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Au,a,zt-free implementation ofa concurrent data object is one that guarantees that any process can

complete any operation in a finite number of’ steps, regardless of the execution speeds of the other

processes. The problem ofconstructinga wait-free implementation of one data object from another

lies at the heart of much recent work in concurrent algorithms, concurrent data structures, and

multiprocessor architectures. First, we introduce a simple and general technique, based on reduction

to a consensus protocol, for proving statements of the form, “there is no wait-free implementation of

X by Y.” We derive a hierarchy of objects such that no object at one level has a wait-free

implementation in terms of objects at lower levels. In particular, we show that atomic read/write

registers, which have been the focus of much recent attention, are at the bottom of the hierarchy:

they cannot be used to construct wait-free implementations of many simple and familiar data types.

Moreover, classical synchronization primitives such as test&set and fetch&add, while more powerful

than read andunte, are also computationally weak, as are the standard message-passing primitives.

Second, nevertheless, we show that there do exist simple universal objects from which one can

construct await-free implementation of any sequential object.

Categories and Subject Descriptors: D.1.3 [Programming Techniques] : Concurrent Programming;

D.3.3 [Programming Languages] :LanWage Constructs-abstract data types, concurrent program-

rnmg structures; D.4.1 [Operating Systems]: Process Management—concurrency, rnutualexclusiorz,

synchronization

General Terms: Algorithms, Languages, Verification
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1. INTRODUCTION

A concurrent object is a data structure shared by concurrent processes. Algorithms

for implementing concurrent objects lie at the heart of many important problems

in concurrent systems. The traditional approach to implementing such objects

centers around the use of critical sections: only one process at a time is allowed

to operate on the object. Nevertheless, critical sections are poorly suited for

asynchronous, fault-tolerant systems: if a faulty process is halted or delayed in

a critical section, nonfaulty processes will also be unable to progress. Even in a

failure-free system, a process can encounter unexpected delay as a result of a
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page fault or cache miss, by exhausting its scheduling quantum, or if it is swapped

out. Similar problems arise in heterogeneous architectures, where some processors

may be inherently faster than others, and some memory locations may be slower

to access.

A wait-free implementation of a concurrent data object is one that guarantees

that any process can complete any operation in a finite number of steps, regardless

of the execution speeds on the other processes. The wait-free condition provides

fault-tolerance: no process can be prevented from completing an operation by

undetected halting failures of other processes, or by arbitrary variations in their

speed. The fundamental problem of wait-free synchronization can be phrased as

follows:

Given two concurrent objects X and Y, does there exist a wait-free

implementation of X by Y?

It is clear how to show that a wait-free implementation exists: one displays it.

Most of the current literature takes this approach. Examples include “atomic”

registers from nonatomic “safe” registers [18], complex atomic registers from

simpler atomic registers [4, 5, 16, 23, 25, 26, 29, 31], read-modify-write operations

from combining networks [11, 15], and typed objects such as queues or sets from

simpler objects [14, 19, 20].

It is less clear how to show that such an implementation does not exkt. In the

first part of this paper, we propose a simple new technique for proving statements

of the form “there is no wait-free implementation of X by Y.” We derive a

hierarchy of objects such that no object at one level can implement any object at

higher levels (see Figure 1). The basic idea is the following each object has an

associated consensus number, which is the maximum number of processes for

which the object can solve a simple consensus problem. In a system of n or more

concurrent processes, we show that it is impossible to construct a wait-free

implementation of an object with consensus number n from an object with a

lower consensus number.

These impossibility results do not by any means imply that wait-free synchro-

nization is impossible or infeasible. In the second part of this paper, we show

that there exist universal objects from which one can construct a wait-free

implementation of any object. We give a simple test for universality, showing

that an object is universal in a system of n processes if and only if it has a

consensus number greater than or equal to n. In Figure 1, each object at level n

is universal for a system of n processes. A machine architecture or programming

language is computationally powerful enough to support arbitrary wait-free

synchronization if and only if it provides a universal object as a primitive.

Most recent work on wait-free synchronization has focused on the construction

of atomic read/write registers [4, 5, 16, 18, 23, 25, 26, 29, 31]. Our results address

a basic question: what are these registers good for? Can they be used to construct

wait-free implementations of more complex data structures? We show that atomic

registers have few, if any, interesting applications in this area. From a set of

atomic registers, we show that it is impossible to construct a wait-free implemen-

tation of (1) common data types such as sets, queues, stacks, priority queues, or

lists, (2) most if not all the classical synchronization primitives, such as test&set,

ACM Transactions on Programming Languages and Systems, Vol 11, No 1, January 1991.



126 ● Maurice Herlihy

Consensus Object

Number
A

1 read/write registers

2 test& set, swap, fetch& add, queue, stack

2n–2 n-register assignment
L

co memory-to-memory move and swap, augmented queue,

compare&swap, fetch&cons, sticky byte

Fig.1. Impossibility anduniversality hierarchy.

compare&swap, and fetchd-add, and (3) such simple memory-to-memory opera-

tions as move or memory-to-memory swap. These results suggest that further

progress in understanding wait-free synchronization requires turning our atten-

tion from the conventional read and write operations to more fundamental

primitives.

Our results also illustrate inherent limitations of certain multiprocessor archi-

tectures. The NYU ultracomputer project [10] has investigated architectural

support for wait-free implementations of common synchronization primitives.

They use combining networks to implement fetch&add, a generalization of

test&set. IBM’s RP3 [8] project is investigating a similar approach. The fetch&add

operation is quite flexible: it can be used for semaphores, for highly concurrent

queues, and even for database synchronization [11, 14, 30]. Nevertheless, we

show that it is not universal, disproving a conjecture of Gottlieb et al. [11]. We

also show that message-passing architectures such as hypercubes [28] are not

universal either.

This paper is organized as follows. Section 2 defines a model of computation,

Section 3 presents impossibility results, Section 4 describes some universal

objects, and Section 5 concludes with a summary.

2. THE MODEL

Informally, our model of computation consists of a collection of sequential threads

of control called processes that communicate through shared data structures

called objects. Each object has a type, which defines a set of possible states and a

set of primitive operations that provide the only means to manipulate that object.

Each process applies a sequence of operations to objects, issuing an invocation

and receiving the associated response. The basic correctness condition for con-
current systems is tinearizability [14]: although operations of concurrent processes

may overlap, each operation appears to take effect instantaneously at some point

between its invocation and response. In particular, operations that do not overlap

take effect in their “real-time” order.

2.1 1/0 Automata

Formally, we model objects and processes using a simplified form of 1/0 automata

[22]. Because the wait-free condition does not require any fairness or Iiveness

conditions, and because we consider only finite sets of processes and objects, we
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do not make use of the full power of the 1/0 automata formalism. Nevertheless,

simplified 1/0 automata provide a convenient way to describe the basic structure

of our model and to give the basic definition of what it means for one object to

implement another. For brevity, our later constructions and impossibility results

are expressed less formally using pseudocode. It is a straightforward exercise to

translate this notation into 1/0 automata.

An 1/0 automaton A is a nondeterministic automaton with the following

components+

(1)

(2)

(3)

(4)

(5)

States (A) is a finite or infinite set of states, including a distinguished set of

starting states.

In(A) is a set of input events,

Out(A) is a set of output events,

Int (A ) is a set of internal events,

Step (A) is a transition relation given by a set of triples (s’, e, s), where s

ands’ are states and e is an event. Such a triple is called a step, and it means

that an automaton in state s‘ can undergo a transition to state s, and that

transition is associated with the event e.

If (s’, e, s ) is a step, we say that e is enabled in s‘. 1/0 automata must satisfy

the additional condition that inputs cannot be disabled; for each input event e

and each state s‘, there exist a state s and a step (s’, e, s).

An execution fragment of an automaton A is a finite sequence so, e], S1, . . . . en,
. .

s~ or mfmlte sequence SO,el, S1, . . . of alternating states and events such that

each (s,, e,+,, s,+, ) is a step of A. An execution is an execution fragment where SO

is a starting state. A history fragment of an automaton is the subsequence of

events occurring in an execution fragment, and a history is the subsequence

occurring in an execution.

A new 1/0 automaton can be constructed by composing a set of compatible

1/0 automata. (In this paper we consider only finite compositions.) A set

of automata are compatible if they share no output or internal events. A state

of the composed automaton S is a tuple of component states, and a starting state

is a tuple of component starting states. The set of events of S, Euents (S ),

is the union of the components’ sets of events. The set of output events of S,

Out (S), is the union of the components’ sets of output events; the set of internal

events, Int (S ), is the union of the components’ sets of internal events; and the

set of input events of S, In(S), is In(S) – Out(S), all the input events of S that

are not output events for some component. A triple (s’, e, s ) is in Steps (S) if and

only if, for all component automata A, one of the following holds: (1) e is an

event of A, and the projection of the step onto A is a step of A, or (2) e is not an

event of A, and A‘s state components are identical in s‘ and s. Note that

composition is associative. If H is a history of a composite automaton and A

a component automaton, H I A denotes the subhistory of H consisting of events

of A.

‘To remain consistent with the terminology of [14] we use “event” where Lynch and Tuttle use

“operation,” and “hietory” where they use “schedule.”
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2.2 Concurrent Systems

A concurrent system is a set of processes and a set of objects. Processes represent

sequential threads of control, and objects represent data structures shared by

processes. Aprocess P is an 1/0 automaton with output events INVOKE(P, op,

X), where op is an operation’ of object X, and input events RESPOND (P, res, X),

where res is a result value. We refer to these events as invocations and responses.

Two invocations and responses match if their process and object names agree.

To capture the notion that a process represents a single thread of control, we say

that a process history is well formed if it begins with an invocation and alternates

matching invocations and responses. An invocation is pending if it is not followed

by a matching response. An object X has input events INVOKE (P, op, X), where

P is a process and op is an operation of the object, and output events RESPOND (P,

res, X), where ras is a result value. Process and object names are unique, ensuring

that process and object automata are compatible.

A concurrent system [Pl, . . . . P~; Al, . . . . Am} is an 1/0 automaton composed

from processes PI, . . . . P. and objects Al, . . . . Am, where processes and objects

are composed by identifying corresponding INVOKE and RESPOND events. A

history of a concurrent system is well formed if each H I P, is well formed, and a

concurrent system is well formed if each of its histories is well-formed, Hence-

forth, we restrict our attention to well-formed concurrent systems.

An execution is sequential if its first event is an invocation, and it alternates

matching invocations and responses. A history is sequential if it is derived from

a sequential execution. (Notice that a sequential execution permits process steps

to be interleaved, but at the granularity of complete operations. ) If we restrict

our athention to sequential histories, then the behavior of an object can be

specified in a particularly simple way: by giving pre- and postconditions for each

operation. We refer to such a specification as a sequential specification. In this

paper, we consider only objects whose sequential specifications are total: if the

object has a pending invocation, then it has a matching enabled response. For

example, a partial deq might be undefined when applied to an empty queue, while

a total deq would return an exception. We restrict out attention to objects whose

operations are total because it is unclear how to interpret the wait-free condition

for partial operations. For example, the most natural way to define the effects of

a partial deq in a concurrent system is to have it wait until the queue becomes

nonempty, a specification that clearly does not admit a wait-free implementation.

Each history H induces a partial “real-time” order <~ on its operations:

opo <H Opl if the response for Opo precedes the invocation for Opl. Operations un-

related by <H are said to be concurrent. If H is sequential, <~ is a total

order. A concurrent system ~P1, . . . , P.; Al, . . . , Am} is linearizable if, for each
history H, there exists a sequential history S such that

(1) forall P1, HIP, =SIP,;

(2) <Hc <s.

In other words, the history “appears” sequential to each individual process, and

this apparent sequential interleaving respects the real-time precedence ordering

‘ (lp may also include argument values,
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of operations. Equivalently, each operation appears to take effect instantaneously

at some point between its invocation and its response. A concurrent object A is

linearizable [14] if, for every history H of every concurrent system {Pl, . . . . P.;

AI, . . .. A.>.. ., Am], H I AJ is linearizable. A linearizable object is thus “equiva-

lent” to a sequential object, and its operations can also be specified by simple

pre- and postconditions. Henceforth, all objects are assumed to be linearizable.

Unlike related correctness conditions such as sequential consistency [17] or strict

serializability [24], linearizability is a local property: a concurrent system is

linearizable if and only if each individual object is linearizable [14]. We restrict

our attention to linearizable concurrent systems.

2.3 Implementations

An implementation of an object A is a concurrent system ~Fl, . . . . F.; R}, where

the F, are called front-ends, and R is called the representation object. Informally,

R is the data structure that implements A, and FL is the procedure called by

process P, to execute an operation. An object implementation is shown schemat-

ically in Figure 2.

(1) The external events of the implementation are just the external events of
A: each input event INVOKE(P,, op, A) of A is an input event of F,, and each

output event RESPOND(P,, res, A ) of A is an output event of F,.

(2) The implementation has the following internal events: each input event

INVOKE(F,, op, R ) of R is composed with the matching output event of F,, and

each output event RESPOND(FL, res, R ) of R is composed with the matching input

event of F,.

(3) To rule out certain trivial solutions, front-ends share no events; they

communicate indirectly through R.

Let I, be an implementation of A,. I, is correct, if for every history H

of every system ~Pl, . . . . P.; Al, . . . . 11, . . . . A~}, there exists a history

H’of@l, . . .. Pn. Al, A,, ,A,, . . ., A~}, such that Hl{Pl, . . ..P~} =H’1

{P,,..., Pn}.

An implementation is wait-free if the following are true:

(1) It has no history in which an invocation of Pi remains pending across an

infinite number of steps of F,.

(2) If P, has a pending invocation in a states, then there exists a history fragment

starting from s, consisting entirely of events of F, and R, that includes the

response to that invocation.

The first condition rules out unbounded busy-waiting: a front-end cannot take

an infinite number of steps without responding to an invocation. The second

condition rules out conditional waiting: F, cannot block waiting for another

process to make a condition true. Note that we have not found it necessary to

make fairness or liveness assumptions: a wait-free implementation guarantees

only that if R eventually responds to all invocations of ~,, then F, will eventually
respond to all invocations of P,, independently of process speeds.

An implementation is bounded wait-free if there exists N such that there is no

history in which an invocation of P, remains pending across N steps of F,.
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Bounded wait-free

Fig. 2. Schematic view of object implementation.

implies wait-free, but not vice-versa. We use the wait-free

condition for impossibility results and the bounded wait-free condition for

universal constructions.

For brevity, we say that R implements A if there exists a wait-free implemen-

tation {Fl, . . . . F.; R } of A. It is immediate from the definitions that implements

is a reflexive partial order on the universe of objects. In the rest of the paper, we

investigate the mathematical structure of the implements relation. In the next

section, we introduce a simple technique for proving that one object does not

implement another, and in the following section we display some “universal”

objects capable of implementing any other object.

3. IMPOSSIBILITY RESULTS

Informally, a consensus protocol is a system of n processes that communicate

through a set of shared objects {Xl, . . . . X~ }. The processes each start with an

input value from some domain 2; they communicate with one another by applying

operations to the shared objects; and they eventually agree on a common input

value and halt. A consensus protocol is required to be

(1) consistent: distinct processes never decide on distinct values;

(2) wait-free: each process decides after a finite number of steps;

(3) valid: the common decision value is the input to some process.

For our purposes, it is convenient to express the consensus problem using the

terminology of abstract data types. A consensus object provides a single operation:

decide(input: value) returns(value)

A protocol’s sequential specification is simple: all decide operations return the

argument value of the first decide (cf., Plotkin’s “sticky-bit” [27]). This common

value is called the history’s decision value. A wait-free linearizable implementa-

tion of a consensus object is called a consensus protocol (cf., Fisher et al. [9]).

We investigate the circumstances under which it is possible to construct
consensus protocols from particular objects. Most of the constructions presented

in this paper use multireader/multiwriter registers in addition to the object of

interest. For brevity we say “X solves n-process consensus” if there exists a

consensus protocol ~F1, . . . . F.; W, X}, where W is a set of read/write registers,
and W and X may be initialized to any state.

Definition 1. The consensus number for X is the largest n for which X solves
n-process consensus. If no largest n exists, the consensus number is said to be

infinite.
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It is an immediate consequence of our definitions that if Y implements X, and

X solves n-process consensus, then Y also solves n-process consensus.

THEOREM 1. If X has consensus number n, and Y has consensus number

m < n, then there exists no wait-free implementation of X by Y in a system of

more than m processes.

PROOF. As noted above, all front-end and object automata are compatible by

definition, and thus their composition is well defined. Let ~F1, . . . . F~; W, X“}

be a consensus protocol, where k B m and W is a set of read/write registers.

Let {3’{, . . . . FL; Y} be an implementation of X. It is easily checked that

~Fl, ..., F~; W, ~Fi, . . . . F:; Y}] is wait-free, and because composition is

associative, it is identical to IFl . F;, . . . . F. . F;; W, Y}, where FI . F; is the

composition of F, and F:. Since the former is a consensus protocol, so is the
latter, contradicting the hypothesis that Y has consensus number m. ❑

In the rest of this section, we consider a number of objects, displaying consensus

protocols for some and impossibility results for others. For impossibility proofs,

we usually assume the existence of a consensus protocol, and then derive a

contradiction by constructing a sequential execution that forces the protocol to

run forever. When constructing a consensus protocol for a particular linearizable

object, we observe that the linearizability condition implies that if there exists

an execution in which consensus fails, either because it is inconsistent, invalid,

or it runs forever, then there exists an equivalent sequential execution with the

same property. As a consequence, a consensus protocol is correct if and only if

all its sequential executions are correct. For brevity, protocols are defined

informally by pseudocode; their translations into 1/0 automata should be self-

-evident.

3.1 Atomic Read/Write Registers

In this section we show there exists no two-process consensus protocol using

multireader/multiwriter atomic registers. First, we give some terminology. A

protocol state is bivalent if either decision value is still possible; that is, the

current execution can be extended to yield different decision values. Otherwise

it is univalent. An x-valent state is a univalent state with eventual decision value

x. A decision step is an operation that carries a protocol from a bivalent to a

univalent state.

THEOREM 2. Read/write registers have consensus number 1.

PROOF. Assume there exists a two-process consensus protocol implemented

from atomic read/write registers. We derive a contradiction by constructing an

infinite sequential execution that keeps any such protocol in a bivalent state. If

the processes have different input values, the validity condition implies that the

initial state is bivalent. Consider the following sequential execution, starting

from the initial state. In the first stage, P executes a sequence of operations (i.e.,

alternates matching invocation and response events) until it reaches a state
where the next operation will leave the protocol in a univalent state. P must

eventually reach such a state, since it cannot run forever, and it cannot block. In

ACM Transactionson Programmln~LanguagesandSystems,Vol. 11.No. 1,January1991.
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Fig.3. P reads first,

3

0

P reads Q runs alone

8’
Q decides y

\

Q rum alone

Q decldesz

9

0
F’ writes r Q writes r’

m-valent stat -valent state Fig.4. F’and Q write different registers,

Q writes r’ P writes r

the second stage, Q executes a sequence of operations until it reaches a similar

state, and in successive stages, P and Q alternate sequences of operations until

each is about to make a decision step. Because the protocol cannot run forever,

it must eventually reach a bivalent state s in which any subsequent operation of

either process is a decision step. Suppose P’s operation carries the protocol to an

x-valent state, and Q‘s operation carries the protocol to a y-valent state, where x

and .Y are distinct.

(1) Suppose the decision step for one process, say P, is to read a shared register

(Figure 3). Let s‘ be the protocol state immediately following the read. The

protocol has a history fragment starting from s, consisting entirely of operations

of Q, yielding decision value y. Since the states s ands’ differ only in the internal

state of P, the protocol has the same history fragment starting in s‘, an

impossibility because s‘ is x-valent.

(2) Suppose the processes write to different registers (Figure 4). The state

that results if P’s write is immediately followed by Q‘s is identical to the

state that results if the writes occur in the opposite order, which is impossible,

since one state is x-valent and the other is y-valent.

(3) Suppose the processes write to the same register (Figure 5). Let s‘ be the

x-valent state immediately after P’s write. There exists a history fragment

starting from s‘ consisting entirely of operations of P that yields the decision
value x. Let s” be the y-valent state reached it’ Q‘s write is immediately followed

by P’s. Because P overwrites the value written by Q, s‘ and s” differ only in the

internal states of Q, and therefore the protocol has the same history fragment

starting from s”, an impossibility since s” is y valent. U

Similar results have been shown by Loui and Abu-Amara [21], Chor et al. [6],

and Anderson and Gouda [1]. Our contribution lies in the following corollary:

COROLLARY 1. It is impossible to construct a wait-free implementation of any
object with consensus number greater than 1 using atomic read/write registers.
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5

P

P writes r Q writes r

3’

P runs alon

/

P writes r Fig. 5. P and Q write the same register

P decides z #

P runs alone

P decides y

RMW(r: register, L function) returns(value)

previous := r

Fig. 6. Read-modify-write. r := f(r)

return previous

end RMW

3.2 Read-Modify-Write Operations

Kruskal et al. [15] have observed that many, if’ not all, of the classical

synchronization primitives can be expressed as read-modify-write operations,

defined as follows. Let r be a register, and f a function from values to values. The

operation RMW(r, f ) is informally defined by the procedure shown in Figure 6,

which is executed atomically. If f is the identity, RMW(r, f ) is simply a read

operation. A read-modify-write operation is nontrivial if f is not the identity

function. Examples of well-known nontrivial read-modify-write operations in-

clude test&set, swap, compare&sulap, and fetch&add. Numerous others are given

in Kruskal et al. [15].

THEOREM 3. A register with any nontrivial read-modify-write operation has a

consensus number at least 2.

PROOF. Since f is not the identity, there exists a value u such that v # f (u).

Let P and Q be two processes that share a two-register array prefer, where each

entry is initialized to 1, and a read-modify-write register r, initialized to u.

P executes the protocol shown in Figure 7 (Q’s protocol is symmetric.)

Expressed in terms of the 1/0 automaton model, the read-modify-write register

r is the object X, the prefer array is the set of atomic registers W, and the

pseudocode in Figure 7 defines the front-end automaton for P. The front-end

has three output events: the write and RMW invocations sent to r and prefer,

and the decision value returned to P, Similarly, its input events are P‘s invocation

of decide, and the responses to the write and RMW invocations.

As noted above, because r and prefer are Iinearizable, it suffices to check
correctness for sequential executions. The only operations that do not commute

are the two read-modify-write operations applied to r. The protocol chooses P’s

input if P’s operation occurs first, and Q‘s input otherwise. ❑
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decide(input: value) returns(value]

prefer[P] := input

if RMW(r,f) = v

Fig. 7. Read-modify-write: Two-process consensus. then return prefer[P]

else return prefer[Q]

end if

end decide

COROLLARY 2. It is impossible to construct a wait-free implementation of any

nontrivial read-modify-write operation from a set of atomic read/ u~rite registers in

a system with two or more processes.

Although read-modify-write registers are more powerful than read/write reg-

isters, many common read-modify-write operations are still computationally

weak. In particular, one cannot construct a wait-free solution to three process

consensus using registers that support any combination of read, write, test&set,

swap, and fetch&add operations. Let F be a set of functions indexed by an

arbitrary set S. Define F to be interfering if for all values u and all i and j in S,

either (1) f, and L commute: f,(fi (u)) = ~ (f,(u)), or (2) one function “overwrites”

the other: either f,(fi(u)) = f,(u) or~(f, (u)) = L(u).

THEOREM 4. There is no wait-free solution to three-process consensus using

any combination of read -modi~v-write operations that apply functions from an

interfering set F.

PROOF. By contradiction. Let the three processes be P, Q, and R. As in the

proof of Theorem 2, we construct a sequential execution leaving the protocol in

bivalent state where every operation enabled for P and Q is a decision step, some

operation of P carries the protocol to an x-valent state, and some operation of Q

carries the protocol to a y-valent state, where x and y are distinct. By the usual

commutativity argument, P and Q must operate on the same register; say, P

executes RMW(r, f,) and Q executes RMW(r, L).

Let ~)be the current value of register r. There are two cases to consider. First,

suppose f, (L (u )) = L (f,(u)]. The state s that results if P executes RMW(r, f,) and

Q executes RMW(r, L) is x-valent; thus there exists some history fragment

consisting entirely of operations of R that yields decision value x. Let s‘ be the

state that results if P and Q execute their operations in the reverse order. Since

the register values are identical in s and s‘, the protocol has the same history

fragment starting in s‘, contradicting the hypothesis that s‘ is y-valent.
Second, suppose f, (~(u )) = L(u). The state .s that results if P executes

RMW(r, f, ) and Q executes RMW(r, ~ ) is x-valent; thus there exists some history

fragment consisting entirely of operations of R that yields decision value x.

Let s‘ be the state that results if Q alone executes its operation. Since the regis-

ter values are identical in s and s‘, the protocol has the same history fragment

starting in s‘, contradicting the hypothesis that s‘ is y-valent. ❑

It follows that one cannot use any combination of these classical primitives to

construct a wait-free implementation of any object with consensus number

greater than 2.
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compare& swap(r: register, old: value, new: value)

ret urns(value)

previous := r

if previous = old

then r := new
end if

ret urn previous
end compare&swap

Fig. 8. Compare&Swap.

rlecide(ixrput: value) returns(value)

first := compare& swap(r, 1, input)

if first = bottom
Fig. 9. Compare&Swap: n-process consensus. then return input

else return first
end if

eild decide

Another classical primitive is compare&swap, shown in Figure 8. This primitive

takes two values: old and new. If the register’s current value is equal to old, it is

replaced by new; otherwise is left unchanged. The register’s old value is returned.

THEOREM 5. A compare&swap register has infinite consensus number.

PROOF. In the protocol shown in Figure 9, the processes share a register r

initialized to 1. Each process attempts to replace 1 with its input; the decision

value is established by the process that succeeds.

This protocol is clearly wait-free, since it contains no loops. Consistency follows

from the following observations: (1) r # 1 is a postcondition of compare&swap,

and (2) for any u # 1, the assertion r = v is stable—once it becomes true, it

remains true. Validity follows from the observation that if r # 1, then r contains

8ome process’s input. ❑

COROLLARY 3. It is impossible to construct a wait-free implementation of a

compare&swap register from a set of registers that support any combination of

read, write, test&set, swap, or fetch&add operations in a system of three or more

processes.

3.3 Queues, Stacks, Lists, etc.

Consider a FIFO queue with two operations: enq places an item at the end of the

queue, and deq removes the item from the head of the queue, returning an error

value if the queue is empty.

THEOREM 6. The FIFO queue has consensus number at least 2.

PROOF. Figure 10 shows a two-process consensus protocol. The queue is

initialized by enqueuing the value O followed by the value 1. As above, the

processes share a two-element array prefer. P executes the protocol shown in
Figure 10 (Q’s protocol is symmetric). Each process dequeues an item from the

queue, returning its own preference if it dequeues O, and the other’s preference if

it dequeues 1.
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decide(input: value) returns(value)

prefer[P] := input

ifdeq(q) = O

Fig. 10. FIFO queues: Two-process consensus. then return prefer[P]

else return prefer[Q]

end if

end decide

The protocol is wait-free, since it contains no loops. If each process returns its

own input, then they must both have dequeued O, violating the queue specifica-

tion. If each returns the others’ input, then they must both have dequeued 1, also

violating the queue specification. Let the “winner” be the process that dequeues

O. Validity follows by observing that the winner’s position in prefer is initialized

before the first queue operation. ❑

Trivial variations of this program yield protocols for stacks, priority queues,

lists, sets, or any object with operations that return different results if applied in

different orders.

Co~oI,LA~~ 4. It is impossible to construct a wait-free implementation of a

queue, stack, priority queue, set, or list from a set of atomic reacl/u~rite registers.

Although FIFO queues solve two-process consensus, they cannot solve three-

process consensus.

THEOREM 7. FIFO queues hal~e consensus number 2.

PROOF. By contradiction. Assume we have a consensus protocol for processes

P, Q, and R. As before, we maneuver the protocol to a state where P and Q are

each about to make a decision step. Assume that P’s operation would carry the

protocol to an x-valent state and Q‘s to a y-valent state. The rest is a case

analysis.

First, suppose P and Q both execute deq operations. Lets be the protocol state

if P dequeues and then Q dequeues, and let s‘ be the state if the dequeues occur

in the opposite order. Since s is x-valent, there exists a history fragment from s,

consisting entirely of operations of R, yielding decision value x. But s and s‘

differ only in the internal states of P and Q; thus the protocol has the same

history fragment from s‘, a contradiction because s‘ is y-valent.

Second, suppose P does an enq and Q a deq. If the queue is nonempty, the

contradiction is immediate because the two operations commute: R cannot

observe the order in which they occurred. If the queue is empty, then the y-valent
state reached if Q dequeues and then P enqueues is indistinguishable to R from

the x-valent state reached if P alone enqueues.

Finally, suppose both P and Q do enq operations. Lets be the state at the end

of the following execution:

(1) P and Q enqueue items p and q in that order.

(2) Run P until it dequeues p. (Since the only way to observe the queue’s state

is via the deq operation, P cannot decide before it observes one of p or q.)

(3) Run Q until it dequeues q.
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Let s‘ be the state after the following alternative execution:

(1) Q and P enqueue items q and p in that order.

(2) Run P until it dequeues q.

(3) Run Q until it dequeues p.

Clearly, s is x-valent ands’ is y-valent. Both of P’s executions are identical until

it dequeues p or q. Since P is halted before it can modify any other objects, Q’s

executions are also identical until it dequeues p or q. By a now-familiar argument,

a contradiction arises because s and s‘ are indistinb~ishable to R. ❑

Trivial variations of this argument can be applied to show that many similar

data types, such as sets, stacks, double-ended queues, and priority queues, all

have consensus number 2.

A message-passing architecture (e.g., a hypercube [28] ) is a set of processors

that communicate via shared FIFO queues. Theorem 7 implies that message-

passing architectures cannot solve three-process consensus or implement any

object that can. Dolev et al. [7] give a related result: point-to-point FIFO message

channels cannot solve two-process consensus. That result does not imply Theo-

rem 7, however, because a queue item, unlike a message, is not “addressed” to

any particular process, and hence it can be dequeued by anyone.

3.4 An Augmented Queue

Let us augment the queue with one more operation: peek returns but does not

remove the first item in the queue.

THEOREM 8. The augmented queue has infinite consensus number.

PROOF. In the protocol shown in Figure 11, the queue q is initialized to

empty, and each process enqueues its own input. The decision value is the input

of the process whose enq occurs first.

As usual, the protocol is wait-free, since it contains no loops. Consistency

follows from the following observations: (1) “the queue is nonempty” is a

postcondition of each enq, and hence a precondition for each peek, and (2) for

any v, “U is the first item in the queue” is stable. Validity follows from the

observation that the first item in the queue is some process’s input. ❑

COROI,LAR~ 5. It is impossible to construct a wait-free implementation of the

augmented queue from a set of registers supporting any combination of read, write,

test&set, swap, or fetch&add operations.

COROLLARY 6. It is impossible to construct a wait-free implementation of the

augmented queue from a set of regular queues.

The fetch&cons operation atomically threads an item onto the front of a linked
list. By an argument virtually identical to the one given for Theorem 8, a linked

list with fetch&cons has infinite consensus number.
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Fig. 11. Augmented FIFO queue: n-process consensls.

decide(input: value) returns(value)

enq(q, input)

return peek(q)

end decide

3.5 Memory-to-Memory Operations

Consider a collection of atomic read/write registers having one additional oper-

ation: moue atomically copies the value of one register to another.s We use the

expression “a - b” to move the contents of b to a.

THEOREM 9. An array of registers with move has infinite consensus number.

PROOF. An n-process consensus protocol appears in Figure 12. The processes

share two arrays: prefer[l . . n ] and r[l . . n, 1 . . ~], where r [P, 1] is initialized

to 1 and r [P, 2] to O, for 1< P s n. The protocol is clearly wait-free, since all

loops are bounded.

To show consistency, we use the following assertions:

,Y(P) = r[P, lj = O A r[P, 2] = O

C’(P) = r[P, 2] = 1
Y’(P) = ,>(P) v &(P)

It is easily checked that Y(P), L(P), and Y’(P) are stable for each P, that Y(P)

and @(P) are mutually exclusive, that >’(P) is true after P executes statement

2, and that J’(i) is true after each execution of statement 4. We say that a process

P has stabilized if j“’(P) holds.

We claim that if >(P) holds for some P, then @(Q) holds for some Q <P, and

that every process between Q and P has stablized. Let P be the least process for

which M)(P) holds. Since r[F’, 1] and r [P, 2] are both O, some Q < P must have

assigned O to r[P, 1] (statement 4) before P executed statement 2. Q, however,

executes statement 2 before statement 4; hence .> ‘(Q) holds. Since Y(Q) is false

by hypothesis, &(Q) must hold. Moreover, if Q has assigned to r[p, 11, then it
has assigned to every r [P’, 1]for Q < P‘ < P; thus each such P‘ has stabilized.

Define the termination assertion as follows:

7(P) = P(P) A (VQ > P)@(Q).

Y– is stable and it holds for at most one process. When P finishes the first loop

(statements 3-5), every process greater than or equal to P has stablized. If any

of them satisfies ti-, we are done. Otherwise, there exists a largest Q < P satisfying
c’(Q), and all the processes between P and Q have stabilized, implying that Y(Q )

holds. When P’s protocol terminates, it chooses the input of the unique Q

satisfying Y-(Q). Since the termination assertion is stable, all processes agree.

Validity follows because prefer [P] must be initialized before 3(P) can become

true. ❑

3 Memory-to-memory rnoLe should not be confused with assignment; the former copies values between

two pubhc registers, while the latter copies value between public and private registers.
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decide(input: value) returns(value]
prefer[P] := input
r[P,2] 4- r[P,l]
for i in P+l . n do

r[i, 1] := 0
end for

foriinn.. ldo
ifr[i,2] = 1

then return prefer[i]
end if

end for
end decide

1
2

3

4

5

6

7’

8

9

10

Fig. 12. Memory-to-memory move: n-process consensus.

TEHZORmW 10. An array of registers with memory -to-meory swap4 has infinite

consensus number.

PROOF. The protocol is shown in Figure 13. The processes share an array of

registers a [1 . . n ] whose elements are initialized to O and a single register r,

initialized to 1. The first process to swap 1 into a wins. The protocol is wait-free

because the loop is bounded. To show consistency, consider the following asser-

tions where “ 3 !P” means “there exists a unique P.”

r = 1 V (3! P)a[P] = 1, r=O.

The first assertion is invariant, and the second is stable and becomes true after

the first swap. It follows that each process observes a unique, stable P such that

a[P] = 1.

Validity follows because each process initializes its position in prefer before

executing a swap. •l

COROLLARY 7. It is impossible to construct a wait-free implementation of

memory-to-memory move or swap from a set of registers that support any combi-

nation of read, write, test&set, swap, or fetch&add operations.

COROLLARY 8. It is impossible to construct a wait-free

memory-to-memory move or swap from a set of FIFO queues.

3.6 Multlple Assignment

The expression

rl, . . ..r~. =ul, u~. ,u~

atomically assigns each value v, to each register r,.

implementation of

THEOREM 11. Atomic m-register assignment has consensus number at least m.

4 The memory-to-memory swap should not be confused with the read-modify-write SUJaAD; the former

exchanges the values of two public registers, while the latter exchanges the value of a public register

with a processor’s private register.
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Fig. 13. Memory-to-memory swap: n-process consensus.

decide(input: value) returns(value)

prefer[P j := input

swap(a[P],r)

for Qinl.. ndo

if a[Q] = 1

then return prefer[Q]

end if

end for
end decide

PROOF. The protocol uses m “single-writer” registers rl, . . . . r~, where P,
writes to registerr,,and m (m — 1)/2 “rnultiwriter” registers r,,, where i > ,j, where

Pl and P, both write to register r,,. All registers are initialized to 1. Each process

atomically assigns its input value to m registers: its single-writer register and its

m – 1 multiwriter registers. The decision value of the protocol is the first value

to be assigned.

After assigning to its registers, a process determines the relative ordering of

the assignments for two processes P, and P, as follows:

(1) Read r,,. If the value is 1, then neither assignment has occurred.

(2) Otherwise, read r, and r,. If r’s value is 1, then P, precedes P,, and similarly

for r,.

(3) If neither r, nor r, is 1, reread r,,. If its value is equal to the value read from

r,, then P] precedes P,, else vice-versa.

By repeating this procedure, a process can determine the value written by the

earliest assignment. ❑

This result can be improved.

THEOREM 12. Atomic m-register assignment has consensus number at least

2m – 2.

PROOF. Consider the following two-phase protocol. Each process has two

single-writer registers, one for each phase, and each pair of processes share a
register. Divide the processes into two predef’ined groups of m – 1.In the first

phase, each group achieves consensus within itself using the protocol from

Theorem 11. In the second phase, each process atomically assigns its group’s

value to its phase-two single-writer register and the m – 1 multiwriter registers

shared with processes in the other group. Using the ordering procedures described

above, the process constructs a directed graph G with the property that there is
an edge from PI to F’h if PI and Pk are in different groups and the former’s

assignment precedes the latter’s. It then locates a source process having at least

one outgoing edge but no incoming edges, and returns that process’s value. At

least one process have performed an assignment; thus G has edges. Let Q be the

process whose assignment is first in the linearization order. Q is a source, and it

has an outgoing edge to every process in the other group; thus no process in the

other group is also a source. Therefore, all source processes belong to the same

group. ❑

This algorithm is optimal with respect to the number of processes,
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THEOREM 13. Atomic m-register assignment has consensus number exactly

2m – 2.

PROOF. We show that atomic m-register assignment cannot solve 2m – 1

process consensus for m >1. By the usual construction, we can maneuver the

protocol into a bivalent state s in which any subsequent operation executed by

any process is a decision step. We refer to the decision value forced by each

process as its default.

We first show that each process must have a “single-writer” register that it

alone writes to. Suppose not. Let P and Q be processes with distinct defaults x

and y. Lets’ be the state reached froms if P performs its assignment, Q performs

its assignment, and the other processes perform theirs. Because P went first, s‘

is x-valent. By hypothesis, every register written by P has been overwritten by

another process. Let s” be the state reached from s if P halts without writing,

but all other processes execute in the same order. Because Q wrote first, s” is

y-valent. There exists a history fragment from s‘, consisting entirely of opera-

tions of Q, with decision value x. Because the values of the registers are identical

ins’ ands”, the protocol has the same history fragment froms”, a contradiction

because s“ is y-valent.

We next show that if P and Q have distinct default values, then there must be

some register written only by those two processes. Suppose not. Let s‘ be the

state reached froms if P performs its assignment and Q performs its assignment,

followed by all other processes’ assignments. Let s” be the state reached by the

same sequence of operations, except that P and Q execute their assignments in

the reverse order. Because s‘ is x-valent, there exists a history fragment from s‘

consisting of operations of P with decision value x. But because every register

written by both P and Q has been overwritten by some other process, the register

values are the same in both s and s‘; hence the protocol has the same history

fragment from s”, a contradiction.

It follows that if P has default value x, and there are k processes with different

default values, then P must assign to k + 1 registers. If there are 2m – 1 processes

which do not all have the same default, then some process must disagree with at

least m other processes, and that process must assign to m + 1 registers. ❑

The last theorem shows that consensus is irreducible in the following sense: it

is impossible to achieve consensus among 2n processes by combining protocols

that achieve consensus among at most 2m < 2n processes. If it were possible,

one could implement each individual 2m-process protocol using m – l-register

assignment, yielding a 2n-process consensus protocol, contradicting Theorem 13.

3.7 Remarks

Fischer et al. [9] have shown that there exists no two-process consensus protocol

using message channels that permit messages to be delayed and reordered. That

result does not imply Theorem 2, however, because atomic read/write registers

lack certain commutativity properties of asynchronous message buffers. (In
particular, [9, Lemma 1] does not hold.)

Dolev et al. [7] give a thorough analysis of the circumstances under which

consensus can be achieved by message-passing. They consider the effects of
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32 combinations of parameters: synchronous versus asynchronous processors,

synchronous versus asynchronous communication, FIFO versus non-FIFO mes-

sage delivery, broadcast versus point-to-point transmission, and whether send

and receiue are distinct primitives. Expressed in their terminology, our model

has asynchronous processes, synchronous communication, and distinct send and

receiue primitives. We model send and receiue as operations on a shared message

channel object; whether delivery is FIFO and whether broadcast is supported

depends on the type of the channel. Some of their results translate directly into

our model: it is impossible to achieve two-process consensus by communicating

through a shared channel that supports either broadcast with unordered delivery,

or point-to-point transmission with FIFO delivery. Broadcast with ordered deliv-

ery, however, does solve n-process consensus.

A safe read/write register [18] is one that behaves like an atomic read/write

register as long as operations do not overlap. If a read overlaps a write, however,

no guarantees are made about the value read. Since atomic registers implement

safe registers, safe registers cannot solve two-process consensus, and hence the

impossibility results we derive for atomic registers apply equally to safe registers.

Similar remarks apply to atomic registers that restrict the number of readers or

writers.

Loui and Abu-Amara [21] give a number of constructions and impossibility

results for consensus protocols using shared read-modify-write registers, which

they call “test&set” registers. Among other results, they show that n-process

consensus for n > 2 cannot be solved by read-modify-write operations on

single-bit registers.

Lamport [19] gives a queue implementation that permits one enqueuing process

to execute concurrently with one dequeueing process. With minor changes, this

implementation can be transformed into a wait-free implementation using atomic

read/write registers. Theorem 2 implies that Lamport’s queue cannot be extended

to permit concurrent deq operations without augmenting the read and write

operations with more powerful primitives.

A concurrent object implementation is nonblocking if it guarantees that some

process will complete an operation in a finite number of steps, regardless of the
relative execution speeds of the processes. The nonblocking condition guarantees

that the system as a whole will make progress despite individual halting failures

or delays. A wait-free implementation is necessarily nonblocking, but not vice-

versa, since a nonblocking implementation may permit individual processes to

starve. The impossibility and universality results presented in this paper hold

for nonblocking implementations as well as wait-free implementations.
Elsewhere [14], we give a nonblocking implementation of a FIFO queue, using

read, fetch&add, and swap operations, which permits an arbitrary number of

concurrent enq and deq operations. Corollary 5 implies that this queue imple-

mentation cannot be extended to support a nonblocking peek operation without

introducing more powerful primitives.

4. UNIVERSALITY RESULTS

An object is universal if it implements any other object. In this section, we show

that any object with consensus number n is universal in a system of n (or fewer)
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processes. The basic idea is the following: we represent the object as a linked list,

where the sequence of cells represents the sequence of operations applied to the

object (and hence the object’s sequence of states). A process executes an operation

by threading a new cell on to the end of the list. When the cell becomes sufficiently

old, it is reclaimed and reused. Our construction requires O (n3) memory cells to

represent the object, and O (nq) worst case time to execute each operation. We

assume cells can hold integers of unbounded size. Our presentation is intended

to emphasize simplicity, and omits many obvious optimizations.

Let INVOC be the object’s domain of invocations, RESULT its domain of results,

and STATE its domain of states. An object’s behavior may be specified by the

following relation:

apply C INVOC X STATE X STATE X RESULT.

This specification means that applying operation p in state s leaves the object in

a state s‘ and returns result value r, where (p, s, s‘, r ) ~ apply. Apply is a

relation (rather than a function) because the operation may be nondeterministic.

For brevity, we use the notation apply (p, s) to denote an arbitrary pair (s’, r)

such that (p, s, s‘, r’) E apply.

4.1 The Algorithm

An object is represented by a doubly linked list of cells having the following

fields:

(1) Seq is the cell’s sequence number in the list. This field is zero if the cell is

initialized but not yet threaded onto the list, and otherwise it is positive.

Sequence numbers for successive cells in the list increase by one.

(2) Inu is the invocation (operation name and argument values).

(3) New is a consensus object whose value is the pair ( new.state, new.result ).

The first component is the object’s state following the operation, and the

second is the operation’s result value, if any.

(4) Before is a pointer to the previous cell in the list. This field is used only for

free storage management.

(5) After is a consensus object whose value is a pointer to the next cell in the

list.

If c and d are cells, the function max(c, d) returns the cell with the higher

sequence number.

Initially, the object is represented by a unique anchor cell with sequence

number 1, holding a creation operation and an initial state.

The processes share the following data structures:

(1) Announce is an n-element array whose Pth element is a pointer to the cell P

is currently trying to thread onto the list. Initially all elements point to the

anchor cell.

(2) Head is an n-element array whose Pth element is a pointer to the last cell in
the list that P has observed. Initially all elements point to the anchor cell.
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Let max(l-zead) be max(head[l].seq, . . . . head[rz].seq), arzd let “c=heczd’’denote

the assertion that a pointer to cell c has been assigned to head [Q], for some Q.

We use the following auxiliary variables:

(1) corLcur(P) is the set of cells whose addresses have been stored in the head

array since P’s last announcement;

(2) start(P) is the the value of max(head ) at P’s last announcement. Notice that

I corzcur(P) I + start(P) = max(head). (1)

Auxiliary variables do not affect the protocol’s control flow; they are present

only to facilitate proofs.

The protocol for process P is shown in Fia~re 14. In this figure, “v: T := e“

declares and initializes variable u of type T to a value e, and the type “*cell”

means “pointer to cell. ” Sequences of statements enclosed in angle brackets are

executed atomically. In each of these compound statements, only the first affects

shared data or control flow; the remainder are “bookkeeping operations” that

update auxiliary variables. For readability, auxiliary variables are shown in italics.

Informally, the protocol works as follows. P allocates and initializes a cell

to represent the operation (statement 1). It stores a pointer to the cell in

announce [P] (statement 2), ensuring that if P itself does not succeed in threading

its cell onto the list, some other process wall. To locate a cell near the end of the

list, P scans the head array, setting head [P] to the cell with the maximal sequence

number (statement 3). P then enters the main loop of the protocol (statement

4), which it executes until its own cell has been threaded onto the list (detected

when its sequence number becomes nonzero). P chooses a process to “help”

(statement 6), and checks whether that process has an unthreaded cell (statement

7). If so, then P will try to thread it; otherwise it tries to thread its own cell. (If

this helping step were omitted, the protocol would be nonblocking rather than

wait -free. ) P tries to set head [P].after to point to the cell it is trying to thread

(statement 8). The after field must be a consensus cell to ensure that only one
process succeeds in setting it. Whether or not P succeeds, it then initializes the

remaining fields of the next cell in the list. Because the operation may be

nondeterministic, different processes may try to set the new field to different

values, so this field must be a consensus object (statement 9). The values of the

other fields are computed deterministically, so they can simply be written as

atomic registers (statements 10 and 11). For brevity, we say that a process threads

a cell in statement 7 if the decide operation alters the value of the after field, and

it announces a cell at statement 2 when it stores the cell’s address in announce.

LEMMA 1. The following assertion is invariant:

I concur(P) I > n - announce (P) E head.

PROOF. If I concur(P) I > n, then concur(P) includes successive cells q

and r with respective sequence numbers equal to P – 1 mod n and P mod n,

threaded by processes Q and R. Because q is in concur(P), Q threads q after

P’s announcement. Because R cannot modify an unthreaded cell, R reads
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Universal(what: lNVOC)retUrnS(RESULT)
mine: cell := [seq: 0,

inv: what,
new: create(con9ensus_0bject),
before: create(consensus.object)
after: null]

(announce[P] := mine; dart(P) := max(head))
for each processQ do

head[P] := max(head[P], head[Q])
end for

while announce[P].seq = Odo
c: *cell := head[P]
help: “cell := announce[(c.seqmod n) + I]
if help ,seq= O

then prefer := help
eke prefer := armounce[P]

end if

d := decide(c.after, prefer)

decide(d.new, apply (d.inv, c.new.state))

d. before := c

d.seq := c.seq + 1

(head[P] := d; (VQ) corIcur(Q) := concur(Q) U {d})

end while
(head[P] := announce[P]; (VQ) mncur(Q) := concur(Q) U {d})

return (annormce[P].new.re9ult)
end universal

Fig. 14. A universal construction.

announce [P] (statement 5) after Q threads q. It follows

2

3

4

5

6

7

8

9

10
11
12

13

14

that R reads

announce [P] after P’s announcement, and therefore either announce [P] is al-

ready threaded, or r is p. ❑

Lemma 1 places a bound on the number of cells that can be threaded while an

operation is in progress. We now give a sequence of lemmas showing that when

P finishes scanning the head array, either announce [P] is threaded, or head [P]

lies within n + 1 cells of the end of the list.

LEMMA 2. The following assertion is invariant:

max(head ) = start(P).

PROOF. The sequence number for each head[Q ] is nondecreasing. ❑

LEMMA 3. The following is a loop invariant for statement 3:

max(head[P], head[Q], . . . . head[n]) > start(P).

where Q is the loop index.

PROOF. When Q is 1, the assertion is implied by Lemma 2. The truth
of the assertion is preserved at each iteration, when head [E’] is replaced by

max(head[P], head[Q]). El
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LEMMA~. The folloluing assertion holds just before staternent4:

head [P].seg > start(P).

PROOF. After theloop atstatement 3,max(head[P], head[Q], . . ..head[n])

is just head [P].seq, and the result follows from Lemma 3. ❑

LEMMA 5. The follotoing is invariant:

I concur(P) I z head[P].seq – start(P) ~ O.

PROOF. The lower bound follows from Lemma 4, and the upper bound follows

from (l). ❑

THEOREM 14. The protocol in Figure 14 is correct and bounded wait-free.

PROOF. Linearizability is immediate, since the order in which cells are

threaded is clearly compatible with the natural partial order of the corresponding

operations.

The protocol is bounded wait-free because P can execute the main loop no

more than n + 1 times. At each iteration, head [F’].seq increases by one. After

n + 1 iterations, Lemma 5 implies that

I concur(P) I ~ head[P].seq – start(P) s n.

Lemma 1 implies that announce [P] must be threaded. ❑

4.2 Memory Management

In this section we discuss how cells are allocated and reclaimed. To reclaim

a cell, we assume each consensus object provides a reset operation that restores

the object to a state where it can be reused for a new round of consensus.

Our construction resets a consensus object only when there are no concurrent

operations in progress.

The basic idea is the following: a process executing an operation will traverse

no more than n + 1 cells before its cell is threaded (Theorem 14). Conversely,

each cell will be traversed no more than n + 1 times. When a process is finished

threading its cell, it releases each of the n + 1 preceding cells by setting a bit.

When a cell has been released n + 1 times, it is safe to recycle it. Each cell holds

an additional field, an array released of n + 1 bits, initially all false. When a

process completes an operation, it scans the n -t 1 earlier cells, setting released[i]

to true in the cell at distance i.

Each process maintains a private pool of cells. When a process needs to allocate

a new cell, it scans its pool, and reinitializes the first cell whose released bits are
all true. We assume here that each object has its own pool; in particular, the

cell’s new sequence number exceeds its old sequence number. While a process P

is allocating a new cell, the list representing an object includes at most n – 1

incomplete operations, and each such cell can inhibit the reclamation of at most

n + 1 cells. To ensure that P will find a free cell, it needs a pool of at least nz

cells. Note that locating a free cell requires at worst O (n’) read operations, since

the process may have to scan ng cells, and each cell requires reading n + 1 bits.

If an atomic fetch&add operation is available, then a counter can be used instead

of the released bits, and a free cell can be located in O (nz) read operations.
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The proof of Lemma 1 remains unchanged. For Lemma 2, we observe that a

cell can be reclaimed only if it is followed in the list by at least n + 1 other cells;

hence reclaiming a cell cannot affect the value of max(heczd). The statement of

Lemma 4 needs to be strengthened

LEMMA 6. The following assertion holds just before statement 4:

announce [P] E head V head [P].seq z start(P).

PROOF. When P announces its cell, there is some process Q such that

head [Q] has sequence number greater than or equal to start(P). This cell can

be reclaimed only if n + 1 other cells are threaded in front of it, implying that

I concur(P) I 2 n + 1,and hence that announce [P] G head (Lemma 1). •l

The proof of Theorem 14 proceeds as before. There is one last detail to check:

whether P’s cell has not been threaded by the time it finishes scanning head;

then we claim that none of the cells it traverses will be reclaimed while the

operation is in progress. Lemma 1 states that the list cannot have grown by more

than n cells since P’s announcement; thus every cell reachable from head [P] lies

within n + 1 cells of the end of the list, or of announce [P] if it is threaded. In

either case, those cells cannot be reclaimed while P’s operation is in progress,

since they must have at least one released bit unset.

4.3 Remarks

The first universal construction [13] used unbounded memory. Plotkin [27]

describes a universal construction employing “sticky-byte” registers, a kind of

write-once memory. In Plotkin’s construction, cells are allocated from a common

pool and reclaimed in a way similar to ours. The author [12] describes a universal

construction using compare&swap that is currently being implemented on a

multiprocessor.

A randomized wait-free implementation of a concurrent object is one that

guarantees that any process can complete any operation in a finite expected

number of steps. Elsewhere [2], we give a randomized consensus protocol using

atomic registers whose expected running time is polynomial in the number of

processes. This protocol has several important implications. If the wait-free

guarantee is allowed to be probabilistic in nature, then the hierarchy shown in

Figure 1 collapses because atomic registers become universal. Moreover, combin-

ing the randomized consensus protocol with our universal construction yields a

polynomial-time randomized universal construction. Bar-Noy and Dolev [3] have

adapted our randomized consensus protocol to a message-passing model; that

protocol can be used to manage randomized wait-free replicated data objects.

5. CONCLUSIONS

Wait-free synchronization represents a qualitative break with the traditional

locking-based techniques for implementing concurrent objects. We have tried to

suggest here that the resulting theory has a rich structure, yielding a number of
unexpected results with consequences for algorithm design, multiprocessor ar-

chitectures, and real-time systems. Nevertheless, many interesting problems
remain unsolved. Little is known about lower bounds for universal constructions,
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both in terms of time (rounds of consensus) and space (number of cells). The

implements relation may have additional structure not shown in the impossibility

hierarchy of Figure 1. For example, can atomic registers implement any object

with consensus number 1 in a system of two or more processes? Can fetch&add

implement any object with consensus number 2 in a system of three or more

processes? Does the implements relation have a different structure for bounded

wait-free, wait-free, or nonblocking synchronization? Finally, little is known

about practical implementation techniques.
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