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The distributed V kernel is a message-oriented kernel that 

provides uniform local and network interprocess communication. 

It is primarily being used in an environment of diskless 

workstations connected by a high-speed local network to a set of 

file servers. We describe a performance evaluation of the kernel, 
with particular emphasis on the cost of network file access. Our 

results show that over a local network: 

1. Diskless workstations can access remote files with minimal 

performance penalty. 

2. The V message facility can be used to access remote files at 

comparable cost to any well-tuned specialized file access 
protocol. 

We conclude that it is feasible to build a distributed system with 

all network communication using the V message facility even 

when most of the network nodes have no secondary storage. 

1. I n t r o d u c t i o n  
The distributed V kernel is a message-oriented kernel that 

provides uniform local and network interproccss communication. 

The kernel interface is modeled after the Thoth [3, 5] and 

Verex [4, 5] kernels with some modifications to facilitate efficient 

local network operation. It is in active use at Stanford and at 

other research and commercial establishments. The system is 

implemented on a collection of MC68000-based SUN 

workstations [2] interconnected by a 3 Mb Ethernet [9] or 10 Mb 
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Ethernet [7] .  Network interprocess communication is 

predominantly used for remote file access since most SUN 

workstations at Stanford are configured without a local disk. 

This paper reports our experience with the implementation and 

use of the V kernel. Of particular interest are the controversial 
aspects of our approach, namely: 

1. The use of diskless workstations with all secondary storage 

provided by backend file servers. 

2. The use of a general purpose network interprocess 

communication facility (as opposed to special-purpose file 

access protocols) and, in particular, the use of a Thoth-like 

interprocess communication mechanism. 

The more conventional approach is to configure workstations 

with a small local disk, using network-based file servers for 

archival storage. Diskless workstations, however, have a number 

of advantages, including: 

1. Lower hardware cost per workstation. 

2. Simpler maintenance and economies of scale with shared 

file servers. 

3. Little or no memory or processing overhead on the 
workstation for file system and disk handling. 

4. Fewer problems with replication, consistency and 

distribution of files. 

The major disadvantage is the overhead of performing all file 

access over the network. One might therefore expect that we u s e  

a carefully tuned specialized file-access protocol integrated into 

the transport protocol layer, as done in LOCUS [11]: Instead, o u r  

file access is, built on top of a general-purpose interprocess 

communication (IPC) facility that serves as the transport layer. 

While this approach has the advantage of supporting a variety of 
different types of network communication, its generality has the 

potential of introducing a significant performance penalty over 

the "problem-oriented" approach used in LOCUS. 

Furthermore, because sequential file access is so common, it is 

conventional to use streaming protocols to minimize the effect of 

network latency on performance. Instead, we adopted a 
synchronous "request-response" model of message-passing and 

data transfer which, while simple and efficient to implement as 



well as relatively easy to use, does not support application-level 

use of streaming. 

These potential problems prompted a performance evaluation of 

our methods, with particular emphasis on the efficiency of file 

access. ]'his emphasis on file access distinguishes our work from 

similar studies [10, 13]. The results of our study strongly support 

the idea of building a distributed system using diskless 

workstations connected by a high-speed local network to one or 

more file servers. Furthermore, we show that remote file access 

using the V kernel IPC facility is only slightly more expensive 

than a lower bound imposed by the basic cost of network 

communication. From this we conclude that relatively little 

improvement in performance can be achieved using protocols 

further specialized to file access. 

2. V Kernel Interprocess Communication 
The basic model pm~4ded by the V kernel is that of many small 

processes communicating by messages. A process is identified by 

a 32-bit globally unique process identifier or pit  Communication 

between processes is provided in the form of short fixed-length 

messages, each with an associated reply message, plus a data 

transfer operation for moving larger amounts of data between 

processes. In particular, all messages are a fixed 32 bytes in 
length. 

The common communication scenario is as follows: A client 

process executes a Send to a server process which then completes 

execution of a Receive to receive the message and eventually 

executes a Reply to respond with a reply message back to the 

client. We refer to this sequence as a message exchange. The 

receiver may execute one or more MoveTo or MoveFrom data 
transfer operations between the time the message is received and 
the time the reply message is sent. 

The following sections describe the primitives relevant to this 

paper. The interested reader is referred to the V kernel 

manual [6] for a complete description of the kernel facilities. 

2.1 .  Primitives 
Send( message, pid ) 

Send the 32-byte message specified by message to the 
process specified by pid The sender blocks until the 
receiver has received the message and has sent back a 
32-byte reply using Reply. The reply message 
overwrites the original message area. 

Using the kernel message format conventions, a 
process specifies in the message the segment of its 
address space that the message recipient may access 
and whether the recipient may read or write that 
segment. A segment is specified by the last two words 
of a message, giving its start address and its length 
respectively. Reserved flag bits at the beginning of the 
message indicate whether a segment is specified and if 
so. its access permissions. 

pid = Receive( message ) 
Block the invoking process, if necessary, to receive a 
32-byte message in its message vector. Messages are 
queued in first-come-first-served (FCI:S) order until 

received. 
( pid, count ) = ReceiveWithSegment( message, segptr, segsize ) 

Block the invoking process to receive a message as with 
Receive except, if a segment is specified in the message 
with read access, up to the first segsize bytes of the 
segment may be transferred to the array starting at 
segptr, with count specifying the actual number of 
bytes received. 

Reply( message, pid ) 
Send a 32-byte reply contained in the message buffer 
to the specified process providing it is awaiting a reply 
from the replier. The sending process is readied upon 
receiving the reply; the replying process does not 
block. 

ReplyWithSegment( message, pid. destptr, segptr, segsize ) 
Send a reply message as done by Reply but also 
transmit the short segment specified by segptr and 
segsize to destptr in the destination process' address 
space. 

MoveFrom( srcpid, desk sre, count ) 
Copy count bytes from the segment starting at src in 
the address space of srcpid to the segment starting at 
dest in the active process's space. The srcpid must be 
awaiting reply from the active process and must have 
provided read access to the segment of memory in its 
address space using the message conventions described 
under SentL 

MoveTo( destpid, desk src, count ) 
Copy count bytes from the segment starting at src in 
the active process's space to the segment starting at dest 
in the address space of the destpid process. The destpid 
must be awaiting reply from the active process and 
must have provided write access to the segment of 
memory in its address space using the message 
conventions described under Sen~L 

SetPid( Iogicalid. pid, scope ) 
Associate pid with the specified logicalid in the 
specified scope, which is one of local, remote or both. 
Example logicalid's are fileserver, nameserver, etc. 

pid -- GetPid( logicalid, scope ) 
Return the process identifier associated with logicalid 
in the specified scope if any, else O. 

2.2.  Discussion 
The V kerners interproeess communication is modeled after that 

of the Thoth and Verex kernels, which have been used in multi- 
user systems and real-time applications for several years. An 

extensive discussion of this design and its motivations is 
available [5], although mainly in the scope Of a single machine 

system. We summarize here the highlights ofthe discussion. 

1. Synchronous request-response message communication 

makes programming easy because of the similarity to 

procedure calls. 

2. The distinction between small messages and a separate data 

transfer facility ties in well with a frequently observed usage 

pattern: A vast amount of interprocess communication is 

transfer of small amounts of control information (e.g. device 

completion) while occasionally there is bulk data transfer 

(e.g. program lo~ding). 

3. Finally, synchronous communication and small, fixed-size 

messages reduce queuing and buffering problems in the 

kernel. In particular, only small, fixed-size message buffers 

130 



must be allocated in the kernel and large amounts of data 

are transferred directly between users' address spaces 

without extra copies. Moreover, by virtue of the synchrony 

of the communication, the kernel's message buffers can be 

statically allocated. As exemplified in Thoth, these factors 

make for a small, efficient kernel. 

The V message primitives appear ill-suited in several ways for a 

network environment, at least on first observation. The short, 

fixed-length messages appear to make inefficient use of large 

packet sizes typically available on local networks. The 

synchronous nature of the message sending would seem to 

interfere with the true parallelism possible between separate 

workstations. And the economies of message buffering afforded 

by these restrictions in a single machine implementation are less 

evident in a distributed environment. Finally, the separate data 

transfer operations MoveTo and MoveFrom appear only to 

increase the number of remote data transfer operations that must 

be implemented in the distributed ease. 

However, our experience has been that the V message primitives 

are easily and efficiently implemented over a local network. 

Moreover, we have found that the semantics of the primitives 

facilitated an efficient distributed implementation. The only 

major departure from Thoth was the explicit specification of 

segments in messages and the addition of the primitives 

ReceivettqthSegment and ReplyWithSegment. This extension 

was done for efficient page-level file access although it has proven 

useful under more general circumstances, e.g. in passing character 

string names to name servers. 

3. Implementat ion Issues 
A foremost concern in the implementation of the kernel has been 

efficiency. Before describing some of the implementation details 

of the individual primitives, we list several aspects of the 

implementation that are central to the efficient operation of the 
kernel. 

1. Remo[e operations are implemented directly in the kernel 

instead of through a process-level network server. When 

the kernel recogriizes a request directed to a remote process, 

it immediately writes an appropriate packet on the network. 

The alternative approach whereby the kernel relays a 

remote request to a network server who then proceeds to 

write the packet out on the network incurs a heavy penalty 

in extra copying and process switching. (We measured a 

factor of four increase in the remote message exchange 

time.) 

2. lnterkernel packets use the "raw" Ethernet data link level. 

The overhead of layered protocol implementation has been 

described many times [10]. An alternative implementation 

u~ing internet (IP) headers showed a 20 percent increase in 

the basic message exchange time, even without computing 

the IP header checksum and with only the simplest routing 

in the kernel. While we recognize the tradeoff between 

internct functionality and local net performance, we have 

chosen not to burden the dominant (local net) operation 

with any more overhead than is strictly .necessary. 

1The  synchronous request-response nature of a reply 

associated with each message is exploited to build reliable 
message transmission directly on an unreliable datagram 

service, i.e. without using an extra layer (and extra packets) 

to implement reliable transport. The reply message serves 

as an acknowledgement as well as carrying the reply 

message data. 

4. The mapping from process id to process location is aided by 

encoding a host specification in the process identifier. The 

kernel can thus determine quickly whether a process is 

either local or remote, and in the latter case on which 

machine it resides. 

5. There are no per-packet acknowledgements for large data 

transfers (as in' MoveTo and in MoveFrora). There is only a 

single acknowledgement when the transfer is complete. 

6. File page-level transfers require the minimal number of 

packets (i.e. two~ because of the ability to append short 
segments to messages using ReceiveWitltSegment and 
Reply WithSegment. 

The following sections look at particular aspects of the 

implementation in greater detail. 

3.1. Process Naming 
V uses a global (fiat) naming space for specifying processes, in 
contrast to the local port naming used in DEMOS [1] and 

Accent [12]. Process identifiers are unique within the context of a 

local network. On the SUN workstation, it is natural for the V 

kernel to use 32-bit~process identifies. The high-order 16 bits of 

the process identifier serve as a logical host identifier subfield 
while the low-order 16 bits are used as a locally unique identifier. 

In the current 3 Mb Ethernet implementation, the top 8 bits of 

the logical host identifier are the physical network address of the 

workstation, making the process identifier to network address 

mapping trivial. In the 10 Mb implementation, a table maps 

logical hosts to network addresses. When there is no table entry 

for the specified logical host, the message is broadcast. New 

"logical host-to-network address" correspondences can be 

discovered from messages received. However, each node must at 

least know or discover its own logical host identifier during kernel 
initialization. 

The use of an explicit host field in the process identifier allows 

distributed generation of unique process identifiers between 

machines and allows an efficient mapping from process id to 

network address. In particular, it is very efficient to determine 

whether a process is local or remote. This "Mc.ality" test on 

process identifiers serves as the primary invocation mechanism 

from the local kernel software into the network IPC portion. In 

general, most V kernel operations differ from their Thoth 

implementation by a call to a "non-local" handler when one of 
the "process identifier parameters fails to validate as a local 
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process. With the exception of GetPid, kernel operations with no 

process identifier parameters ar~ implicitly local to the 

workstation. 

GetPid uses network broadcast to determine the mapping of a 

logical process identifier to real process identifier if the mapping 

is not known to the local kernel. Any kernel knowing the 

mapping can respond to the broadcast request. The addition of 

local and remote scopes was required to discriminate between 

server processes that serve only a single workstation and those 

that serve the network. 

3.2. Remote Message ImPlementation 
When a process identifier is specified to Send with a logical host 

identifier different from that of the local machine, the local pid 

validation test fails and Send calls NonLocalSend which handles 

transmission of the message over the network. 

The NonLocalSend routine writes a interkernel packet on the 

network addressed to the host machine of this process or else 

broadcasts the packet if the host machine is not known. When 

the host containing the recipient process receives the packet, it 

creates an alien process descriptor to represent the remote 

sending process using a standard kernel process descriptor t and 

saves the message in the message buffer field of the alien process 

descriptor. When the receiving process replies to the message, the 

reply is transmitted back to the sender as well as being saved for a 

period of time in the alien descriptor. If the sender does not 

receive a reply within the timeout period T, the original message 

is retransmitted by the sender's kernel. The receiving kernel 

filters out retransmissions of received messages by comparing the 

message sequence number and source process with those 

represented by the aliens. The kernel responds to a retransmitted 

message by discarding the message and either retransmitting the 

reply message or else sending back a "reply-pending" packet to 

the sending kernel if the reply has not yet been generated. It also 

sends back a reply-pending packet if it is forced to discard a new 

message because no (alien) process descriptors are available. The 

sending kernel concludes the receiving process does not exist (and 

thus the Send has failed) if it receives a negative 

acknowledgement packet or it retransmits N times without 

receiving either a reply message or a reply-pending packet 

This description supports the claim made above that reliable 

message transmission is built immediately on top of an unreliable 

datagram protocol with the minimal number of network packets 

in the normal case. 

3.3. Remote Data Transfer 
MoveTo and MoveFrom provide a means of transferring a large 

amount of data between remote processes with a minimal time 
increase over the time for transferring the same amount of data in 

raw network datagrams. MoveTo transmits the data to be moved 

in a sequence of maximally-sized packets to the destination 

workstation and awaits a single acknowledgement packet when all 

the data has been received. Given the observed low error rates of 

local networks, full retransmission on error introduces only a 

slight performance degradation. We have, however, implemented 

retransmission from the last correctly received data packet in 

order to avoid the pitfall of repeated identical failures arising 

when back-to-back packets are consistently being dropped by the 

receiver. The implementation of MoveFrom is similar except a 

MoveFrora request is sent out and acknowledged by the requested 

data packets, essentially the reverse of MoveTo. 

As in the local case, major economies arise with MoveTo and 

MoveFrom because, by their definitions, there is no need for 

queuing or buffering of the data in the kernel. The V kernel 

moves the data directly from the source address space into the 

network interface, and directly from the network interface to the 

destination address space 2 . 

3.4, Remote Segment Access 
The message and data transfer primitives provide efficient 
communication of small amounts and large amounts of data, less 
than 32 bytes or several tens of network packets. However, page- 

level file access requests involve an intermediate amount of data 

that is not efficiently handled by the Thoth primitives when 

implemented over alocal network. 

V file access is implemented using an I/O protocol developed for 

Verex [4]. "l~o read a page or block of a file, a client sends a 

message to the file server process specifying the file, block 

number, byte count and the address of the buffer into which the 

data is to be returned. The server reads the data offdisk, transfers 

it into the remote buffer using MoveTo, and then replies, 
confirming the amount of data read. In the common case of the 

data fitting into a single network packet, this requires 4 packet 

transmissions (assuming no retransmissions): one for the Send, 2 

for the MoveTo and one for the Reply. This is double the number 

of packets required by a specialized page-level file access protocol 

as used, for instance, in LOCUS [11] or WFS [14]." 

To remedy this problem, we made some modifications to the 

original Thoth kernel interface. First, we added the primitives 

ReceiveWithSegment and ReplyWithSegraent. Second, we 

requ!red explicit specification of segments in messages (as 

described in Section 2.1), Using this explicit specification, Send 

was then modified to transmit, as part of the network packet 

containing the message, the first part of a segment to which read 

access has been granted, if any. Using the ReceivellqthSegment 

operation, the recipient process is able to receive the request 

message and the first portion of the segment in a single operation. 

By setting the size of the initial portion of the segment sent to be 

Iuse of standard kernel process descriptor= for allem reduces the amount of 
~pecializ~-'d code for. handling r~mote m ~ e ~ .  However. alien processes do not 
execute and can reasonably bc thought of  as mc~agc bu f f~ ,  

2This is possible with a programmed 110 interface, as used by the SUN 5 
Ethcrnct interface as well as the 3COM 10 Mb Ethemet interlace. A convcnfic~d 
DMA interface may require a packet assembly butter for transmission and reception1. 
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at least as large as a file block, a file write operation is reduced to 

a single two packet exchange. In this fashion, read access to small 

segments (such as single block disk write operations) is handled 

efficiently. The ReplyWithSegment operation eliminates the 

extra packets in the case of a file read by combining the reply 

message packet with the data to be returned. 

Advantages of this approach include: 

1. The advantages of the Thoth IPC model with the network 

performance ofa WFS-style file access protocol. 

2. Compatibility with efficient local operation. For instance, 

segments may be accessed directly if in the same address 

space or if the recipient process operates a DMA device. 

3. Use of ReceiveWithSegment and ReplyWithSegmeat is 
optional and transparent to processes simply using Send. 

An expected objection to our solution is the apparent asymmetry 

and awkwardness of the message primitives. We feel the 

asymmetry may be appropriate given the prevalent asymmetry of 

communication and sophistication between client and server 

processes. Also, it is not unexpected that there be some conflict 

between efficiency and elegance. Given that applications 

commonly access system services through stub routines that 

provide a procedural interface to the message primitives, it is not 

inappropriate to make some compromises at the message level for 

efficiency. 

We now turn to the discussion of the performance evaluation of 

the kernel. We first define the term network penalty as a 
reasonable lower bound on the cost of network communication. 

Subsequently we discuss the efficiency of the kernel," both in 
terms of message passing and file access. 

4 .  N e t w o r k  P e n a l t y  
Our measurements of the V kernel are primarily concerned with 

two comparisons: 

1. The cost of remote operations versus the cost of the 

corresponding local operations. 

2. The cost of file access using V kernel remote operations 

versus the cost for other means of network file access. 

An important factor in both comparisons is the cost imposed by 

network communication. In the first comparison, the cost of a 

remote operation should ideally be the cost of the local operation 

plus the cost of moving data across the network (data that is in 

shared kernel memory in the local case). For instance, a local 

message Send passes pointers to shared memory buffers and 

descriptors in the kernel while a remote message Send must move 

the same data across the network. In the second comparison, the 

basic cost of moving file data across the network is a lower bound 

on the cost for any network file access method. 

To quantify the cost of network communication, we define a 

measure we call the network penalty. The network penalty is 

defined to be the time to transfer n bytes from one workstation to 
another in a network datagram on an idle network and assuming 

no errors. 1he network penalty is a function of the processor, the 

network, the network interface and the number of bytes 

transferred. It is the minimal time penalty for interposing the 

network between two software modules that could otherwise 

transmit the data by passing pointers. The network penalty is 

obtained by measuring the time to transmit n bytes from the main 

memory of one workstation to the main memory of another and 

vice versa and dividing the total Lime for the experiment by 2. 

The experiment is repeated a large number of times for statistical 

accuracy. The transfers are implemented at the data link layer 

and at the interrupt level so that no protocol or process switching 

overhead appears in the results. The assumptions of error-free 

transmission and low network utilization are good 

approximations of most local network environments. 

Network penalty provides a more realistic minimum achievable 

time for data transfer than that suggested by the physical network 

speed because it includes the processor and network interface 

times. For instance, a 10 Mb Ethernet can move 1000 bits from 
one workstation to another in 100 microseconds. However, the 

time to assemble the packet in the interface at the sending end 
and the time to transfer the packet out of the interface at the 

receiving end are comparable to the time for transmission. Thus, 

the time for the transfer from the point of view of the 

communicating software modules is at least two or three times as 

long as that implied by the physical transfer rate. 

Measurements of network penalty were made using the 

experimental 3 Mb Ethernet. In all measurements, the network 

was essentially idle due to the unsociable times at which 

measurements were made. Table 4-1 lists our measurements of 

the 3 Mb network penalty for the SUN workstation using the 8 

and 10 MHz processors with times given in milliseconds. The 

network time column gives the time for the data to be transmitted 
based on the physical bit rate of the medium, namely 2.94 

megabits per second. 

N e t w o r k  P e n a l t y  

Bytes ) Network Time Network Penalty 

8 MHz 10 MHz 

64 .174 0.80 0.65 

128 .348 1.20 0.96 

256 .696 2.00 1.62 

512 1.392 3.65 3.00 

1024 2.784 6.95 5.83 

Table 4-I: 3 Mb Ethernet SUN Network Penalty (times in msec.) 

The network penalty for the 8 MHz processor is roughly given by 

P(n) = .0064 * n + .390 milliseconds where n is the number of 

bytes transferred. For the 10 MHz processor, it is .0054 * n + 

.251 milliseconds. 

3We only consid~ packet sizes that fit in a eingIe network dalagnm. 
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The difference between the network time, computed at the 

network data rate, and the measured network penalty time is 

accounted for primarily by the processor time to generate and 

transmit the packet and then receive the packet at the other end. 

For instance, with a 1024 byte packet and an 8 M l h  processor, 

the copy time from memory to the Ethernet interface and vice 

versa is roughly 1.90 milliseconds in each direction. Thus, of the 

total 6.95 milliseconds, 3.80 is copy time, 2.78 is network 

transmission time and .3 is (presumably) network and interface 

latency. If we consider a 10 Mb F.thernet with similar interfaces, 
the transmission time is less than 1 millisecond while the copy 

times remain the same, making the processor time 75 percent of 

the cost in the network penalty. The importance of the processor 

speed is also illustrated by the difference in network penalty for 

the two processors measured in Table 4-1. 

With our interfaces, the processor is required to copy the packet 

into the interface for transmission and out of the interface on 

reception (with the interface providing considerable on-board 

buffeting). From the copy times given above, one might argue 

that a DMA interface would significantly improve performance. ~, 
I{owever, we would predict that a DMA interface would not 

result in better kernel performance for two reasons. First, the 

kernel interprets a newly arrived packet as it copies the packet 

from the network interface, allowing it to .place much of the 

packet data immediately in its final location. With a DMA 
interface, this copy would be required after the packet had been 

DMA'ed into main memory. Similarly, on transmission the 

kernel dynamically constructs a network packet from disparate 

locations as it copies the data into the network interface. Most 

DMA interfaces require the packet to be assembled in one 
contiguous area of memory, implying the need for a comparable 

copy operation. Finally, there is not currently available (to our 
knowledge) a network DMA interface for the Ethemet that 

moves data faster than a 10 MHz Motorola 68000 processor as 

used in the SUN workstation. In general, the main benefit of a 

smart network interface appears to be in offloading the main 
processor rather than speeding up operations that make use of 

network communication. 

5. K e r n e l  P e r f o r m a n c e  
Our first set of kernel measurements focuses on the speed of local 

and network interprocess communication. The kernel IPC 

performance is presented in terms of the times for message 

exchanges and the data transfer operations. We first describe how 

these measurements were made. 

5.1. Measu rement Methods 
Measurements of individual kernel operations were performed by 

executing the operation N times (typically 1000 times), recording 

the total time required, subtracting loop overhead and other 

artifact, and then dividing the total time by N. Measurement of 

total time relied on the software-maintained V kernel time which 

is accurate plus or minus 10 milliseconds. 

Measurement of processor utilization was done using a low- 

priority "busywork" process on each workstation that repeatedly 

updates a counter in an infinite loop. All other processor 

utilization reduces the processor allocation to this process. Thus, 

the processor time used per operation on a workstation is the 
elapsed time minus the processor time allocated to the 

"busywork" process divided by N, the number of operations 

executed. 

Using 1000 trials per operation and time accurate plus or minus 

10 milliseconds, our measurements should be accurate to about 

.02 milliseconds except for the effect of variation in network load. 

5.2. Kernel Measurements 
Table 5-1 gives the results of our measurements of message 

exchanges and data transfer with the kernel running on 

workstations using an 8 MHz processor and connected by a 3 Mb 

EthemeL Note that GetTime is a trivial kernel operation. 
included to give the basic minimal overhead of a kernel 

operation. The columns labeled Local and Remote give the 

elapsed times for these operations executed locally and remotely. 

The Difference column.lists the time difference between the local 

and remote operations. The Penalty column gives the network • 
penalty for the amount of data transmitted as part of the remote 

operation. The Client and Server columns list the processor time 

used for the operations on the two machines involved in the 

remote execution of the operation. Table 5-2 gives the same 
measurements using a 10 MHz processor. The times for both 

processors are given to indicate the effect the processor speed has 

on local and remote operation performance. As expected, the 

times for local operations, being dependent only on the pracessor- 

speed, are 25 percent faster on the 25 percent faster processor. 
However, the almbst 15 percent improvement for remote 

operations indicates the processor is the most significant 
performance factor in our configuration and is not rendered 

insignificant by the network delay (at least on a lightly loaded 

network). 

A significant level of concurrent execution takes place between 

workstations even though the message~passing is fully 

synchronized. For instance, transmitting the packet, blocking the 

sender and switching to another process on the sending 

workstation proceeds in parallel with the reception of the packet 
and the readying of the receiving process on the receiving 

workstation. Concurrent execution is indicated by the fact that 

the total of the server and client processor times is greater than 

the elapsed time for a remote message exchange. (See the Client 

and Server columns in the above tables,) 

5.3. Interpreting the Measurements 
Some care is required in interpreting the implications of these 
measurements for distributed applications. Superficially, the fact 

that the remote Send-Receive-Reply sequ.ence takes more than :3 

times as long as for the local case suggests that distributed 

applications should be designed to minimize inter-machine 

communication. I ,  general, one might consider it impractical to 
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Kernel Operation 

Kernel Performance 

Elapsed Time Network 
Penalty 

|.x~cal Remote Difference Client 

Processor Time 

,Server 
GetTime 0.07 0.07 

Send-Receive-Reply 1.00 3.18 2.18 1.60 1.79 2. 30 
MoveFrom: 1024 bytes 1.26 9.03 7.77 8'.15 3.76 5.69 

MoveTo: 1024 bytes 1.26 9.05 7.79 8.15 3.59 5.87 

Table 5-1: Kernel'Performance: 3 Mb Ethernet and 8 MHz Processor (times in milliseconds) 

Kernel Operation Elapsed Time Network 
Penalty 

Local Remote Difference w 

Processor Time 

Client Server 
GetTime 0.06 0.06 

Send-Receive-Reply 0.77 2.54 1.77 1.30 1.44 1.79 

MoveFrom: 1024 bytes 0.95 , 8.00 7.05 6.77 3.32 4.78 

MoveTo: 1024 bytes 0.95 8.00 7.05 6.77 3.17 4.95 

Table 5-2: Kernel Performance: 3 Mb Ethernet and 10 MHz Processor (times in milliseconds) 

view interprocess communication as transparent across machines 

when the speed ratio is so large. However, an alternative 

interpretation is to recognize that the remote operation adds a 

delay of less than 2 milliseconds, and that in many cases this time 

is insignificant relative to the time necessary to process a request 

in the server. Furthermore, the sending or client workstation 

processor is busy with the remote Send for only 1.44 milliseconds 

out of the total 2.54 millisecond time (using the 10 MHz 

processor). Thus, one can offload the processor on one machine 

by, for instance, moving a server process to another machine if its 
request processing generally requires more than 0.67 milliseconds 

of processor time, i.e. the difference between the local Send- 
Receive-Reply time and the local processor time for the remote 
operation. 

5.4. Multi-PtocessTraffic 
The discussion so far has focused on a single pair of processes 

communicating over the network. In reality, processes on several 

workstations would be using the network concurrently to 

communicate with other processes. Some investigation i s  

required to determine how much message traffic the network can 

support and also the degradation in response as a result of other 
network traffic, 

A pair of workstations communicating via Send-Recelve-Reply at 
maximum speed generate a load on the network of about 400,000 

bits per second, about 13 percent of a 3 Mb Etheruet and 4 

percent of a 10 Mb Ethemet. Measurements on the 10 Mb 

Ethernet indicate that for the packet size in question no 

significant network delays are to be expected for loads upto 25 

percent. Thus, one would expect minimal degradation with say 

two separate pairs of workstations communicating on the same 

network in this fashion. Unfortunately, our measurements of this 

scenario turned up a hardware bug in our 3 Mb Ethemet 

interface, a bug which causes many collisions to go undetected 

and show up as corrupted packets. Thus, the response time for 

the 8 MHz processor workstation in this case is 3.4 milliseconds. 

The increase in time from 3.18 milliseconds is accounted for 

almost entirely from the timeouts and retransmissions arising 
(roughly one per 2000 packets) from the hardware hug. With 

corrected network interfaces, we estimate that the network can 

support any reasonable level of message communication without 

significant performance degradation. 

A more critical resource is processor time. This is especially true 

for machines such as servers that tend to be the focus of a 

significant amount of message traffic. For instance, just based on 

server processor time, a workstation is limited to at most about 
558 message exchanges per second, independent of the number of 

clients. The number is substantially lower for file access 

operations, particularly when a realistic figure for file server 

processing is included. File access measurements are examined in 

the next section. 

6. File Access Using the V Kernel 
Although it is attractive to consider the kernel as simply providing 

message communication, a predominant use of the message 

communication is to provide file access, especially in our 

environment of diskless personal workstations. File access takes 
place in several different forms, including: random file page 

access, sequential file reading and program loading. In this 

section, we assume the file server is essentially dedicated to 
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serving the client process we are measuring and otherwise idle. A 

later section considers multi-client load on the file server. 

We first describe the performance of random page-level file 

access .  

6.1. Page-level File Access  

Table 6-i list the times for reading or writing a 512 byte block 

between two processes both local and remote using the 10 MHz 

processor. The times do not include time to fetch the data from 

disk but do indicate expected performance when data is buffered 

in memory. A page read involves the sequence of kernel 

operations: Send--Receive-ReplyWithSegment, A page write is 

Send--Receive ~qthSegment-Repl¥. 

difference between the client processor time for remote page 

access a,ad for local page access, namely 1.3 milliseconds. A 

processor cost of more than 1.3 milliseconds per request can be 

expected from the estimation made earlier using LOCUS figures. 

These measurements indicate the performance when file reading 

and writing use explicit segment specification in the message and 

ReceiveWithSegment and ReplyWithSegment. ltowever, a file 

write can also be performed in a more basic Thoth-like way using 

the Send-Receive-MoveFrom-Reply sequence. For a 512 byte 

write, this costs 8.1 milliseconds; file reading is similar using 
MoveTo. "lhus, the segment mechanism saves 3.5 milliseconds on 

every page read and write operation, justifying this extension to 

the message primitives. 

R a n d o m  P a g e - L e v e l  Access 

Elapsed Tune Network 
Penalty 

Processor Tkne 

Operation 

page read 

page write 

Local Remote Difference Client 

1.31 5.56 4.25 3.89 2.50 

1.31 5.60 4.29 3.89 2.58 

Table 6-1: Page-Level File Access: 512 byte pages (times in milliseconds) 

Server 

3.28 
3.32 

The columns are to be interpreted according to the explanation 

given for similarly labeled columns of Tables 5-1 and 5-2. Note 

that the time to read or write a page using these primitives is 

approximately 1.5 milliseconds more than the network penalty for 

these operations. 

There are several considerations that compensate for the cost of 

remote operations being higher than local operations. (Some are 

special eases of those described for simple message exchanges.) 

First, the extra 4.2 millisecond time for remote operations is 
relatively small compared to the time cost of the file system 

operation itself. In particular, disk access time can be estimated at 
20 milliseconds (assuming minimal seeking) and file system 

processor time at 2.5 milliseconds. 4 This gives a local file read 

time of 23.8 milliseconds and a remote time of 28.1 milliseconds, 

making the cost of the remote operation 18 percent more than the 

local operation. 

This comparison assumes that a local file system workstation is 

the same speed as a dedicated file server. In reality, a shared file 
server is often faster because of the faster disks and more memory 

for disk caching that come with economy of scale. If the average 
disk access time for a file server is 4.3 milliseconds less than the 

average kx?al disk access time (or better), there is no time penalty 

(and possibly some advantage) for remote file operations. 

Second, remote file access offloads the workstation processor if 

the file system processing overhead per request is greater the 

4This is based oct measurements of LOCUS [Ill that give 6.2 and ,13 milli~-con~ u 
processor time oost.s for 512-byte file read and write operations resl~vely on a PDP- 
11/45, which i= roughly half the =peer of the 10 MIIz Motorola 68000 processor u~ l  in 
the SUN v~t=tatJo.. 

6.2. Sequential File Access 
Sequential file access is the predominant pattern for file activity 
in most systems. Efficient file systems exploit this behavior to 

reduce the effect of disk latency by prefetching file pages (read- 

ahead) and asynchronously storing modified pages (write- 

behind). File access and file transfer protocols typically 

implement streaming to reduce the effect of network latency on 

sequential file access. 

Using the V kernel message communication between a 

workstation and a file se~er, the file server can implement read- 

ahead and write-behind to reduce the effect of disk latency. 

However, there is no streaming in the network IPC to deal with 

network latency. 

Two factors suggest that streaming can be done without in a local 

network environment. First, local networks have a low latency as 

a consequence of their high speed and low delay. Second, 

although V kernel IPC is logically synchronous, significant 
concurrency arises in the network implementation, further 

reducing the effects of network latencies. The presenoe of 

streaming adds a significant cost to the protocol in terms of buffer 

space, copying time and complexity of code. Moreover, buffering 

effectively puts a disk cache on the workstation, thus raising 

problems of cache consistency between the different workstations 

and the tile server. 

To get a realistic measure of sequential file access performance, 

we modified the test program used for measuring page read times 

by the addition of a delay in the server process corresponding to 

the disk latency. Because we assume the file server is doing read- 

ahead operations, the delay is interposed between the reply to one 
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request and the receipt of the next requesL We contend that this 

program closely approximates the performance of a workstation 

sequentially reading a file as rapidly as possible from an otherwise 

idle file server. The results are shown in Table 6-2 

Sequential Page-Level Access 

Disk latency Elapsed Time per Page Read 

10 12.02 
15 17.13 

20 22.22 

Table 6-2: Seq. File Access: 512 byte pages (times in msec.) 

These results indicate that, for reasonable values of disk latency, 

the elapsed time for sequential file access is within 10 to 15 

percent from the minimum achievable (the disk latency). It 
follows that a streaming protocol cannot improve on the 

performance measured for V kernel file access by more than 15 

percent. 

Moreover, consider the two cases for the application, namely: 

Reading faster than the disk latency and reading slower than the 

disk latency. Suppose an application is reading file pages over the 

network using a streaming protocol. If it is reading faster than the 

disk can deliver, it will operate much like the V kernel model in 

attempting to read a page not yet available, possibly requesting 

this page from the file server, blocking waiting for the page, 

having the page returned into the local page buffers, copying the 

page into its application buffer and then continuing. Thus, 

performance of a streaming file access implementation can be 
expected to be similar to our results. For instance, comparing our 

results with the LOCUS figures for remote sequential file access 
with a disk latency of 15 milliseconds, the average elapsed time 

per page is essentially equal to the LOCUS figure of 17.18 
milliseconds. 

If an application is reading pages sequentially slower than the 

disk latency time, with say 20 milliseconds between every read 

request, the page should be available locally on each read with a 

streaming protocol. In this ease, the elapsed time for the read 

should be 1.3 milliseconds compared to 5.6 milliseconds remotely. 

However, because read operations occur at most every 20 

milliseconds, the speedup by replacing non-streamed file access 
with streamed file access is limited to 20 percent or less. 

Moreover, a streaming protocol would introduce extra processing 

overhead for copying and buffering readahead pages in this 

circumstance. Assuming the application was reading slowly 

because it was compute-bound between read operations, the 

streaming protocol processing overhead would further slow down 
the application From this analysis, it is clear that streaming has 

limited potential for speedup over non-streamed file access when 

pages are accessed from disk with the latencies we have discussed. 

In most systems, sequential file access is used extensively for 

program loading, llowever, program loading can be performed 

more efficiently with the V kernel using MoveTo. It is therefore 

not reliant on the performance figures of this section and is 

discussed below. 

6.3. Program Loading 
Program loading differs as a file access activity from page-level 

access in that the entire file containing the program (or most of it) 
is to be transferred as quickly as possible into a waiting program 

execution space. For instance, a simple command interpreter we 

have written to run with the V kernel loads programs in two read 

operations: the first read accesses the program header 

information; the second read copies the program code and data 

into the newly created program space. The time for the first read 

is just the single block remote read time given earlier. The second 

read, generally consisting of several tens of disk pages, uses 

MoveTo to transfer the data. Because MoveTo requires that the 

data be stored contiguously in memory, it is often convenient to 

implement a large, read as multiple MoveTo operations. For 

instance, our current VAX file server breaks large read and write 
operations into MoveTo and MoveFrom operations of at most 4 

kilobytes at a time. Table 6-3 gives the time for a 64 kilobyte 
Read. (The elapsed time for file writing is basically the same as 

for reading and has been omitted for the sake of brevity. Note 

also that network penalty is not defined for multi-packet 

transfers,) The transfer unit is the amount of data transferred per 

MoveTo operation in satisfying the read request. 

The times given for program loading using a 16 or 64 kilobyte 

transfer unit corresponds to a data rate of about 192 kilobytes per 

second, which is within 12 percent of the data rate we can achieve 

on a SUN workstation by simply writing packets to the network 

interface as rapidly as possible. Moreover, if the file server 
retained copies of frequently used programs in memory, much as 

Transfer unit Local 

1 Kb 71.7 

4 Kb 62.5 
16 Kb 60.2 

64 Kb 59.7 

Program Loading 

Elapsed Tune Network Processor T/me 
Penalty 

Remote Difference 

518.3 446.5 434.5 
368.4 305.8 * 

344.6 284.3 * 

335.4 275.1 * 

Table 6-3:64 kilobyte Read (times in milliseconds) 

Client Server 

207.1 297.9 

176.1 225.2 

170.0 216.9 
168.1 212.7 
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many current timesharing systems do, such program loading 

could achieve the same performance given in the table. 

independent of disk speed. Thus, we argue that MoveTo and 

MoveFrom with large transfer units provide an efficient program 

loading mechanism that is as fast as can be achieved with the 
given hardware. 

7. File Server Issues 
File server performance is a critical issue for diskless 

workstations. Unfortunately, we do not yet have experience with 

a V kernel-based file server. Thus, this section describes what we 
believe are the key issues and estimates performance without 

providing conclusive data, In general, we view the processor as 

the key resource to consider in file server performance because, as 

argued earlier, the network bandwidth is plentiful and disk 

scheduling and buffering issues are identical to those encountered 

in conventional multi-user systems. 

The number of workstations a file server can support can be 

estimated from processor requirements. If we estimate page read 

or write processing overhead as roughly 3.5 milliseconds for file 

system processing (from LOCUS) plus 3.3 milliseconds for kernel 

operation (from Table 6-1]), a page request costs about 7 

milliseconds of processor time. Program loading appears to cost 

about 300 milliseconds for an average 64 kilobyte program. 

Estimating that 90 percent of the file requests are page requests, 

the average request costs 36 milliseconds. Thus, a file server 
based on the SUN workstation processor could support about 28 

file requests a second From this we estimate that one file server 

can serve about 10 workstations satisfactorily, but 30 or more 

active workstations would lead to excessive delays. However, a 

diskless workstatiotr system can easily be extended to handle 
more workstations by adding more file server machines since the 

network would not seem to be a bottleneck for less than 100 

workstations. 

For some programs, it is advantageous in terms of  file server 

processor requirements to execute the program on the file server, 

rather than to load the program into a workstation and 

subsequently field remote page requests from it. Large programs, 

executing for a short time and doing a lot of  file access while 

executing are in this class, especially if they require only limited 

interaction with the user. 

On this basis, a file server should have a general program 

execution facility and the ability to selectively execute certain 

programs. The need for this execution facility is a further 

argument for using a general interprocess communication 

mechanism in place of a specialized page-level file access 

protocol. With the V kernel, all inter-program communication 

and interaction takes place through the IPC facility, including: 

file access, argument passing, debugger control and termination 

notification. Thus, execution of a program in the file server 

rather than the client's workstation does not change the program's 

execution environment nor the dient's interaction with the 

program, i.e. it is transparent except for performance. 

8. M e a s u r e m e n t s w i t h t h e  10  MbEthernet  
Our limited access to a 10 Mb Ethernet has precluded basing our 
measurements on this standard local network. However, some 

preliminary figures using the 10 Mb Ethernet indicate the effect 

of using a faster network and slightly faster network interfaces. 

First, the remote message exchange time is 2.71 milliseconds 

using an 8 MHz processor, roughly the time for the 10 MHz 

processor on the 3 Mb network and .5 milliseconds better than 

the 8 MHz processor on the 3 Mb network. Second, the page 
read time is 5.72 milliseconds. Finally, the program loading time 

is much improved, achieving 255 milliseconds for a 64 kilobyte 

load using 16 Kb transfer units. We have not identified to what 

degree the improvement is due to the faster network speed versus 

the differences in the network interface. 

9. Related Wo rk 
There are a number of previous and concurrent efforts in 

providing communication mechanisms for distributed systems. 

For brevity, we compare our work with only a representative 

sample that characterizes the search for, and evaluation of, 

suitable models and implementations. 

Spector's remote reference study [13] considered the feasibility of 

implementing remote load and store operations over a local 

network. Nelson's work on remote procedure ealis[10] 

investigates network communication for procedure-based systems 

analogous to what the V kernel provides for message-based 

systems. Rashid and Robertson's Accent kernel [12] implements 

a message system with a number of features such as non-blocking 
message sending that are not provided by the V kernel. Finally, 

LOCUS [11] integrates network communication into a UNIX-like 

system in the form of transparent remote file access. 

Our work has followed the pattern of Spector's and Nelson's work 

in using a requesvresponse form of communication (in place of 

streaming) and stripping away protocol layers for adequate 

performance. However, we share Spector's concern about the 
utility of an unprotected globally shared memory in a distributed 

system, which is essentially the functionality provided by his 

primitives. The V kernel provides a strong degree of separation 

between processes and supports protected provision of services in 

a multi-user, multi-workstation environment by limiting 

interprocess communication to the kernel IPC primitives. 

Our approach differs from Nelson's primarily in our use of a 

separate interconnection mechanism from procedure calls, 

namely messages, and some of the ensuing differences in 

semantics. Fundamentally, the V kernel provides a base on which 

to build a remote procedure call mechanism by the addition of 

suitable compiler and run-time support. Under more detailed 

examination, many slight differences appear that reflect long- 

established differences in the construction o f  procedure-based 
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versus message-based systems, although it is not clear these 
differences result in any significant difference in overall 
performance. 

The V kernel performance is roughly comparable to that of the 
software implementations developed by Spector and Nelson, 
allowing for the non-trivial differences in operation semantics and 
host processors. We would hypothesize that V kernel 
performance could be improved by a factor of 30 using 
microcode, similar to the improvement observed by Spector and 
Nelson for their primitives. Unfortunately, neither Spector nor 
Nelson provides results that afford a comparison with our file 
access results. In general, their work has concentrated on the 
speed of the basic mechanism and has not been extended to 
measure performance in a particular application setting. 

In comparison to Accent, the V kernel provides a primitive form 
of message communication, and benefits accordingly in terms of 
speed, small code size and ability to run well on an inexpensive 
machine S without disk or microcode support. For instance, 
Accent messages require an underlying transport protocol for 
reliable delivery because there is no client-level reply message 
associated with every Send as in the V kernel. We do not at this 
time have performance figures for Accent. 

LOCUS does not attempt to provide applications with general 
network interprocess communication but exploits carefully honed 
problem-oriented protocols for efficient remote file access. It is 
difficult to compare the two systems from measurements available 
given the differences in network speeds, processor speeds and 
measurement techniques. However, from the. specific 
comparisons with LOCUS presented earlier, we would expect 
overall file access performance for the V kernel to be comparable 
to LOCUS running on the same machines and network. 

However. the memory requirements for the V kernel are about 
half that of LOCUS compiled for the PDP-11 and probably more 
like one fourth when LOCUS is compiled for a 32-bit processor 
like the 68000. Thus. for graphics workstations or process control 
applications, for instance, the V kernel would be more attractive 
because of its smaller size, real-time orientation and its provision 
of general interprocess communication. However, the V kernel 
does not provide all the functionality of the LOCUS kernel which 
includes that of the UNIX kernel and more. When required with 
V, these additional facilities must be provided by server processes 
executing either on client workstations or network server 
machines. 

10. Conclusions 
We conclude that it is feasible to build a distributed system using 
disidess workstations connected by a high-speed local network to 
one or more file servers using the V kernel IPC. In particular, the 
performance study shows that V kernel IPC provides satisfactory 

$A dlskles SUN workstation Is much Icu than the cost ofa PERQ. 

performance despite its generality, lk'cause the performance is so. 
close to the lower bound given by the network penalty, there is 
relatively little room for improvement on the V IPC for the given 
hardware regardless of protocol and implementation used. 

The efficiency of file access using the V IPC suggests that it can 
not only replace page-level file access protocols but also file 
transfer and remote terminal protocols, thereby reducing the 
number of protocols needed. We claim that V kernel IPC is 
adequate as a transport level for all our local network 
communication providing each machine runs the V kernel or at 
least handles the interkernei protocol. We do, however, see a 
place for these specific protocols in internetworidng situations. 

In addition to quantifying the elapsed time for various operations, 
our study points out the importance of considering processor 
requirements in the design of distributed systems. More 
experience and measurement of file server load and workstation 
file access behavior is required to decide whether file server 
processing is a significant problem in using disldess workstations. 

The V kernel has been in use with the diskless SUN workstations, 
providing local and remote interprocess communication, since 
September 1982. It is currently 38 kilobytes including code, data 
and stack. The major use of the network interproce~ 
communication is for accessing remote files. Our file servers are 

currently 6 VAX/UNIX systems running a kernel simulator and 
file server program which provides access to UNIX system 
services over the Ethernet using interkernd packets. A simple 
command interpreter program allows programs to be loaded and 
run on the workstations using these UNIX servers. Our 
experience with this software to date supports the conclusions of 
the performance study that we can indeed build our next 
generation of computing facilities [8] using disldess workstations 
and the V kernel. 
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