𝑝𝑠 ← CausallyPrior(S, node)
8 for 𝑐 ∈ 𝑐𝑝𝑠 do
9 𝐸.𝑎𝑑𝑑 ({𝑐, 𝑛𝑜𝑑𝑒})

10 if 𝑐 ∉ 𝑉 then
11 𝑉 .𝑎𝑑𝑑 (𝑐)
12 𝑞.𝑎𝑑𝑑 (𝑐)

1 private void flush0(...) {
2 try {
3 if (buffer.size() > 0) {
4 // instrumented by FIR to trace the fault site.
5 FIR.traceSite(fid, ...);
6 // instrumented by FIR for fault injection.
7 FIR.throwIfEnabled(fid, occurrence, ...);
8 out.write(buffer, 0, buffer.size());
9 }...
10 } catch (IOException e) {
11 future.completeExceptionally(e);
12 }
13 } Figure 3. Anduril instruments two kinds of code.

• A new-exception node represents an exception being thrown
from an internal system method and that method is the creator
of the thrown exception, i.e., the internal method uses a
throw new statement to create an exception that is uncaught.
However, if this new exception is thrown because of an external
exception (defined below), we downgrade it to an internal
exception, because we aim to find the deeper root cause.
• A external-exception node represents an exception thrown
by a method from standard or third-party libraries. Both new-
exception and external-exception nodes are the fault sites we
are looking for. Our recursive analysis of finding causally
prior nodes stops when encountering the two types of nodes.
Causal Graph. Algorithm 1 shows how Anduril constructs
the static causal graph. The function CausallyPrior() at
line 7 computes all the causally prior nodes for a given node
as explained before. Given the complexities of distributed
systems we target and that our static analysis is conservative,
the computed causal graph can be large. For the real motivating
example in HBase (§ 2.1), the computed causal graph contains
357,816 vertices and 868,373 edges.

4.2 Adding Injection and Logging Code
In addition to computing the static causal graph, Anduril’s

Instrumenter additionally instruments the target system for
Explorer to intercept the fault sites. The instrumentation is
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applied on the program points corresponding to each source
node in the computed causal graph, i.e., a fault site.

Anduril instruments two kinds of code snippets: injection
and tracing code. When the instrumented injection code is
reached, it calls the Explorer runtime, which determines if
an exception should be thrown. The tracing code collects
runtime information including the time and occurrences of
the fault site, which will be used by the feedback algorithm
(§5.2.3). Figure 3 shows an example. Right before the fault
site out.write is executed, the instrumented traceSite()
(line 5) call will record information about this site, after which
the instrumented site throwExceptionIfEnabled (line 7)
will check if Explorer wants to try any fault candidates here
and throws an exception correspondingly.

5 Explorer
In this section, we describe Anduril’s core designs for
feedback-driven fault injection.

5.1 Identifying Relevant Observables
For efficient exploration, we first identify relevant observables.
Many error or warning messages in the failure log may not
be related to the target failure. Worse, some error or warning
messages may appear even when the system runs successfully—
such messages indicate errors that are handled by the system.
We do not expect the user to specify which log messages are
relevant (the oracle only tells the failure symptoms). Anduril
automatically derives relevant observables.
5.1.1 Method Anduril runs the workload to obtain a nor-
mal log file, and then compares it with the failure log file. It
assumes that any log message that only appears in the failure
log is a relevant observable. This assumption significantly
increases the size of the fault space, since Anduril will then
consider all fault sites causally related to those observables;
but this is essential to maximize the chance that the fault
space includes the root-cause fault. Anduril will identify and
de-prioritize irrelevant fault sites through its feedback loop.

Simply using a standard diff for the log comparison does not
work. Log messages usually contain timestamps, making them
appear unique. It is also common for distributed system log
messages to interleave across runs. Thus, Anduril groups the
messages in each log file by thread name. It then sanitizes the
log entries to remove the timestamps. Next, Anduril applies
the Myers difference algorithm [42] between the sanitized logs
with the same thread name. If the failure log includes threads
not present in the normal log, we include all log messages
from those threads as relevant observables. This per-thread
diff works well because developers usually explicitly name
threads uniquely to ease log-driven debugging.
5.1.2 Usage Relevant observables are used in two steps of
the Anduril workflow. First, they are used by Instrumenter in
computing the static causal graph. Recall that the graph con-
struction requires a list of log messages as input (§ 4.1). Using
relevant observables, instead of all messages, is essentially an

Algorithm 2 Update priorities of observables
Input: Failure log 𝑓 _𝑙𝑜𝑔; Initial normal log 𝑛_𝑙𝑜𝑔; a list of

log files from each injection round 𝑟𝑢𝑛_𝑙𝑜𝑔𝑠
1 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡_𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒𝑠 ← Compare(n_log, f_log)
2 for 𝑙𝑜𝑔 ∈ 𝑟𝑢𝑛_𝑙𝑜𝑔𝑠 do
3 𝑚𝑖𝑠𝑠𝑖𝑛𝑔← Compare(log, f_log)
4 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 ← 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡_𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒𝑠 −𝑚𝑖𝑠𝑠𝑖𝑛𝑔

5 for 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 ∈ 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 do
6 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 + 1

optimization to reduce the causal graph. To get the normal log
file needed in the log comparison algorithm, Anduril runs
the given workload once before the fault injection starts.

Second, relevant observables are updated in each fault
injection round. When a fault injection is unsuccessful, that
round naturally produces a normal log file. Anduril then
redo the log comparison algorithm on the new log file to get
the updated list of relevant observables. It will be used in the
feedback algorithm which will be covered in the next section.

An important property is that the relevant observables
computed in the first step will be a superset for the relevant
observables in the second step, because the provided failure
log file is fixed. While the normal log file may change in each
round and produce unseen messages compared to the failure
log, only messages in the failure log are our target. Anduril
leverages this property to avoid computing a causal graph in
each round, and is able to use the causal graph computed in
the first step throughout the experiment.
5.2 Feedback Algorithm
Explorer considers prospective faults represented by the source
nodes in the static causal graph. It computes feedback for each
prospective fault to prioritize the exploration. This section
describes our feedback algorithm and its considerations.

5.2.1 Updating Feedback As § 3 explains, Anduril con-
structs feedback based on fault traits—a fault’s connections
to the relevant observables. We thus start by considering the
observables of an unsuccessful injection (recall that relevant
observables are updated after each trial). When an injection
fails to reproduce the target failure, we look at the observables
that we expected to see but did not. These missing observables
may be related to the failure, so we want to find faults that
could cause them. This is how Anduril updates its feedback.

To do this, Anduril assigns a priority 𝐼𝑘 for each relevant
observable 𝑜𝑘 . We use smaller values to present higher priori-
ties. Initially, all 𝐼𝑘 are zero. When an injection is unsuccessful,
Anduril compares (§ 5.1) the run log with the failure log to
determine which observables in the causal graph appear in the
current log and which ones are missing. It then prioritizes the
missing messages in the following rounds, so it increments
the 𝐼𝑘 for each present message by one (Algorithm 2).
5.2.2 Updating Fault Site Priority With the updated feed-
back, we next determine the priority 𝐹𝑖 of each fault site 𝑓𝑖 (a
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1 try {
2 ...
3 mutation = ProtobufUtil.toPut(m, cells);
4 ...
5 } catch (IOException ioe) {
6 if (atomic) {
7 throw ie;
8 }
9 for (Action mutation : mutations) {
10 builder.addResultOrException(...);
11 }
12 }

target fault site

path branches: find where
to satisfy condition

path branches: find other
call sites of this function

Figure 4. Inaccuracies accumulate along static causal paths.

source node in the causal graph), based on the observables
that 𝑓𝑖 can possibly cause, i.e., a path from 𝑓𝑖 to 𝑜𝑘 exists in the
causal graph. 𝐹𝑖 reflects how likely 𝑓𝑖 will cause the failure.

One approach is to simply set the fault priority to the
(maximum) priority of the observable(s) it can cause. However,
this makes Explorer suffer from inefficiencies due to the nature
of static analyses. When going from a fault to a log message
in the causal graph, inaccuracies inevitably accumulate. For
example, in Figure 4, HBase-19876 has the symptom log
within the method call at line 10, and this method is also
called in other 30+ locations. We will waste multiple attempts
to exclude irrelevant fault sites. In addition, when Instrumenter
reaches line 10 in building the causal graph, it needs to create
two path branches: for the catch at line 5, and the condition
check at line 6. Consequently, there will be injection attempts
that prioritize to satisfy the condition at line 6, while the
root-cause fault site is at line 3 in the try block. However, we
cannot easily prune these irrelevant branches that cause the
inefficient exploration. They are worth considering because
the workload confirms most of them. Some injections do
expose the call to the method at line 10 via other callers. Some
injections also do have the condition at line 6 satisfied.

Therefore, it is not certain that a fault will produce all the
observables it has paths to in the causal graph. The further an
observable on a path is, the more uncertain it will be produced.

Motivated by this uncertainty property, Anduril considers
the the spatial distance 𝐿𝑖,𝑘 from the fault 𝑓𝑖 to its observables
𝑜𝑘 in the causal graph, and defines 𝐹𝑖 to be a function of 𝐼𝑘
and 𝐿𝑖,𝑘 , which will be described in § 5.2.4.

5.2.3 Updating Fault Instance Priority So far, 𝑓𝑖 refers to
only static fault candidates, which are the exception type and
its location in the code. A fault site can be exercised more
than once, and we observe that reproducing complex failures
often require a specific exception at specific state—injecting
it too soon or too late do not reproduce the failure. To refer to
an instance of a fault candidate here, we will use the notation
𝑓𝑖, 𝑗 to refer to the 𝑗-th occurrence of the fault site 𝑓𝑖 .

Thus, reproducing a failure requires considering all runtime
instances of the fault candidates, but this is infeasible in
practice. The number of instances can be large. We need to
intelligently choose which instances to explore.

𝑓1,1 𝑓2,1 𝑓2,2 𝑓2,3
execution 
time

𝑜1

observable (a sink 
node in causal graph)

𝑚1

log message (may not 
be in causal graph)

Figure 5. An execution timeline with different fault instances.

Anduril determines the fault instance priority based on
the temporal distance 𝑇𝑖, 𝑗,𝑘 between a fault instance 𝑓𝑖, 𝑗 to
an observable 𝑜𝑘 that we want to trigger. Our intuition is
similar to prioritizing fault sites: the further a fault is from the
message, the more uncertain it will trigger that message.

To obtain𝑇𝑖, 𝑗,𝑘 , a straightforward choice is the absolute time
distance. However, absolute time varies significantly across
runs, even when running the system on the same machines.
Moreover, it is very sensitive (e.g., in a millisecond scale, a
little difference can greatly affect the priority).

We instead determine 𝑇𝑖, 𝑗,𝑘 based on logical time distance.
In particular, we count the number of log messages between
𝑓𝑖, 𝑗 and 𝑜𝑘 . To explain its rationale, consider an example
timeline in Figure 5. One option of defining logical time
is by the order of the fault instance. For example, the fault
instances 𝑓1,1, 𝑓2,1, 𝑓2,2, and 𝑓2,3 could cause observable 𝑜1.
Using order, we can assign 𝑇1,1,1 = 3, 𝑇2,1,1 = 2, 𝑇2,2,1 = 1,
and 𝑇2,3,1 = 0. This choice addresses the problems of the
absolute time. However, it focuses too much on the fault 𝑓2. If
𝑓2 turns out to be irrelevant, we have to try all three instances
of it before trying 𝑓1. Using number of log messages instead,
𝑇1,1,1 = 1 (from𝑚1), 𝑇2,1,1 = 0, 𝑇2,2,1 = 0, and 𝑇2,3,1 = 1, which
avoids putting too much penalty on 𝑓1. Our intuition is that the
presence of a log message indicates a possible state change in
the system; distance by the number of messages indicates state
changes to reach the observable, which can be more robust
than the relative order of fault instances.

To calculate 𝑇𝑖, 𝑗,𝑘 , one obstacle is that we do not know how
the fault instances are distributed in the failure log timeline,
because this log is from production run. We also can not
directly calculate it from the experiment logs, which likely
miss 𝑜𝑘 (we want to trigger it). To address this issue, we
collect the fault instance distribution when obtaining the first
normal log. We then use an alignment algorithm based on
the longest common subsequence to map the fault instances
from the normal log’s timeline to the production failure log’s
timeline. Specifically, from § 5.1, we get a set of matched
log entries. By pairing neighbors of size 2, we get the finest
matched intervals between normal and failure logs. Then we
scale the distribution of fault instances in one interval in the
normal log into its counterpart interval in the failure log.

5.2.4 Putting All Priorities Together We now have the
feedback on observables, the spatial priority for each fault site,
and the time (occurrence) priority for each fault instance. How
to put these terms together? We observe how an experienced
developer would approach the problem of reproducing com-
plex failures. They often divide and conquer: first decide the
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most promising fault site, and then decide the most promising
time of that fault site. We follow the same approach.

Anduril first focuses on selecting the high-priority fault
site. At this stage, we do not consider the time information.
Distributed systems have high concurrencies, so even a few
milliseconds can exercise many fault sites. Time priorities
would not well differentiate them. For fault site 𝑓𝑖 , we consider
all observables that 𝑓𝑖 reaches in the causal graph. Let 𝑝𝑖,𝑘
denote the partial priority of 𝑓𝑖 when considering its causal
observable 𝑜𝑘 . Then the full priority 𝐹𝑖 will be some aggregate
of𝑝𝑖,𝑘 . We pickmin𝑘 (𝑝𝑖,𝑘 ) 1, so that we maximize the chance to
reproduce one observable in one injection run. An alternative
is
∑

𝑘 (𝑝𝑖,𝑘 ), which means we try to trigger all 𝑜𝑘 with the best
possible fault. Each 𝑝𝑖,𝑘 may have different magnitudes, so
the summation can be less sensitive to the effect of feedback
compared with using min. Since 𝑝𝑖,𝑘 is positively related to
both 𝐼𝑘 (priority of 𝑜𝑘 ) and 𝐿𝑖,𝑘 (distance from 𝑓𝑖 to 𝑜𝑘 ), either
adding or multiplying them would be reasonable. Because
some observables are noisy, we do want small perturbations
to alleviate their effect. Thus, the final 𝐹𝑖 = min𝑘 (𝐿𝑖,𝑘 + 𝐼𝑘 ).

Next, we focus on selecting the high-priority instance of a
fault site. At this stage, it is intuitive that we utilize 𝑇𝑖, 𝑗,𝑘 to
rank over all 𝑁 instances of the same fault injection site. Thus,
𝐹𝑖, 𝑗 , the priority of 𝑓𝑖, 𝑗 , is represented as min0≤ 𝑗≤𝑁,𝑜𝑘 𝑇𝑖, 𝑗,𝑘 .
Note that 𝑜𝑘 is determined in the first stage when selecting 𝐹𝑖 .
Also, it is fine for 𝑜𝑘 to change during the feedback. At that
time, we would utilize different 𝑘 for calculating 𝐹𝑖, 𝑗 .

Then at each trial, Anduril chooses the fault instance 𝑓𝑖, 𝑗 ,
such that both min𝑖 (𝐹𝑖 ) and min𝑗 (𝐹𝑖, 𝑗 ) are satisfied.

5.2.5 Flexible Priority Window In theory, with the priori-
ties computed, Anduril should inject the fault with the highest
priority. However, distributed systems are non-deterministic,
so the highest-priority fault might not occur in a round, causing
that round to be wasted (no fault is injected).

To address this issue, Anduril uses a flexible-window
selection scheme. Instead of only picking the highest priority,
Anduril considers the top 𝑘 highest priority fault candidates.
In each round, if any of the candidates in the window occurs,
Anduril will inject that fault candidate, even if it does not
have the highest priority, and remove that candidate from the
window. If no fault is injected in a round, Anduril doubles the
window size 𝑘 for the next round to consider more candidates.
With 𝑛 fault candidates, there are at most 𝑂 (log𝑛) rounds
without any injections, effectively reducing wasted rounds.

6 Limitations
Anduril is not effective in the following scenarios: (1) the
target failure is caused by delays or silent error codes that
do not throw exceptions; (2) the target failure is caused by
multiple, causally independent root-cause faults; (3) the given
workload does not exercise the code path that contains the

1min priority value represents highest priority

fault site; (4) the logs produced by the system are insufficient
to differentiate between a faulty and non-faulty execution;2

Distributed systems have internal concurrency, which leads
to the challenge that a fault injected too soon or too late may not
reproduce the failure. The feedback algorithm in Anduril,
specifically the fault instance priority update (§ 5.2.3), is
precisely designed to address this challenge. The internal
concurrency may reorder the log messages across different
reproduction runs. Anduril can handle this with its per-thread
log diff method (§ 5.1.1). However, if the concurrency causes
crucial log messages to disappear, the reproduction success
becomes probabilistic. To improve the chances, we can run
Anduril multiple times per round and use the combined logs.

When a target failure is caused by concurrency bugs com-
pounded with a fault, Anduril assumes that thread interleav-
ing has been deduced and enforced in the workload. If this
assumption does not hold, Anduril would not be able to
deterministically reproduce the failure.

Anduril only finds true bugs that cause the given symptom,
i.e., satisfy the failure oracle. In theory, a given symptom can
result from multiple bugs. In these rare cases, Anduril’s
“reproduction” may report a bug that differs from the one that
occurred in production. This is also a useful bug discovery.3

Our static causal analysis is neither sound nor complete. For
example, it would miss the data flow across disk and reflection.
However, the analysis is designed to be conservative so it
prioritizes soundness while compromising on completeness,
relying on dynamic feedback to handle false dependencies.

7 Implementation
We implemented Anduril mainly in Java. Anduril currently
works with distributed systems in JVM bytecode, which
supports many distributed systems written in Java, Scala, and
Clojure. However, the key ideas of Anduril are applicable to
other high-level languages that capture a fault as a program
exception. We built Anduril’s Instrumenter on the Soot static
analysis framework [50] with around 3,700 SLOC. Anduril
Explorer is written with around 5,600 SLOC.

Anduril uses log messages as the observables. We need to
properly parse the messages for mapping them to code in the
causal graph construction, and for comparing and analyzing
them to compute feedback. We implement a log parser in
Scala for this purpose. The parser supports common logging
conventions (e.g., using Log4j). If a system uses non-standard
logging formats, users need to provide the format configuration
(regular expressions) for our parser to identify the key fields.
Such a configuration is a one-time and easy effort. For the
five systems we evaluated, we only used two configurations:
one for Kafka and a second for the other four systems.

2The five systems we evaluate in § 8 generate sufficiently discriminating logs;
Anduril could use the logs as clues to reproduce all the failures we tried.
3We found 5 new bugs like this, as shown in § 8.2.

9

54



System LOC Fault Site

Total Inferred Dynamic

ZooKeeper 120 K–176 K 6,225 572 2,878
HDFS 351 K–1,187 K 20,803 4,761 73,186
HBase 211 K–1,649 K 24,497 2,905 106,095
Kafka 166 K–201 K 45,109 1,134 423,298
Cassandra 152 K–307 K 5,899 1,258 2,022,819

Table 1. Lines of code of the target systems and the fault sites for
the 22 failures, which occurred in different system versions. The
fault site results represent the mean. Total: all static fault sites in the
system. Inferred: static fault sites Anduril identifies by its causal
graph algorithm. Dynamic: occurrences of the inferred fault sites.

To efficiently implement Anduril’s feedback loop, we
make several optimizations. In each round, Anduril cal-
culates the priority for each injection before running the
workload. This calculation is expensive. In some cases, due
to the large number of injection candidates, it takes 5 minutes
to calculate the priorities, while the workload itself only takes
about 40 seconds. We observe that part of information can
be calculated beforehand. Specifically, the fault site priority
is based on the summation of the causal graph distance and
feedback on observables. We thus pre-calculate the distances
before the experiment and query them in each round. Also,
based on the design of our core algorithm, we only store the
information of instances with highest time priority for each
fault site, which significantly reduces the time priority table
serialization costs. After each round, we need to compute
the log diff for updating feedback, which is expensive. We
implement the diff algorithm in C to reduce the overhead.

8 Evaluation
Our evaluation addresses the following questions: (1) can
Anduril reproduce known fault-induced failures (§ 8.1 and
§ 8.1)? (2) what is the impact of our feedback algorithm (§ 8.3)?
(3) how does Anduril compare with existing solutions (§ 8.4)?
(4) how sensitive is the feedback algorithm (§ 8.5)? (5) how
fast are the decision and static analysis (§ 8.6)?
Failure dataset. To show Anduril’s practical efficacy, we
reproduce real-world failures in five large distributed systems:
ZooKeeper, HDFS, HBase, Kafka, and Cassandra. We search
their JIRA trackers for fault-related issues and collect 40 cases
that need non-trivial reasoning to reproduce. We randomly
choose 22 of them and report all our attempts with Anduril,
without excluding any of its failures. These failures are difficult
to reproduce manually, even for experienced developers.

Table 1 lists the code size and the number of fault sites for
the target systems. Our appendix lists the description for each
failure as well as the fault required to reproduce the failure.

Since these failures are resolved, we know the ground-truth
to construct the failure oracle. For the failure log, if the original
ticket does not provide a log file, we manually reproduce the
failure first based on the ground truth to obtain the log. In real
usage, Anduril directly uses the failure log from production.
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Figure 6. The rank of the root-cause fault site for HBase-25905. The
rank improves across trials due to the feedback Anduril computes.

We did not apply Anduril on non-fault-induced failures in
the evaluation. If Anduril is applied on a non fault-induced
failure, it would run until the specified limit (e.g., 2000 trials)
is reached and conclude that it could not reproduce the failure.
Workload generation. We used the target systems’ existing
tests (created before the failures) as the workloads for 13
failures. For 6 other failures, we used the workloads that
developers constructed and provided with the issue tickets.
We created workloads for the remaining 3 failures from the
descriptions or logs. Two of them were easy to construct, while
the third took us more time. This is because we took time to
realize that the root-cause fault instance only appears under
a specific thread interleaving, and subsequently updated the
workload to enforce the thread interleaving. Our workloads
averaged 185 lines of code. Note that in all cases, the workload
alone could not trigger the failure without fault injection. We
used the same workloads for Anduril and the baselines to
compare the fault injection.
Other experimental setup. We set the initial window size 𝑘
(§ 5.2.5) to 10 for all failures. The experiments are conducted
on servers running Ubuntu 18.04 with 20-core 2.20 GHz CPU
and 64 GB memory.

8.1 Efficacy of Failure Reproduction
Table 2 shows the failure reproduction results. Anduril suc-
cessfully identified the root-cause fault and reproduced the
failure for all 22 issues, which demonstrates its capabilities.

Besides effectiveness, Anduril aims to reproduce failures
efficiently. We measure efficiency by both absolute time and
the injection rounds. In reproducing 12 cases, Anduril takes
less than 10 minutes and fewer than 20 rounds. The median
efficiency for the 22 failures is 8 minutes and 11 rounds.
The longest time Anduril took is 445 minutes (281 rounds),
which is still acceptable compared to days or even weeks that
it often takes for developers to manually reproduce complex
failures. Six of our collected failure tickets contain information
about when developers reproduced the failure, the median
time for manual failure reproduction is 136 hours.

Anduril is effective on both failures with relatively smaller
fault space (e.g., ZooKeeper-4203) and complex failures with
enormous fault space (e.g., HBase-25905, HDFS-12070).
HBase-25905. This is the motivating example. Anduril auto-
matically identifies 53 relevant observables (§5.1). Some show
that normal HRegion flush failed because of TimeOutException
waiting for consumer’s sync. Some are due to theIOException
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Failure

FIR SOTA Solutions

Full Exhaustive Fault-Site Fault-Site Dis. Fault-Site Multiply FATE CrashTunerFeedback Fault Instance Distance w/ instance limit Feedback Feedback

Rnd. Time Rnd. Time Rnd. Time Rnd. Time Rnd. Time Rnd. Time Rnd. Time Rnd. Time

ZK-2247 (f1) 5 2min 535 95min 203 21min 74 11min 8 2min 23 6min - - 271 41min
ZK-3157 (f2) 3 2min 2548 872min 428 107min 136 39min 29 10min 1 1min 55 13min 34 23min
ZK-4203 (f3) 10 3min 454 74min 135 28min 65 12min 65 4min 8 2min - - 4114 840min
ZK-3006 (f4) 13 2min 2696 430min 151 7min 13 2min 4 1min 1 1min - - 135 17min
HD-4233 (f5) 30 25min - - - - 68 60min 89 92min 34 16min - - - -
HD-12248 (f6) 16 8min - - - - 175 60min 374 73min - - 2781 304min - -
HD-12070 (f7) 9 5min - - 3207 592min - - - - 10 5min 1925 357min - -
HD-13039 (f8) 6 17min - - - - 160 346min 19 37min 17 31min - - - -
HD-16332 (f9) 8 5min - - - - - - - - - - - - - -
HD-14333 (f10) 11 7min - - - - - - 64 20min 1 1min - - - -
HD-15032 (f11) 74 236min - - - - - - - - - - - - - -
HB-18137 (f12) 4 11min - - - - - - - - 10 45min - - - -
HB-19608 (f13) 19 44min - - - - - - 645 189min 176 124min - - - -
HB-19876 (f14) 258 191min - - - - - - - - 226 206min - - - -
HB-20583 (f15) 15 44min - - - - - - 11 7min 77 223min - - - -
HB-16144 (f16) 281 445min - - - - - - - - 476 643min - - - -
HB-25905 (f17) 18 93min - - - - - - - - - - - - - -
KA-12508 (f18) 8 8min 1565 640min - - 153 87min 108 50min - - - - - -
KA-9374 (f19) 7 7min 1585 514min - - 283 301min 57 32min - - - - - -
KA-10048 (f20) 3 8min - - - - - - - - - - - - - -
C*-17663 (f21) 2 4min - - - - - - - - 1 2min - - - -
C*-6415 (f22) 17 99min - - - - - - - - 1 10min - - - -

Table 2. Efficacy on reproducing 22 real-world failures with Anduril, its variants, and two state-of-the-art solutions. Rnd.: number of fault
injection rounds to reproduce the failure. “-” means a failure cannot be reproduced after running for 24 hours. The columns under Anduril
other than Full Feedback use alternative designs within Anduril (§ 8.3 explains their meanings). We also evaluated a stacktrace injector (§ 8.4).

showing the underlying HDFS stream is broken during con-
sumer’s sync. There are also noisy logs showing transient
failures in receiving blocks in DFSClient.

In dynamic experiment, at first the rank of the root-cause
site is over 130. During this process, the fault that trig-
ger failure in transferring blocks is injected and also, the
IllegalStateException is injected to directly kill the
consumer and we got the TimeOutException in flushing.
Gradually, Anduril would think that the log that is related to
broken HDFS stream should take higher priority, as shown in
Figure 6. (location+feedback works here) Finally, at trial 18,
we inject in getRPCResults with the corresponding occur-
rence that triggers the failed stream of WAL writers and we
got the expected symptom. What is more, only 2 out of over
1000 instances of the root-cause site can satisfy the oracle.
ZooKeeper-4203. When the servers start the leader election,
an IOException occurs while the leader is accepting the
socket from a follower. Due to defective design, this fault fails
the whole leader election service and no more followers can
join the quorum. Anduril identified three relevant observ-
ables, including a symptom message about the socket service
failure. The causal graph analysis finds around 1,000 fault
site candidates. The root-cause fault site gets assigned a high
priority that ranks 8th initially. Then the feedback algorithm
improves the ranking from 8 to 6 within four rounds. Finally,
Anduril reproduces the failure in 10 rounds.

HBase-16144. One regionserver that holds the replication
queue’s lock aborted due to an unknown transient failure.
Afterward, no other regionserver could claim the queue to do
synchronization. Anduril automatically infers 78 potentially
relevant logs. The causal graph Anduril contains 3075 fault
sites, one of which is the root-cause fault. From the evaluation
result, it turns out to be the most challenging case for Anduril.

The reason is that the single message close to the root cause
only shows that a regionserver aborts but not why. It is a
common practice in HBase to abort the regionserver when
encountering a failure. From our static analysis, Anduril
infers that more than 2500 fault sites are causally related to
the ABORT message. At the first round, the root-cause fault
site’s rank is 342. Through feedback, Anduril quickly learns
the importance of the ABORT log and prioritizes faults that
are causally related. Although most of them could indeed
trigger the abort, only a tiny subset can satisfy the oracle.
Those unsuccessful injections cause Anduril to doubt the
importance of the ABORT log. Overall, the feedback still
works and promotes the rank of the site to 187 at best. At this
time, our two-level combination design (§5.2.4) enacts: for
each fault site, it just tries the one that is close on timeline to
the ABORT message and traverses the fault sites efficiently
without wasting too much time on the same fault site. Finally,
Anduril reproduces the failure in round 281.
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Param.
Failure Id

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22

=1 10 1 14 1 28 24 1 6 14 5 99 1 12 715 6 468 22 13 10 1 1 24
=3 8 2 13 2 34 19 1 3 11 3 148 2 13 257 8 316 20 9 9 1 1 17

in
iti

al
𝑘

=10 5 3 10 13 30 16 9 6 8 11 74 4 19 258 15 281 18 8 7 3 2 17

ad
j.
𝑠 +1 5 3 10 13 30 16 9 6 8 11 74 4 19 258 15 281 18 8 7 3 2 17

+2 5 3 11 13 43 72 8 5 13 11 63 3 19 257 14 283 19 9 7 3 2 79
+10 5 3 5 13 44 649 8 4 13 13 67 2 18 257 - 384 - 8 7 2 2 116

Table 3. Sensitivity of two key parameters in Anduril. The initial window size 𝑘 for the flexible priority selection scheme (§ 5.2.5). adj. 𝑠: The
priority value adjustment for observables (§ 5.2.1). The highlighted rows are results for the default settings.

8.2 Enhancing Expert’s Diagnosis and Patch

A given failure symptom can result from multiple bugs. In-
terestingly, for 5 of the reproduced cases, Anduril’s results
allow us to discover other root causes. For example, in one
case, the original root cause developer diagnosed was mes-
sage loss caused by network I/O faults, which then caused
the snapshot repair to be blocked forever, but Anduril iden-
tifies a deeper root cause where an early-stage disk I/O fault
causes the target keyspace to not be created at all. Note that
Anduril’s new root cause also leads to failure symptoms that
satisfy the oracle, but it is deeper in the root cause chain.

A tangible impact of Anduril’s findings is that they expose
flaws in the patches developers wrote. In four cases, the original
patches do not work. For the above example, the original patch
only uses some retry logic to deal with message loss, which
could not fix the situation that the target keyspace does not
exist. In one case, although the original patch works, we
develop a new patch that is more efficient. We submitted our
findings. In 3 cases, the issues exist in the latest versions, and
developers confirmed them to be new bugs. We also received
confirmation for the more efficient patch we developed in a
fourth case. We omit the bug ids here for double-blind review.

8.3 Importance of Techniques
To measure the importance of different techniques in Anduril,
we conduct an ablation study that removes or replaces certain
components in Anduril. In particular, we implement and
evaluate five different strategies shown in Table 2.

The exhaustive strategy only leverages the Anduril static
causal graph and tries all the instances from the fault sites in
the causal graph. The fault-site distance strategy sets a fault
site’s priority only as the graph distance term 𝐿𝑖,𝑘 without any
feedback. It also applies the flexible priority window (§ 5.2.5).
The fault-site distance with instance limit similarly only uses
𝐿𝑖,𝑘 for priority and additionally considers only the first 3
instances of each fault site. The fault-site feedback strategy
additionally includes the feedback of observables, 𝐼𝑘 , but it
it does not distinguish priorities for fault candidate instances
(i.e., no 𝑇𝑖,𝑘 ). It also applies the 3-instance limit. The multiply
feedback strategy uses both the fault site priority 𝐹𝑖 and fault
instance priority 𝐹𝑖,𝑘 , but it simply uses 𝐹𝑖 × 𝐹𝑖,𝑘 to combine
them instead of using our two-level approach (§ 5.2.4).

As Table 2 shows, the complete Anduril significantly out-
performs all five variant strategies. The best variant, multiply
feedback, only reproduces 15 failures in 88 minutes and 71
rounds on average. By comparing the variants, we can also
see the importance of each technique. For example, while
the exhaustive variant leverages the Anduril causal graph to
prune many fault sites (Table 1), allowing it to outperform
non-Anduril solutions, its result is much worse compared
to the other variants. This suggests that dynamic feedback
is crucial. Comparing among the dynamic variants suggests
that each feedback consideration plays an important role. The
multiply feedback result suggests that the two-level approach
is superior to simple combination of different priorities.

8.4 Comparison with Other Solutions

CrashTuner [35] and FATE [19]. We compare Anduril
with CrashTuner and FATE, two state-of-the-art fault injection
solutions that target distributed systems. CrashTuner proposes
to use meta-info variables to identify critical timings for
injecting faults. FATE employs the notion of failure IDs to
avoid redundant fault injections and uses prioritization to
explore new failure scenarios first.

As Table 2 shows, CrashTuner and FATE only reproduce
four and three failures, respectively. They are designed for
bug finding instead of failure reproduction, thus they focus on
improving coverage, which cause them to waste significant
time exploring faults that are irrelevant to a specific failure.
StackTrace-injector. Additionally, we implement a stacktrace-
injector for comparison. It extracts all warning and error
messages in the failure log, and parses the fault sites in those
messages as well as the stack traces if logged. During experi-
ment, it only injects if the executed site is one of the logged
sites and the stack trace matches the failure log.

The stacktrace-injector only reproduces 9 failures in 78
minutes and 230 rounds on average. It can perform well if the
failure log is clean and the root-cause fault appears in the log.
For example, it can reproduce Kafka-12508 in the first round,
because only two fault sites are extracted from the log, one of
them being the root-cause site. However, when the root-cause
fault does not appear in the failure log, it cannot reproduce
the failure. Also, if the log contains irrelevant error messages
or when the root-cause fault site is executed frequently, it
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System Inject. Req. Round Init. Workload
Cnt. Latency

ZooKeeper 2,955 2 𝜇s 6.7 s 6.4 s
HDFS 36,091 0.30 𝜇s 22 s 12 s
HBase 31,162 0.40 𝜇s 25 s 27 s
Kafa 423,298 0.20 𝜇s 41 s 10 s
Cassandra 2,022,819 29.10 𝜇s 124 s 25 s

Table 4. Median injection requests received by Anduril Explorer,
the latency for each decision, the median initialization time for each
injection round, and the workload time.

performs poorly. For example, it extracts 9 static fault sites
from the log for HDFS-15032, but takes 1839 rounds and 634
minutes to reproduce the failure. Note that the input failure
log we use is created from a test workload and thus small.
But in real deployment, the failure log directly comes from
production and will be much larger and more noisy.
Pensieve [59]. Pensieve can efficiently reproduce failures for
distributed systems. However, it is not publicly available for us
to conduct comparisons. More importantly, Pensieve focuses
on deducing the inputs for a failure, which is an orthogonal
problem. Combining Pensieve with other fault injection tools
would suffer from the same limitations and yield similar
results shown above. From Table 2, we can approximate the
performance of extending Pensive to support exception events.
The exhaustive strategy relies on static causal reasoning of
exceptions, which performs poorly in our evaluated failures
compared to using full dynamic feedback in Anduril.

8.5 Sensitivity of Key Parameters

Anduril’s feedback algorithm has two key parameters: the
initial priority window size 𝑘 (§ 5.2.5), and the priority value
adjustment 𝑠 for observables’ feedback. We use their default
settings (𝑘 = 10, 𝑠 increment by one) in the experiments. We
evaluate Anduril’s sensitivity to different settings. Table 3
shows the results. The feedback algorithm is overall robust to
different settings, under which Anduril still reproduces most
of the 22 failures. However, they do result in relatively small
differences for most cases.

8.6 Performance
We evaluate the performance of the Explorer. In each injection
round, Anduril needs to compute and update different priority
factors, thus there is an initialization cost for each round.
Initially this cost was high, which caused some experiments
to proceed slowly. We made several optimizations (§ 7) that
greatly reduce the cost. Table 4 shows the median optimized
initialization time for different systems. We also measure the
median number of injection requests Anduril receives for the
evaluated failures as well as the median latency for Anduril
to make a decision. As Table 4 shows, after Explorer finishes
initialization, subsequent decisions in each round are fast.

We also measure the static analysis performance. The time
ranges from 11 s to 344 s, depending on the code size and

complexity. The most time-consuming step is analyzing the
exceptions and handlers takes. But the longest time is only
162 s (HBase). The slicing analysis is fast, finishing within a
few seconds. Our appendix shows the detailed results.

9 Related Work
Fault Injection Since distributed systems frequently en-
counter faults, fault injection testing is popular and has been
extensively studied. Due to the large fault space, existing solu-
tions often perform random injection [6] or rely on users to
write the policies [1]. Recent solutions [3, 12, 17, 19, 27, 31,
35, 37, 39, 48, 49, 53] propose more advanced techniques to
improve fault injection testing, such as using failure IDs [19],
meta-info variables [35], and abstract states [53].

These solutions are designed for finding bugs. They focus
on coverage and thus can be inefficient in triggering a specific
failure. To the best of our knowledge, Anduril is the first
fault-injection tool designed for reproducing a given failure.
Anduril directly searches for faults relevant to a given failure,
and takes a feedback-driven approach to efficiently pinpoint
the root-cause fault and their timing.
Failure Reproduction Reproducing production failures is
notoriously difficult, motivating many solutions. An exten-
sively explored technique is record and replay. By logging
all sources of non-determinism at runtime, including input,
thread scheduling, and environment interaction such as file
and network I/O, it can replay a past execution. This technique
is particularly useful for reproducing concurrency bugs. How-
ever, it is known to incur prohibitive runtime overhead. Despite
significant efforts [2, 13, 20, 28, 32, 33, 38, 40, 45, 46, 51],
the overhead is still too high to apply on production systems.
Anduril is non-intrusive. It does not instrument the produc-
tion system or perform runtime recording. It only uses the
existing failure log from the production run.

Symbolic execution is also used to reproduce failures by
searching for an execution trace containing the desired symp-
toms. Given a coredump, ESD [55] extracts a subprogram
using static slicing, and then uses symbolic execution to search
for paths that exercise the entirety of this subprogram and
reach the symptom. However, symbolic execution does not
scale to large systems because of the path explosion problem.

Pensieve [59] proposes an event-chaining approach using
static analyses to reproduce the input (sequence of external
APIs) for a given failure. Its static analysis uses a jumping strat-
egy that aggressively skips code paths. Anduril is inspired
by Pensieve. However, it is a complementary effort. Anduril
is a fault injection tool to reproduce fault-induced failures,
while Pensieve focuses on input-induced failures. For example,
Pensieve discards exception causal conditions because of its
focus on input. In addition, Pensieve relies on static analyses,
while the core of Anduril is dynamic feedback.
Fuzzing Fuzzing testing [7–9, 9, 16, 43, 57, 58] widely uses
feedback to guide input generation. Its main goal is to generate
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inputs to increase code coverage and uncover as many bugs as
possible. Anduril is designed to reproduce a specific failure.
Its feedback is therefore targeted to quickly identify the root-
cause fault that can reproduce the specific failure. Thus, it
requires a fundamentally different feedback design.

There are some work [11, 25, 56] employing stacktrace to
reproduce the bug. However, large-scale distributed systems
are designed to be fault-tolerance and it is common that they
will not log the stacktrace of the faults they suppose they
can handle (although it can be the root cases of the failure
sometimes). So Anduril does not employ stacktrace but
instead construct causal graph to deduce the possible fault
sites. What’s more, we also construct the stacktrace baseline
that purely utilize the stacktrace of the faults printed out in
the logs. However, as the information in appendix shows, it
does not perform well for most of the cases.

10 Conclusion
We presented Anduril, a fault injection tool designed to effi-
ciently reproduce fault-induced failures in deployed distributed
systems. Anduril uses a novel dynamic feedback-driven in-
jection algorithm enhanced by a static causal reasoning step to
pinpoint the root-cause fault and timing in a large fault space.
We evaluated Anduril on real-world complex fault-induced
failures in large distributed systems. Anduril quickly repro-
duced all the failures and outperformed existing solutions.
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A Evaluation Details
We include additional details and results that are omitted in
the main paper due to space constraints. The content in this
appendix is not peer-reviewed.
Reproduced failures. Table 5 lists the failures Anduril
reproduced. It also shows the types of exceptions that Anduril
injected to reproduce the failures.
Stacktrace-injector. We also implemented a baseline so-
lution that injects faults based on stacktraces. Its results are
listed in the last two columns in Table 5.
New root causes discovered. Anduril found new root causes
for five failures that differed from the developers’ diagnoses, as
shown in Table 6. We also list the log messages that Anduril

used to infer the new root causes. In four cases, developers’
patches could not fix the scenarios that Anduril exposed.

Failure Id old root cause new root cause exploited
log

old
patch
works

ZK-4737 network issue in
loading dataset

disk issue in load-
ing dataset

root cause no

HD-17157 disk failure causes
meta data loss

network issue
causes no re-
sponse in second
stage of block
recovery

intermittent yes

HB-28014 disk failure causes
empty WAL

underlying HDFS
issue causes fail-
ure of adding
replication peers

root cause no

KA-15339 delay in making
connector

disk issue in ap-
pending records at
startup

root cause no

CA-18748 request/response
loss of repair

disk issue in mak-
ing column family

root cause no

Table 6. The new root cause and flaw in patch Anduril discovered
when reproducing the failures.

Static analysis. We applied Anduril’s static causal graph
algorithm to reduce the fault sites. Table 7 shows the time
taken by the static analysis for each case. It also shows the
break-downs of the static analysis time.
Runtime details. Table 8 shows the runtime details of the
Anduril Explorer, such as the number of injection requests
it received, the decision latency, the initialization time per
round, and the workload time for each case.
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Failure Id Description Injected Fault Stacktrace injector

Rnd. Time

ZK-2247 (f1) Server unavailable when leader fails to write transaction log IOException 6 1min
ZK-3157 (f2) Connection loss causes the client to fail IOException 112 23min
ZK-4203 (f3) The leader election is stuck forever due to connection error IOException 68 13min
ZK-3006 (f4) Invalid disk file content causes null pointer exception IOException 31 2min

HD-4233 (f5) Rolling backup fails but the server keep serving FileNotFoundException - -
HD-12248 (f6) Exception when transfering file system image to namenode causes the namenode

checkpointing to ignore the image backup
InterruptedException - -

HD-12070 (f7) Files will remain open indefinitely if block recovery fails which creates a high
risk of data loss

IOException 5 1min

HD-13039 (f8) Data block creation leaks socket on exception IOException - -
HD-16332 (f9) Missing handling of expired block token causes slow read IOException - -
HD-14333 (f10) Disk error during namenode registration causes datanodes fail to start IOException - -
HD-15032 (f11) Balancer crashes when it fails to contact an unavailable namenode SocketException 11 22min

HB-18137 (f12) Empty WAL file causes Replication to get stuck IOException 1 1min
HB-19608 (f13) Interrupted procedure mistakenly causes a failed state flag IOException - -
HB-19876 (f14) The exception happening in converting pb mutation messes up the CellScanner IOException - -
HB-20583 (f15) The failure during splitting log causes resubmit of another failed splitting task IOException - -
HB-16144 (f16) Replication queue’s lock will live forever if regionserver acquiring the lock has

died prematurely
IOException - -

HB-25905 (f17) Transient namenode failure in HDFS causes WAL services in HBase to stop
making any progress

IOException - -

KA-12508 (f18) Emit-on-change tables lose updates after error and restart IOException 1 1min
KA-9374 (f19) Blocked connectors disable the Workers IOException 1839 634min
KA-10048 (f20) Consumer’s failover under MM2 replication configuration causes data gap between

2 clusters
IOException - -

C*-17663 (f21) Interrupted FileStreamTask compromise shared channel proxy IOException - -
C*-6415 (f22) Snapshot repair blocks forever if get no response of makeSnapshot IOException - -

Table 5. The failures reproduced by Anduril, their brief descriptions, the types of the faults Anduril injects to reproduce the failures, and the
time and the number of rounds Anduril takes to reproduce the failures.

Failure Id LOC Time

Exception Slicing Chaining Total

ZooKeeper-2247 120K 0.9s 0.1s 0.06s 11s
ZooKeeper-3157 136K 0.9s 0.1s 0.07s 13s
ZooKeeper-4203 178K 2.0s 0.1s 0.1s 18s
ZooKeeper-3006 176K 1.5s 0.1s 0.1s 15s

HDFS-4233 351K 3.6s 0.1s 0.3s 31s
HDFS-12248 1M 103s 0.4s 6s 237s
HDFS-12070 940K 120s 0.7s 6s 228s
HDFS-13039 880K 46s 0.5s 1s 113s
HDFS-16332 1187K 165s 0.9s 3s 280s
HDFS-14333 1054K 140s 1.2s 9s 261s
HDFS-14333 1130K 143s 3.5s 3s 294s

HBase-18137 303K 186s 0.8s 25s 344s
HBase-19608 211K 156s 1.5s 1.4s 286s
HBase-19876 211K 169s 1.3s 1.5s 302s
HBase-20583 1649K 162s 1.3s 1.5s 303s
HBase-16144 1204K 95s 0.7s 1.4s 130s

Kafka-12508 201K 74s 1.1s 1s 179s
Kafka-9374 166K 37s 0.9s 0.7s 112s

Cassandra-17663 307K 42s 0.9s 1.5s 94s
Cassandra-6415 152K 4s 0.2s 0.3s 31s

Table 7. LOC: lines of code analyzed; Exception: time used in
exception analysis; Slicing: time used in slicing analysis; Chaining:
average time used in creating a causal chain for one observable.

Failure Inject. Req. Round Workload
Cnt. Latency Init.

ZooKeeper-2247 1726 2 𝜇s 6.6s 2.6s
ZooKeeper-3157 4444 2 𝜇s 7.1s 10.2s
ZooKeeper-4203 1158 2 𝜇s 6.1s 10.4s
ZooKeeper-3006 4184 2 𝜇s 6.7s 0.9s

HDFS-4233 42753 11 𝜇s 8.5s 64.1s
HDFS-12248 36091 0.2 𝜇s 22s 12.0s
HDFS-12070 18588 0.3 𝜇s 16s 9.4s
HDFS-13039 34587 4 𝜇s 18s 95.1s
HDFS-16332 19182 0.4 𝜇s 26s 10.4s
HDFS-14333 84583 0.2 𝜇s 24s 3.0s
HDFS-15032 276518 0.2 𝜇s 142s 12s

HBase-18137 344098 0.3 𝜇s 93s 46.5s
HBase-19608 21028 0.4 𝜇s 16s 17.3s
HBase-19876 31162 0.4 𝜇s 18s 13.5s
HBase-20583 117406 0.1 𝜇s 58s 27s
HBase-16144 16783 1 𝜇s 25s 30s

Kafka-12508 49443 0.3 𝜇s 41s 6.3s
Kafka-9374 797152 0.1 𝜇s 40s 14.2s

Cassandra-17663 168825 0.2 𝜇s 64s 33s
Cassandra-6415 3876813 58 𝜇s 184s 17s

Table 8. Injection requests received by Anduril Explorer, the latency
for each decision, the median initialization time for each injection
round, and the workload time.
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