
IronFleet: Proving Practical Distributed Systems Correct
Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,

Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill

Microsoft Research

Abstract
Distributed systems are notorious for harboring subtle bugs.

Verification can, in principle, eliminate these bugs a priori,

but verification has historically been difficult to apply at full-

program scale, much less distributed-system scale.

We describe a methodology for building practical and

provably correct distributed systems based on a unique blend

of TLA-style state-machine refinement and Hoare-logic ver-

ification. We demonstrate the methodology on a complex

implementation of a Paxos-based replicated state machine

library and a lease-based sharded key-value store. We prove

that each obeys a concise safety specification, as well as de-

sirable liveness requirements. Each implementation achieves

performance competitive with a reference system. With our

methodology and lessons learned, we aim to raise the stan-

dard for distributed systems from “tested” to “correct.”

1. Introduction
Distributed systems are notoriously hard to get right. Protocol

designers struggle to reason about concurrent execution on

multiple machines, which leads to subtle errors. Engineers

implementing such protocols face the same subtleties and,

worse, must improvise to fill in gaps between abstract proto-

col descriptions and practical constraints, e.g., that real logs

cannot grow without bound. Thorough testing is considered

best practice, but its efficacy is limited by distributed systems’

combinatorially large state spaces.

In theory, formal verification can categorically eliminate

errors from distributed systems. However, due to the com-

plexity of these systems, previous work has primarily fo-

cused on formally specifying [4, 13, 27, 41, 48, 64], verify-

ing [3, 52, 53, 60, 61], or at least bug-checking [20, 31, 69]

distributed protocols, often in a simplified form, without

extending such formal reasoning to the implementations.

In principle, one can use model checking to reason about

the correctness of both protocols [42, 60] and implemen-

tations [46, 47, 69]. In practice, however, model checking

is incomplete—the accuracy of the results depends on the

accuracy of the model—and does not scale [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815428

This paper presents IronFleet, the first methodology for

automated machine-checked verification of the safety and

liveness of non-trivial distributed system implementations.

The IronFleet methodology is practical: it supports complex,

feature-rich implementations with reasonable performance

and a tolerable proof burden.

Ultimately, IronFleet guarantees that the implementation

of a distributed system meets a high-level, centralized spec-

ification. For example, a sharded key-value store acts like

a key-value store, and a replicated state machine acts like

a state machine. This guarantee categorically rules out race

conditions, violations of global invariants, integer overflow,

disagreements between packet encoding and decoding, and

bugs in rarely exercised code paths such as failure recov-

ery [70]. Moreover, it not only rules out bad behavior, it tells

us exactly how the distributed system will behave at all times.

The IronFleet methodology supports proving both safety
and liveness properties of distributed system implementa-

tions. A safety property says that the system cannot perform

incorrect actions; e.g., replicated-state-machine linearizabil-

ity says that clients never see inconsistent results. A liveness

property says that the system eventually performs a useful

action, e.g., that it eventually responds to each client request.

In large-scale deployments, ensuring liveness is critical, since

a liveness bug may render the entire system unavailable.

IronFleet takes the verification of safety properties further

than prior work (§9), mechanically verifying two full-featured

systems. The verification applies not just to their protocols

but to actual imperative implementations that achieve good

performance. Our proofs reason all the way down to the

bytes of the UDP packets sent on the network, guaranteeing

correctness despite packet drops, reorderings, or duplications.

Regarding liveness, IronFleet breaks new ground: to our

knowledge, IronFleet is the first system to mechanically

verify liveness properties of a practical protocol, let alone an

implementation.

IronFleet achieves comprehensive verification of complex

distributed systems via a methodology for structuring and

writing proofs about them, as well as a collection of generic

verified libraries useful for implementing such systems. Struc-

turally, IronFleet’s methodology uses a concurrency contain-
ment strategy (§3) that blends two distinct verification styles

within the same automated theorem-proving framework, pre-

venting any semantic gaps between them. We use TLA-style

state-machine refinement [36] to reason about protocol-level

concurrency, ignoring implementation complexities, then use

Floyd-Hoare-style imperative verification [17, 22] to reason

1

about those complexities while ignoring concurrency. To

simplify reasoning about concurrency, we impose a machine-

checked reduction-enabling obligation on the implementa-

tion (§3.6). Finally, we structure our protocols using always-
enabled actions (§4.2) to greatly simplify liveness proofs.

To facilitate writing proofs about distributed systems, we

have developed techniques for writing automation-friendly in-

variant proofs (§3.3), as well as disciplines and tool improve-

ments for coping with prover limitations (§6). For liveness

proofs, we have constructed an embedding of TLA (§4.1) in

our automated verification framework that includes heuristics

for reliably unleashing the power of automated proving.

To help developers, we have built general-purpose verified

libraries for common tasks, such as packet parsing and

marshalling, relating concrete data structures to their abstract

counterparts, and reasoning about collections. We have also

written a verified library of 40 fundamental TLA rules useful

for writing liveness proofs.

To illustrate IronFleet’s applicability, we have built and

proven correct two rather different distributed systems:

IronRSL, a Paxos-based [35] replicated-state-machine li-

brary, and IronKV, a sharded key-value store. All IronFleet

code is publicly available [25].

IronRSL’s implementation is complex, including many de-

tails often omitted by prior work; e.g., it supports state trans-

fer, log truncation, dynamic view-change timeouts, batching,

and a reply cache. We prove complete functional correctness

and its key liveness property: if the network is eventually

synchronous for a live quorum of replicas, then a client re-

peatedly submitting a request eventually receives a reply.

Unlike IronRSL, which uses distribution for reliability,

IronKV uses it for improved throughput by moving “hot”

keys to dedicated machines. For IronKV, we prove complete

functional correctness and an important liveness property: if

the network is fair then the reliable-transmission component

eventually delivers each message.

While verification rules out a host of problems, it is not

a panacea (§8). IronFleet’s correctness is not absolute; it

relies on several assumptions (§2.5). Additionally, verification

requires more up-front development effort: the automated

tools we use fill in many low-level proof steps automatically

(§6.3.1), but still require considerable assistance from the

developer (§6.3.2). Finally, we focus on verifying newly

written code in a verification-friendly language (§2.2), rather

than verifying existing code.

In summary, this paper makes the following contributions:

• We demonstrate the feasibility of mechanically verify-

ing that practical distributed implementations, i.e., func-

tionally complete systems with reasonable performance,

match simple, logically centralized specifications.

• We describe IronFleet’s novel methodology for uniting

TLA-style refinement with Floyd-Hoare logic within a

single automated verification framework.

• We provide the first machine-verified liveness proofs of

non-trivial distributed systems.

L0 L1 L2 L3 L4

H0 H1 H2 H3 H4 H5 H6 H7

Figure 1. State Machine Refinement. The low-level state ma-
chine behavior L0. . .L4 refines the high-level one H0. . .H7 because
each low-level state corresponds to a high-level state. For each cor-
respondence, shown as a dashed line, the two states must satisfy the
spec’s refinement conditions. Low-level step L0→L1, as is typical,
maps to one high-level step H0→H1. However, low-level steps can
map to zero (L2→L3) or several (L3→L4) high-level steps.

method halve(x:int) returns (y:int)
requires x > 0;
ensures y < x;

{ y := x / 2; }

Figure 2. Simple Floyd-Hoare verification example.

• We describe engineering disciplines and lessons for veri-

fying distributed systems.

2. Background and Assumptions
We briefly describe the existing verification techniques that

IronFleet draws upon, as well as our assumptions.

2.1 State Machine Refinement

State machine refinement [1, 18, 34] is often used to rea-

son about distributed systems [4, 27, 41, 48, 52, 64]. The

developer describes the desired system as a simple abstract

state machine with potentially infinitely many states and non-

deterministic transition predicates. She then creates a series

of increasingly complex (but still declarative) state machines,

and proves that each one refines the one “above” it (Figure 1).

State machine L refines H if each of L’s possible behaviors,

i.e., each (potentially infinite) sequence of states the machine

may visit, corresponds to an equivalent behavior of H. To

gain the benefits of abstraction this approach provides, the

developer must choose the layer abstractions intelligently, a

subtle choice needed for each new context.

State machine refinement in a distributed-system context

(e.g., TLA-style refinement) typically considers declarative

specifications, not imperative code. PlusCal [37] attempts to

bridge this gap, but has only been used for tiny programs.

2.2 Floyd-Hoare Verification

Many program verification tools support Floyd-Hoare style [17,

22] first-order predicate logic reasoning about imperative pro-

grams. In other words, they allow the programmer to annotate

a program with assertions about the program’s state, and the

verifier checks that the assertions hold true for all possible

program inputs. For example, the code in Figure 2 asserts

a condition about its input via a precondition and asserts a

condition about its output via a postcondition.

As in our previous work [21], we use Dafny [39], a high-

level language that automates verification via the Z3 [11]

SMT solver. This enables it to fill in many low-level proofs

2

automatically; for example, it easily verifies the program in

Figure 2 for all possible inputs x without any assistance.

However, many proposition classes are not decidable in

general, so Z3 uses heuristics. For example, propositions

involving universal quantifiers (∀) and existential quantifiers

(∃) are undecidable. Thus, it is possible to write correct

code in Dafny that the solver nevertheless cannot prove

automatically. Instead, the developer may insert annotations

to guide the verifier’s heuristics to a proof. For instance, the

developer can write a trigger to cue the verifier as to which

values to instantiate a quantified variable with [12].

Once a program verifies, Dafny compiles it to C# and has

the .NET compiler produce an executable. Other languages

(e.g., C++) are currently unsupported, but it would likely be

possible to compile Dafny to them. Our previous work [21]

shows how to compile Dafny to verifiable assembly to avoid

depending on the Dafny compiler, .NET, and Windows.

Like most verification tools, Dafny only considers one

single-threaded program, not a collection of concurrently

executing hosts. Indeed, some verification experts estimate

that the state-of-the-art in concurrent program verification

lags that of sequential verification by a decade [51].

2.3 Reduction

Given a fine-grained behavior from a real concurrent system,

we can use reduction [40] to convert it to an equivalent

behavior of coarse-grained steps, simplifying verification.

Crucially, two steps can swap places in the behavior if

swapping them has no effect on the execution’s outcome.

Reduction is typically used in the context of shared-

memory concurrent programs [9, 14, 33] and synchronization

primitives [65]. Applying reduction requires identifying all of

the steps in the system, proving commutativity relationships

among them, and applying these relationships to create an

equivalent behavior with a more useful form. We tackle these

challenges in the context of distributed systems in §3.6.

2.4 Temporal Logic of Actions (TLA)

Temporal logic [54] and its extension TLA [34] are standard

tools for reasoning about safety and liveness. Temporal logic

formulas are predicates about the system’s current and future

states. The simplest type of formula ignores the future; e.g.,

in a lock system, a formula P could be “host h holds the lock

now.” Other formulas involve the future; e.g., ♦P means P
eventually holds, and �P means P holds now and forever.

For example, the property ∀h ∈ Hosts : �♦P means that for

any host, it is always true that h will eventually hold the lock.

TLA typically considers abstract specifications, not im-

perative code. Furthermore, a naı̈ve embedding of TLA can

often pose problems for automated verification. After all,

each � involves a universal quantifier and each ♦ involves

an existential quantifier. Since Z3 needs heuristics to decide

propositions with quantifiers (§2.2), it can fail due to inade-

quate developer annotations. We address this in §4.1.

I0 I1 I2 I3

H0 H1 H2 H3 H4

P0 P1 P2 P3

High-level spec (§3.1)

Distributed protocol (§3.2)

Implementation (§3.4)

refinement (§3.3)

refinement (§3.5)

Figure 3. Verification Overview. IronFleet divides a distributed
system into carefully chosen layers. We use TLA style verification to
prove that any behavior of the protocol layer (e.g., P0. . .P3) refines
some behavior of the high-level spec (e.g., H0. . .H4). We then use
Floyd-Hoare style to prove that any behavior of the implementation
(e.g., I0. . .I3) refines a behavior of the protocol layer.

2.5 Assumptions

Our guarantees rely on the following assumptions.

A small amount of our code is assumed, rather than proven,

correct. Thus, to trust the system, a user must read this code.

Specifically, the spec for each system is trusted, as is the brief

main-event loop described in §3.7.

We do not assume reliable delivery of packets, so the

network may arbitrarily delay, drop, or duplicate packets. We

do assume the network does not tamper with packets, and

that the addresses in packet headers are trustworthy. These

assumptions about message integrity are easy to enforce

within, say, a datacenter or VPN, and could be relaxed by

modeling the necessary cryptographic primitives to talk about

keys instead of addresses [21].

We assume the correctness of Dafny, the .NET compiler

and runtime, and the underlying Windows OS. Previous

work [21] shows how to compile Dafny code into verifiable

assembly code to avoid these dependencies. We also rely on

the correctness of the underlying hardware.

Our liveness properties depend on further assumptions. For

IronRSL, we assume a quorum of replicas run their respective

main loops with a minimum frequency, never running out

of memory, and the network eventually delivers messages

synchronously among them; more details are in §5.1.4. For

IronKV, we assume that each host’s main loop executes

infinitely often and that the network is fair, i.e., a message

sent infinitely often is eventually delivered.

3. The IronFleet Verification Methodology
IronFleet organizes a distributed system’s implementation

and proof into layers (Figure 3) to avoid the intermingling of

subtle distributed protocols with implementation complexity.

At the top (§3.1), we write a simple spec for the system’s

behavior. We then write an abstract distributed protocol layer

(§3.2) and use TLA-style techniques to prove that it refines

the spec layer (§3.3). Then we write an imperative implemen-

tation layer to run on each host (§3.4) and prove that, despite

the complexities introduced when writing real systems code,

the implementation correctly refines the protocol layer (§3.5).

To avoid complex reasoning about interleaved execution of

low-level operations at multiple hosts, we use a concurrency

3

datatype SpecState = SpecState(history:seq<HostId>)
predicate SpecInit(ss:SpecState)
{ |ss.history|==1 && ss.history[0] in AllHostIds() }
predicate SpecNext(ss_old:SpecState,ss_new:SpecState)
{ exists new_holder :: new_holder in AllHostIds() &&

ss_new.history == ss_old.history + [new_holder] }
predicate SpecRelation(is:ImplState,ss:SpecState)
{ forall p :: p in is.sentPackets && p.msg.lock? ==>

p.src == ss.history[p.msg.epoch] }

Figure 4. A toy lock specification.

containment strategy: the proofs above assume that every

implementation step performs an atomic protocol step. Since

the real implementation’s execution is not atomic, we use

a reduction argument (§3.6) to show that a proof assuming

atomicity is equally valid as a proof for the real system. This

argument requires a mechanically verified property of the

implementation, as well as a small paper-only proof about

the implications of the property.

§4 extends this methodology to prove liveness properties.

3.1 The High-Level Spec Layer

What does it mean for a system to be correct? One can

informally enumerate a set of properties and hope they are

sufficient to provide correctness. A more rigorous way is

to define a spec, a succinct description of every allowable

behavior of the system, and prove that an implementation

always generates outputs consistent with the spec.

With IronFleet, the developer writes the system’s spec

as a state machine: starting with some initial state, the spec

succinctly describes how that state can be transformed. The

spec defines the state machine via three predicates, i.e., func-

tions that return true or false. SpecInit describes accept-

able starting states, SpecNext describes acceptable ways

to move from an old to a new state, and SpecRelation
describes the required conditions on the relation between an

implementation state and its corresponding abstract state. For

instance, in Figure 3, SpecInit constrains what H0 can be,

SpecNext constrains steps like H0→H1 and H1→H2, and

SpecRelation constrains corresponding state pairs like

(I1, H1) and (I2, H4). To avoid unnecessary constraints on im-

plementations of the spec, SpecRelation should only talk

about the externally visible behavior of the implementation,

e.g., the set of messages it has sent so far.

As a toy example, the spec in Figure 4 describes a simple

distributed lock service with a single lock that passes amongst

the hosts. It defines the system’s state as a history: a sequence

of host IDs such that the nth host in the sequence held the

lock in epoch n. Initially, this history contains one valid host.

The system can step from an old to a new state by appending

a valid host to the history. An implementation is consistent

with the spec if all lock messages for epoch n come from the

nth host in the history.

By keeping the spec simple, a skeptic can study the spec

to understand the system’s properties. In our example, she

can easily conclude that the lock is never held by more

datatype Host = Host(held:bool,epoch:int)
predicate HostInit(s:Host,id:HostId,held:bool)
{ s.held==held && s.epoch==0 }
predicate HostGrant(s_old:Host,s_new:Host,

spkt:Packet) {
{ s_old.held && !s_new.held && spkt.msg.transfer?

&& spkt.msg.epoch == s_old.epoch+1 }
predicate HostAccept(s_old:Host,s_new:Host,

rpkt:Packet,spkt:Packet)
{ !s_old.held && s_new.held && rpkt.msg.transfer?

&& s_new.epoch == rpkt.msg.epoch == spkt.msg.epoch
&& spkt.msg.lock? }

predicate HostNext(s_old:Host,s_new:Host,
rpkt:Packet,spkt:Packet)

{ HostGrant(s_old,s_new,spkt) ||
HostAccept(s_old,s_new,rpkt,spkt) }

Figure 5. Simplified host state machine for a lock service.

than one host. Since the spec captures all permitted system

behaviors, she can later verify additional properties of the

implementation just by verifying they are implied by the spec.

3.2 The Distributed-Protocol Layer

At the untrusted distributed-protocol layer, the IronFleet

methodology introduces the concept of independent hosts

that communicate only via network messages. To manage

this new complexity, we keep this layer simple and abstract.

In more detail, we formally specify, in Dafny (§2.2), a dis-

tributed system state machine. This state machine consists of

N host state machines and a collection of network packets. In

each step of the distributed system state machine, one host’s

state machine takes a step, allowing it to atomically read mes-

sages from the network, update its state, and send messages

to the network; §3.6 relaxes this atomicity assumption.

The developer must specify each host’s state machine: the

structure of the host’s local state, how that state is initialized

(HostInit), and how it is updated (HostNext). IronFleet

reduces the developer’s effort in the following three ways.

First, we use a simple, abstract style for the host state and

network interface; e.g., the state uses unbounded mathemati-

cal integers (ignoring overflow issues), unbounded sequences

of values (e.g., tracking all messages ever sent or received),

and immutable types (ignoring memory management and

heap aliasing). The network allows hosts to send and receive

high-level, structured packets, hence excluding the challenges

of marshalling and parsing from this layer.

Second, we use a declarative predicate style. In other

words, HostNext merely describes how host state can

change during each step; it gives no details about how to effect

those changes, let alone how to do so with good performance.

Third, from the protocol’s perspective, each of the steps

defined above takes place atomically, greatly simplifying the

proof that the protocol refines the spec layer (§3.3). In §3.6,

we connect this proof assuming atomicity to a real execution.

Continuing our lock example, the protocol layer might

define a host state machine as in Figure 5. During the dis-

tributed system’s initialization of each host via HostInit,

exactly one host is given the lock via the held parameter.

4

The HostNext predicate then says that a host may step

from an old to a new state if the new state is the result of

one of two actions, each represented by its own predicate.

The two actions are giving away the lock (HostGrant) and

receiving the lock from another host (HostAccept). A host

may grant the lock if in the old state it holds the lock, and

if in the new state it no longer holds it, and if the outbound

packet (spkt) represents a transfer message to another host.

Accepting a lock is analogous.

3.3 Connecting the Protocol Layer to the Spec Layer

The first major theorem we prove about each system is that

the distributed protocol layer refines the high-level spec layer.

In other words, given a behavior of IronFleet’s distributed

system in which N hosts take atomic protocol steps defined

by the HostNext predicate, we provide a corresponding

behavior of the high-level state machine spec.

We use the standard approach to proving refinement, as

illustrated in Figure 3. First, we define a refinement function
PRef that takes a state of the distributed protocol state

machine and returns the corresponding state of the centralized

spec. We could use a relation instead of a function, but the

proof is easier with a function [1]. Second, we prove that

PRef of the initial state of the distributed protocol satisfies

SpecInit. Third, we prove that if a step of the protocol

takes the state from ps_old to ps_new, then there exists

a legal sequence of high-level spec steps that goes from

PRef(ps_old) to PRef(ps_new).

Unlike previous refinement-based work (§2.1), we use a

language, Dafny [39], designed for automated theorem prov-

ing. This reduces but does not eliminate the human proof

effort required (§6.3). Since we also verify our implementa-

tion in Dafny (§3.5), we avoid any semantic gaps between

the implementation’s view of the protocol and the protocol

we actually prove correct.

The challenge of proving the protocol-to-spec theorem

comes from reasoning about global properties of the dis-

tributed system. One key tool is to establish invariants: pred-

icates that should hold throughout the execution of the dis-

tributed protocol. In the lock example, we might use the

invariant that the lock is either held by exactly one host or

granted by one in-flight lock-transfer message. We can prove

this invariant inductively by showing that every protocol step

preserves it. Showing refinement of the spec is then simple.

Identifying the right invariants for a given protocol re-

quires a deep understanding of the protocol, but it is a skill

one develops with experience (§6).

Invariant quantifier hiding. Many useful invariants, like

“For every reply message sent, there exists a corresponding

request message sent,” involve quantifiers. Unfortunately,

such quantifiers pose problems for verifiers (§2.2). We have

thus adopted a style we call invariant quantifier hiding: we

prove some invariants involving quantifiers without explicitly

exposing those quantifiers to the verifier. The key is to

establish the invariant with a proof that explicitly instantiates

lemma ReplyToReq(reply:MessageReply,
behavior:map<int,HostState>, step:nat)

returns (req:MessageRequest)
requires IsValidBehaviorUpTo(behavior, step);
requires reply in behavior[step].network;
ensures req in behavior[step].network;
ensures Matches(req, reply);

{
assert step > 0; // because a packet was sent
if !(reply in behavior[step-1].network) {

req := OnlyExecReplies(behavior, step-1);
} else { // apply induction

req := ReplyToReq(behavior, step-1, reply);
}

}

Figure 6. Establishing an invariant with implicit quantifiers.

all bound variables. For each universal quantifier in the

invariant that does not succeed an existential quantifier, the

quantified variable is an input parameter of the proof. For each

existential quantifier in the invariant, the quantified variable

is an output parameter. For instance, the invariant from the

beginning of this paragraph could be proved with Figure 6.

It is easy to write this proof because we must prove it only

for a specific reply message, not all of them. As illustrated

above, there are only two cases to consider: (1) the reply

message was just generated, in which case we only have to

consider the last action taken, or (2) the reply message was

already present in the previous step, in which case we can

complete the proof by induction on step.

It is also easy to use this proof because instead of stating

a fact about the existence of a request message, it explicitly

provides a witness to that existence. Typically, a developer

only needs to prove the invariant for a specific reply message;

this form lets her establish precisely that fact. If the developer

needs the universally-quantified version, she can establish it

by invoking the invariant’s proof in a loop.

3.4 The Implementation Layer

Unlike in the declarative protocol layer, in the implementation

layer the developer writes single-threaded, imperative code

to run on each host. This code must cope with all of the

ugly practicalities we abstracted away in the protocol layer.

For instance, it must handle real-world constraints on how

hosts interact: since network packets must be bounded-sized

byte arrays, we need to prove the correctness of our routines

for marshalling high-level data structures into bytes and for

parsing those bytes. We also write the implementation with

performance in mind, e.g., using mutable arrays instead of

immutable sequences and using uint64s instead of infinite-

precision integers. The latter requires us to prove the system

correct despite the potential for integer overflow.

Dafny does not natively support networking, so we extend

the language with a trusted UDP specification that exposes

Init, Send, and Receive methods. For example, Send
expects an IP address and port for the destination and an

array of bytes for the message body. When compiled, calls to

5

these Dafny methods invoke the .NET UDP network stack.

Send also automatically inserts the host’s correct IP address,

satisfying our assumption about packet headers in §2.5.

The network interface maintains a ghost variable (i.e., a

variable used only for verification, not execution) that records

a “journal” of every Send and Receive that takes place,

including all of the arguments and return values. We use this

journal when proving properties of the implementation (§3.5).

3.5 Connecting the Implementation to the Protocol

The second major theorem we prove about each IronFleet

system is that the implementation layer correctly refines the

protocol. To do this, we prove that even though the imple-

mentation operates on concrete local state, which uses heap-

dependent, bounded representations, it is still a refinement

of the protocol layer, which operates on abstract types and

unbounded representations.

First, we prove that the host implementation refines the

host state machine described in the protocol layer. This refine-

ment proof is analogous to the one in §3.3, though simplified

by the fact that each step in the implementation corresponds to

exactly one step of the host state machine. We define a refine-

ment function HRef that maps a host’s implementation state

to a host protocol state. We prove that the code ImplInit
to initialize the host’s state ensures HostInit(HRef(hs)),

and that the code ImplNext to execute one host step ensures

HostNext(HRef(hs_old),HRef(hs_new)).

Then, we use this to prove that a distributed system

comprising N host implementations, i.e., what we actually

intend to run, refines the distributed protocol of N hosts.

We use a refinement function IRef that maps states of

the distributed implementation to states of the distributed

protocol. The refinement proof is largely straightforward

because each step of the distributed implementation in which

a host executes ImplNext corresponds to one step of the

distributed protocol where a host takes a HostNext step.

The difficult part is proving that the network state in the

distributed system implementation refines the network state

in the protocol layer. Specifically, we must prove that every

send or receive of a UDP packet corresponds to a send or

receive of an abstract packet. This involves proving that when

host A marshals a data structure into an array of bytes and

sends it to host B, B parses out the identical data structure.

The last major theorem we prove is that the distributed

implementation refines the abstract centralized spec. For this,

we use the refinement functions from our two major refine-

ment theorems, composing them to form our final refinement

function PRef(IRef(·)). The key part of this proof is

establishing that the specified relation conditions hold, i.e.,

that for all implementation states is, SpecRelation(is,
IRef(PRef(is))) holds.

3.6 Abstracting Non-Atomicity via Reduction

Sections 3.1–3.5 describe a mechanically verified proof struc-

ture that assumes that every implementation step performs an

AR AP BR AS BP AS AR BP AP BS AS
actual
execution

AR AP AS BR AS BP BP AR BS AP AS

AR AP AS AS BR BP BP BS AR AP AS
equivalent
execution

HostNextA HostNextAHostNextB

Figure 7. Reduction. In the real execution behavior, the send
(S), receive (R), and local processing (P) steps at hosts A and B
are fully interleaved. However, certain steps commute to yield an
equivalent behavior. Since we impose constraints on the structure
of the implementation’s event handlers (Figure 8), we can commute
steps until all of the implementation-level steps in a given host’s
event handler (circled) are contiguous. This reduced behavior then
admits a direct refinement to the distributed protocol layer.

atomic protocol step. However, the implementation’s event

handler is not atomic: while one host receives packets, com-

putes locally, and sends packets, other hosts do the same con-

currently, leading to arbitrary interleavings of these low-level

operations. To bridge this gap, we use a “reduction” argument

(§2.3). Reduction is typically used to reason about threads

and processes sharing a single machine, but we apply it to rea-

soning about distributed systems. Although Dafny does not

provide a general mechanism for reasoning about reduction,

we are still able to use Dafny to enforce an obligation on the

implementation that enables reduction. A machine-checked

proof that this obligation enables reduction is future work;

instead, we sketch an informal argument here.

Hosts are unable to see others’ state except indirectly by

observing the packets they send. Thus, it is possible to take a

behavior of the system, representing the order in which events

really occurred, and posit an alternate order in which (1) each

host receives the same packets in the same order, (2) packet

send ordering is preserved, (3) packets are never received

before they are sent, and (4) the ordering of operations on

any individual host is preserved. Any proof of correctness

assuming such an ordering implies a proof for the original

behavior, since only the externalized behavior of the system,

the content and ordering messages sent, matters.

Figure 7 shows an example of such reordering. We start

with the real behavior at the bottom and reorder until we reach

the behavior at the top. For instance, we can reorder A’s first

send before B’s first receive because we know its contents

cannot have depended on B’s receive. The top behavior has no

interleavings between different hosts’ HostNext steps, and

thus is a legal behavior in which we have proved correctness.

Thus, the correctness proof also applies to the real behavior.

As a result, we can always reduce a real execution behavior

to a sequence of atomic steps via such reorderings if we

constrain the implementation to, in any given step, perform

all of its receives before all its sends. We call this a reduction-
enabling obligation, which we use Dafny to enforce (§3.7).

With this obligation, we ensure that our proof of correctness

6

method Main() {
var s := ImplInit();
while (true)

invariant ImplInvariant(s);
{

ghost var journal_old := get_event_journal();
ghost var ios_performed:seq<IoEvent>;
s, ios_performed := ImplNext(s);
assert get_event_journal() ==

journal_old + ios_performed;
assert ReductionObligation(ios_performed);

}
}

Figure 8. Mandatory host event-handler loop.

assuming atomicity is equally valid as a proof of correctness

for the real system.

One complication is that when a host performs a time-

dependent operation like reading its clock, it creates a causal

constraint even without communication with other hosts.

This is because the clock represents an imperfect sample

from a globally shared reality. Thus, the reduction-enabling

obligation is extended as follows: A step may perform at

most one time-dependent operation, i.e., at most one clock

read, blocking receive, or non-blocking receive that returns

no packets. The step must perform all receives before this

time-dependent operation, and all sends after it.

3.7 Trusted Code

Nearly all IronFleet code is verified using the above methodol-

ogy, so there are only a few lines of code and proof assertions

that a user must read to gain confidence in the system. First,

she must read the high-level centralized spec to understand

what is being guaranteed. Second, she must read the asser-

tion, but not the proof of the assertion, that if each host in

a distributed system runs ImplInit followed by a loop of

ImplNext, then there exists a corresponding abstract behav-

ior of the centralized spec. Third, she must read the top-level

main host routine (Figure 8) to convince herself that each

host runs ImplInit and ImplNext. This code also ensures

that each host step meets its reduction-enabling constraint by

using the journal of externally visible events from §3.4.

4. Verifying Liveness
§3 describes the high-level spec as a state machine. Such a

spec says what the implementation must not do: it must never

deviate from the state machine’s behavior. However, it is also

useful to specify what the implementation must do; properties

of this form are called liveness properties. For example, we

might specify that the lock implementation eventually grants

the lock to each host (Figure 9). Thus, a spec will typically

include not just a state machine but also liveness properties.

Some researchers have proposed heuristics for detecting

and quashing likely sources of liveness violations [31, 66],

but it is better to definitively prove their absence. With such

a proof, we do not have to reason about, e.g., deadlock or

predicate LockBehaviorFair(b:map<int,SpecState>)
{ forall h:Host, i:int :: h in AllHostIds() && i >= 0

==> exists j :: j >= i && h == last(b[j].history) }

Figure 9. Desired liveness property for the lock service.

livelock; such conditions and any others that can prevent the

system from making progress are provably ruled out.

Liveness properties are much harder to verify than safety

properties. Safety proofs need only reason about two system

states at a time: if each step between two states preserves the

system’s safety invariants, then we can inductively conclude

that all behaviors are safe. Liveness, in contrast, requires

reasoning about infinite series of system states. Such reason-

ing creates challenges for automated theorem provers (§2.4),

often causing the prover to time out rather than return a suc-

cessful verification or a useful error message.

With IronFleet, we address these challenges via a custom

TLA embedding in Dafny that focuses the prover’s efforts

in fruitful directions. We then use our TLA embedding to

build a library of fundamental TLA proof rules verified from

first principles. This library is a useful artifact for proving

liveness properties of arbitrary distributed systems: its rules

allow both the human developer and Dafny to operate at a

high level by taking large proof steps with a single call to a

lemma from the library. Finally, by structuring our protocols

with always-enabled actions, we significantly simplify the

task of proving liveness properties.

4.1 TLA Embedding and Library

As discussed in §2.4, TLA [34] is a standard tool for rea-

soning about liveness. IronFleet embeds TLA in Dafny by

modeling a TLA behavior, an infinite sequence of system

states, as a mapping B from integers to states, where B[0] is

the initial state and B[i] is the ith subsequent state. A liveness

property is a constraint on the behavior of the state machine.

For example, Figure 9 says that for every host h, there is

always a later time when h will hold the lock.

Our embedding hides key definitions from the prover

except where truly needed, and instead provides verified

lemmas that relate them to one another. For example, we

represent temporal logic formulas as opaque objects (i.e.,

objects Dafny knows nothing about) of type temporal,

and TLA transformations like � as functions that convert

temporal objects to temporal objects.

Of course, in some contexts we actually do need to reason

about the internal meaning of � and ♦. State-of-the-art SMT

solvers like Z3 do not yet provide decision procedures for

temporal operators like � and ♦ directly. However, we can

encode these operators using explicit quantification over

steps (� universally quantifies over all future steps, while

♦ existentially quantifies over some future step). We can

then provide the SMT solver with heuristics to control these

quantifiers using the solver’s support for triggers [12], as

discussed in §2.2. One simple heuristic proved effective in

many situations: when the solver is considering a future

7

step j for one formula, such as ♦Q, the heuristic requests

that the solver also consider j as a candidate step for other

formulas starting with � or ♦, such as �P and ♦(P∧Q).
This allows the solver to automatically prove formulas like

(♦Q)∧ (�P) =⇒ ♦(P∧Q).
This heuristic is effective enough to automatically prove

40 fundamental TLA proof rules, i.e., rules for deriving one

formula from other formulas [34]. The heuristic allows us

to prove complicated rules efficiently; e.g., we stated and

proved Lamport’s INV1 rule about invariants in only 27 lines

of Dafny, and his WF1 rule about fairness in only 16 lines.

Our liveness proofs use these fundamental proof-rule

lemmas to justify temporal formula transformations. For

instance, as we discuss in §4.4, a liveness proof can usually

prove most of its steps by repeatedly invoking the WF1 rule.

4.2 Always-Enabled Actions

To achieve liveness, our protocol must satisfy fairness
properties. That is, it must ensure that each action, e.g.,

HostGrant or HostAccept, occurs in a timely fashion.

Lamport [36] suggests that such properties take the form

“if action A becomes always enabled, i.e., always possible

to do, the implementation must eventually do it.” However,

having terms of this form in verified code is problematic. If

the fairness property is a complex formula, it can be difficult

to characterize the set of states from which the action is

possible. This difficulty complicates both proving that the

fairness property is sufficient to ensure liveness properties,

and proving that the protocol has the fairness property.

Thus, we instead adopt always-enabled actions; i.e., we

only use actions that are always possible to do. For instance,

we would not use HostGrant from Figure 5 since it is

impossible to perform if you do not hold the lock. Instead,

we might use “if you hold the lock, grant it to the next host;

otherwise, do nothing”, which can always be done.

Our approach deviates from Lamport’s standard fairness

formulas, which means it can admit specifications that are not

machine closed [36]. Machine closure ensures that liveness

conditions do not combine with safety conditions to create

an unimplementable spec, such as that the implementation

must both grant a lock (to be fair) and not grant a lock

(to be safe, because it does not hold the lock). Fortunately,

machine closure is no concern in IronFleet: the existence

of an implementation that meets a fairness property is itself

proof that the property does not prevent implementation!

4.3 Proving Fairness Properties

Following IronFleet’s general philosophy of having the imple-

mentation layer deal only with implementation complexities,

we put the burden of satisfying fairness properties on the

protocol layer. The implementation satisfies the properties

automatically since its main method implements HostNext.

The mandatory structure from Figure 8 ensures that

HostNext runs infinitely often. So, all we must prove

is that if HostNext runs infinitely often, then each action

occurs infinitely often. We do this by having HostNext be

a scheduler that guarantees each action occurs regularly.

One way to do this is to use a simple round-robin scheduler.

We currently have proofs in our library that if HostNext is

a round-robin scheduler that runs infinitely often, then each

action runs infinitely often. Furthermore, if the main host

method runs with frequency F (expressed, e.g., in times per

second), then each of its n actions occurs with frequency F/n.

4.4 Liveness Proof Strategies

Most of a liveness proof involves demonstrating that if some

condition Ci holds then eventually another condition Ci+1

holds. By chaining such proofs together, we can prove that

if some assumed initial condition C0 holds then eventually

some useful condition Cn holds. For instance, in IronRSL,

we prove that if a replica receives a client’s request, it

eventually suspects its current view; if it suspects its current

view, it eventually sends a message to the potential leader

of a succeeding view; and, if the potential leader receives a

quorum of suspicions, it eventually starts the next view.

Most steps in this chain require an application of a variant

of Lamport’s WF1 rule [34]. This variant involves a start-

ing condition Ci, an ending condition Ci+1, and an always-

enabled action predicate Action. It states that Ci leads to Ci+1

if the following three requirements are met:

1. If Ci holds, it continues to hold as long as Ci+1 does not.

2. If a transition satisfying Action occurs when Ci holds, it

causes Ci+1 to hold.

3. Transitions satisfying Action occur infinitely often.

We use this in Dafny as follows. Suppose we need a lemma

that shows Ci leads to Ci+1. We first find the action transition

Action intended to cause this. We then establish each of

requirements 1 and 2 with an invariant proof that considers

only pairs of adjacent steps. We then invoke the proof from

§4.3 that each of the action transitions occurs infinitely often

to establish requirement 3. Finally, having established the

three preconditions for the WF1 lemma from our verified

library, we call that lemma.

In some cases, we need lemmas from our library that prove

other variants of the WF1 proof rule sound. For instance,

often we must prove that Ci leads to Ci+1 not just eventually

but within a bounded time. For this, we have a variant of

WF1 that proves Ci+1 holds within the inverse of Action’s

frequency. It uses a modified requirement 3: that Action
occurs with a minimum frequency.

Another useful variant of WF1 is delayed, bounded-time
WF1. It applies when Action only induces Ci+1 after a certain

time t; this is common in systems that rate-limit certain

actions for performance reasons. For instance, to amortize

the cost of agreement, the IronRSL action for proposing

a batch of requests has a timer preventing it from sending

an incomplete batch too soon after the last batch. Delayed,

bounded-time WF1 uses a modified requirement 2: “If Action
occurs when Ci holds and the time is ≥ t, it causes Ci+1 to

8

hold.” This variant proves that Ci+1 eventually holds after t
plus the inverse of the action’s frequency.

Sometimes, a liveness proof needs more than a chain of

conditions: it must prove that multiple conditions eventually

hold simultaneously. For instance, in IronRSL we must prove

that a potential leader eventually knows suspicions from every

replica in the quorum at once. For this, we use our temporal

heuristics to prove sound the proof rule: “If every condition

in a set of conditions eventually holds forever, then eventually

all the conditions in the set hold simultaneously forever.” We

also have and use a bounded-time variant of this rule.

5. System Implementation
We use the IronFleet methodology to implement two practical

distributed systems and prove them correct: a Paxos-based

replicated state machine library and a lease-based sharded

key-value store. All IronFleet code is publicly available [25].

5.1 IronRSL: A Replicated State Machine Library

IronRSL replicates a deterministic application on multiple

machines to make that application fault-tolerant. Such repli-

cation is commonly used for services, like Chubby and

Zookeeper [5, 24], on which many other services depend.

Due to these dependencies, correctness bugs in replication

can lead to cascading problems, and liveness bugs can lead

to widespread outages of all dependent services.

IronRSL guarantees safety and liveness without sacrific-

ing complex implementation features necessary to run real

workloads. For instance, it uses batching to amortize the cost

of consensus across multiple requests, log truncation to con-

strain memory usage, responsive view-change timeouts to

avoid hard-coded assumptions about timing, state transfer to

let nodes recover from extended network disconnection, and

a reply cache to avoid unnecessary work.

5.1.1 The High-Level Specification

The spec for IronRSL is simply linearizability: it must gen-

erate the same outputs as a system that runs the application

sequentially on a single node. Our implementation achieves

this in the same way typical replicated state machine libraries

do: it runs the application on multiple nodes, and uses the

MultiPaxos [35] consensus protocol to feed the same requests

in the same order to each replica.

5.1.2 The Distributed-Protocol Layer

Protocol. In the protocol layer, each host’s state consists

of four components, based on Lamport’s description of

Paxos [35]: a proposer, an acceptor, a learner, and an executor.

The host’s action predicates include, for instance, proposing a

batch of requests (Figure 10) or sending the local application

state to a host that has fallen behind.

Protocol invariants. The protocol’s key invariant, known as

agreement, is that two learners never decide on different re-

quest batches for the same slot. Establishing this invariant

requires establishing several more invariants about earlier pro-

predicate ExistsProposal(m_set:set<Msg1b>, op:Op)
{ exists p :: p in m_set && op in p.msg.votes }
predicate ProposeBatch(s:Proposer,s’:Proposer)
{ if |s.1bMsgs| < quorumSize then no_op()

else if ExistsProposal(s.1bMsgs,s.nextOp) then
var new_batches := s.proposedBatches[s.nextOp :=

BatchFromHighestBallot(s.1bMsgs, s.nextOp)];
s’ == s[nextOp := s.nextOp + 1]

[proposedBatches := new_batches]
else ... }

Figure 10. A step predicate example from IronRSL (simplified).

tocol actions. For instance, we prove that ProposeValue
(Figure 10) cannot propose a batch if a different one may

have already been learned. The action’s predicate states that

batches can only be proposed when the host has received

a 1b message from at least f + 1 acceptors. We use this to

prove that this quorum of acceptors intersects with any other

quorum that might have accepted a batch in a previous ballot.

Protocol refinement. After establishing the agreement in-

variant, we prove that executing the sequence of decided

request batches is equivalent to taking steps in the high-level

state machine. One challenge is that multiple replicas execute

the same request batches, but the corresponding high-level

steps must be taken only once. We address this by refining

the distributed system to an abstract state machine that ad-

vances not when a replica executes a request batch but when

a quorum of replicas has voted for the next request batch.

5.1.3 The Implementation Layer

Often, the most difficult part of writing a method to imple-

ment a protocol action is proving that the method has the

appropriate effect on the refined state. For this, IronRSL re-

lies on our generic refinement library (§5.3), which lightens

the programmer’s burden by proving useful properties about

the refinement of common data structures.

Another difficulty is that the protocol sometimes describes

the relationship between the host’s pre-action and post-action

state in a non-constructive way. For instance, it says that the

log truncation point should be set to the nth highest number

in a certain set. It describes how to test whether a number

is the nth highest number in a set, but not how to actually

compute such a quantity. Thus, the implementer must write a

method to do this and prove it correct.

Writing and maintaining invariants is also useful in the im-

plementation. Most IronRSL methods need some constraints

on the concrete state they start with. For instance, without

some constraint on the size of the log, we cannot prove that

the method that serializes it can fit the result into a UDP

packet. We incorporate this constraint (and many others) into

an invariant over the concrete state. Each method learns these

properties on entry and must prove them before returning.

Invariants are also a crucial part of performance optimiza-

tion. Consider, for example, the ExistsProposalmethod

in ProposeBatch. A naı̈ve implementation would always

iterate through all votes in all 1b messages, a costly process.

9

Instead, we augment the host state with an additional variable,

maxOpn, and prove an invariant that no 1b message exceeds

it. Thus, in the common case that s.nextOp ≥ maxOpn,

the implementation need not scan any 1b messages.

5.1.4 IronRSL Liveness

We also prove our implementation is live: if a client repeat-

edly sends a request to all replicas, it eventually receives

a reply. No consensus protocol can be live under arbitrary

conditions [16], so this property must be qualified by as-

sumptions. We assume there exists a quorum of replicas Q, a

minimum scheduler frequency F , a maximum network delay

Δ, a maximum burst size B, and a maximum clock error E, all

possibly unknown to the implementation, such that (1) even-

tually, the scheduler on each replica in Q runs with frequency

at least F , never exhausting memory; (2) eventually, any mes-

sage sent between replicas in Q and/or the client arrive within

Δ; (3) eventually, no replica in Q receives packets at an over-

whelming rate, i.e., each receives no more than B packets

per 10B
F +1 time units; (4) whenever a replica in Q reads its

clock, the reading differs from true global time by at most

E; and (5) no replica in Q ever stops making progress due to

reaching an overflow-prevention limit.

Our proof strategy is as follows. First, we use our library’s

round-robin scheduler proofs to prove that our protocol fairly

schedules each action (§4.3). Next, we prove that eventually

no replica in Q has a backlog of packets in its queue, so

thereafter sending a message among replicas in Q leads to

the receiver acting on that message within a certain bound.

Next, using WF1 (§4.4), we prove that if the client’s request

is never executed, then for any time period T , eventually a

replica in Q becomes the undisputed leader for that period.

Finally, using bounded-time WF1 variants (§4.4), we prove

there exists a T such that an undisputed leader can ensure the

request gets executed and responded to within T .

5.2 IronKV: A Sharded Key-Value Store

We also apply the IronFleet methodology to build IronKV,

a system that uses distribution for a completely different

purpose: to scale its throughput by dynamically sharding a

key-value store across a set of nodes.

The high-level spec of IronKV’s state machine is concise:

it is simply a hash table, as shown in Figure 11.

5.2.1 The Distributed-Protocol Layer

Each host’s state consists of a hash table storing a subset

of the key space and a “delegation map” mapping each key

to the host responsible for it. On protocol initialization, one

designated host is responsible for the entire key space; thus,

each host’s delegation map maps every key to that host.

To gain throughput and to relieve hot spots, IronKV allows

an administrator to delegate sequential key ranges (shards) to

other hosts. When a host receives such an order, it sends the

corresponding key-value pairs to the intended recipient and

updates its delegation map to reflect the new owner.

type Hashtable = map<Key,Value>
type OptValue = ValuePresent(v:Value) | ValueAbsent
predicate SpecInit(h:Hashtable) { h == map [] }
predicate Set(h:Hashtable,h’:Hashtable,

k:Key, ov:OptValue)
{ h’ == if ov.ValuePresent? then h[k := ov.v]

else map ki | ki in h && ki!=k :: h[ki] }
predicate Get(h:Hashtable,h’:Hashtable,

k:Key, ov:OptValue)
{ h’ == h && ov == if k in h then ValuePresent(h[k])

else ValueAbsent() }
predicate SpecNext(h:Hashtable,h’:Hashtable)
{ exists k, ov :: Set(h,h’,k,ov) || Get(h,h’,k,ov) }

Figure 11. Complete high-level spec for IronKV state machine

If such a message is lost, the protocol layer cannot be

shown to refine the high-level specification, since the corre-

sponding key-value pairs vanish. To avoid this, we design

a sequence-number-based reliable-transmission component

that requires each host to acknowledge messages it receives,

track its own set of unacknowledged messages, and period-

ically resend them. The liveness property we prove is that

if the network is fair (i.e., any packet sent infinitely often

is eventually delivered), then any packet submitted to the

reliable-transmission component is eventually received.

The most important invariant for IronKV’s proof is that

every key is claimed either by exactly one host or in-flight

packet. Using this invariant and the exactly-once delivery se-

mantics we prove about our reliable-transmission component,

we show that the protocol layer refines the high-level spec.

5.2.2 The Implementation Layer

As in IronRSL, we prove that modifications to a host’s

concrete state refine changes to the protocol-layer state. The

delegation map, however, poses a challenge unique to IronKV.

The protocol layer uses an infinite map with an entry for

every possible key. However, the implementation layer must

use concrete data types with bounded size and reasonable

performance. Thus, we implement and prove correct an

efficient data structure in which each host keeps only a

compact list of key ranges, along with the identity of the host

responsible for each range. This complexity we introduce

for the sake of performance creates opportunities for bugs.

However, by establishing invariants about the data structure

(e.g., the ranges are kept in sorted order), we prove that it

refines the abstract infinite map used by the protocol layer.

This lets us introduce this complex data structure without risk

of data loss or any other error.

5.3 Common Libraries

In developing IronRSL and IronKV, we have written and ver-

ified several generic libraries useful for distributed systems.

Generic refinement. A common task is proving that an op-

eration on concrete implementation-layer objects refines the

corresponding operation on protocol-layer objects. For exam-

ple, IronRSL’s implementation uses a map from uint64s

to IP addresses where the protocol uses a map from mathe-

10

matical integers to abstract node identifiers. In the proof, we

must show that removing an element from the concrete map

has the same effect on the abstract version.

To simplify such tasks, we have built a generic library for

reasoning about refinement between common data structures,

such as sequences and maps. Given basic properties about

the relationship between the concrete types and the abstract

types, e.g., that the function mapping concrete map keys to

abstract maps keys is injective, the library shows that various

concrete map operations, such as element lookup, addition,

and removal, refine the corresponding abstract operations.

Marshalling and parsing. All distributed systems need to

marshal and parse network packets, a tedious task prone to

bugs. Both tasks necessarily involve significant interaction

with the heap, since packets are ultimately represented as ar-

rays of bytes. Unfortunately, even state-of-the-art verification

tools struggle to verify heap operations (§6.2). Hence, we

have written and verified a generic grammar-based parser and

marshaller to hide this pain from developers. For each dis-

tributed system, the developer specifies a high-level grammar

for her messages. To marshal or unmarshal, the developer

simply maps between her high-level structure and a generic

data structure that matches her grammar. The library handles

the conversion to and from a byte array.

As evidence for the library’s utility, we initially wrote

an IronRSL-specific library. This took a person-month, and

relatively little of this code would have been useful in other

contexts. Dissatisfied, we built the generic library. This

required several more weeks, but given the generic library,

adding the IronRSL-specific portions only required two hours;

the IronKV-specific portions required even less.

Collection Properties. Another common task for distributed

systems is reasoning about properties of sequences, sets,

maps, etc. For instance, many IronRSL operations require

reasoning about whether a set of nodes form a quorum.

Thus, we have developed a library proving many useful

relationships about such collections. For example, one lemma

proves that if two sets are related by an injective function,

then their sizes are the same.

6. Lessons Learned
We summarize additional lessons we learned, beyond us-

ing invariant quantifier hiding (§3.3) and always-enabled ac-

tions (§4.2), useful for future developers of verified systems.

6.1 Use the Set of Sent Messages in Invariants

The IronFleet network model is monotonic: once a message

is sent, it is kept in a ghost state variable forever. This is

necessary to prove that the system behaves correctly even

if the network delivers messages arbitrarily late. Since the

set of messages can only grow, it is often easy to prove

invariants about it. In contrast, an invariant that reasons over

mutable host state is harder to prove. Thus, where possible,

it is useful to have invariants be properties only of the set of

messages sent so far, as is often done in proofs of security for

cryptographic protocols [8]. Essentially, the system’s network

model provides this set as a free “history variable” [1].

6.2 Model Imperative Code Functionally

Verifying imperative code is challenging compared with

verifying purely functional code, even when using a state-

of-the-art tool like Dafny that is designed for imperative

programs (§2.2). Thus, we found it profitable to implement

the system in two stages. First, we develop an implementation

using immutable value (functional) types and show that it

refines the protocol layer. Avoiding heap reasoning simplifies

the refinement proof, but, it produces a slow implementation,

since it cannot exploit the performance of heap references.

In the second stage, we replace the value types with mutable

heap types, improving performance while solving only a

narrow verification problem.

We apply this pattern in building IronRSL and IronKV;

e.g., the functional implementation manipulates IP addresses

as value types and the performant one uses references to OS

handles. This strategy takes advantage of Dafny’s support for

mixing functional programming and imperative programming

styles: we can first run the functional code and measure its

performance, then optimize the performance-critical sections

into imperative heap-based code as needed. Using a language

without good functional programming support (such as C)

would have made it harder to pursue this strategy.

6.3 Use Automation Judiciously

Automated verification tools reduce the human effort needed

to complete a proof, but they often require additional guid-

ance from the developer in order to find a proof, or, equally

importantly, to find a proof in a reasonable amount of time.

6.3.1 Automation Successes

In many cases, Dafny’s automated reasoning allows the

developer to write little or no proof annotation. For instance,

Dafny excels at automatically proving statements about linear

arithmetic. Also, its heuristics for dealing with quantifiers,

while imperfect, often produce proofs automatically.

Dafny can also prove more complex statements auto-

matically. For instance, the lemma proving that IronRSL’s

ImplNext always meets the reduction-enabling obligation

consists of only two lines: one for the precondition and one

for the postcondition. Dafny automatically enumerates all ten

possible actions and all of their subcases, and observes that

all of them produce I/O sequences satisfying the property.

Similarly, automated reasoning allows many invariant

proofs to be quite brief, by reasoning as follows: If the invari-

ant about a host’s state holds in step i but not i+1, the host

must have taken some action. However, none of the actions

can cause the invariant to stop holding. Typically, this last

part requires no proof annotation as the verifier can internally

enumerate all cases, even for IronRSL with its many compli-

cated actions. Sometimes the verifier cannot handle a tricky

case automatically, in which case the developer must insert

11

proof annotations. However, even then, the developer need

not mention, let alone enumerate, the other cases.

6.3.2 Automation Challenges

Even the fastest automated verification tools can take a long

time to explore a huge search space. By default, Dafny reveals

all predicate definitions to its SMT solver Z3, potentially

giving Z3 a large search space. For example, each distributed

protocol’s HostNext transitively includes almost every

other definition in the protocol. Similarly, message-parsing

code refers to a large tree of possible message types. Having

such big trees in scope exposes the SMT solver to a bounded

but still large search space, e.g., any mention of a state invokes

every predicate about states.

To keep verification time manageable and avoid verifier

timeouts, we use Dafny’s opaque attribute and reveal
directive to selectively hide irrelevant definitions from the

SMT solver, and reveal them only when needed to complete a

proof [21]. This leads to a more modular style of verification.

In addition to hiding large definitions, we also use opaque
to hide logic features that are hard to automate. For example,

we mark recursive predicate definitions opaque to prevent the

solver from blindly unrolling the definitions too many times.

To provide greater flexibility, we modify Dafny to also

support a fuel attribute for functions. Fuel controls how

many times the SMT solver may expand a function’s defini-

tion. Giving a function zero fuel is equivalent to marking the

function opaque, while giving a fuel of five allows the solver

to unroll a recursive function up to five times. By allowing

the programmer to specify a function’s fuel at the scope of

a statement, method, class, module, or program, we allow

different portions of the code to be more or less aggressive

about revealing function definitions.

Formulas that make heavy use of quantifiers (forall and

exists) may also lead to timeouts because the SMT solver can

instantiate the quantifiers more than it needs to, depending

on which triggers the solver chooses to control instantiation.

In many places, we adopt coding styles that avoid quantifiers

(§3.3). In other places, when we find the default triggers in

Dafny overly liberal, leading to too many instantiations, we

modify Dafny to use more cautious triggers. In some cases,

we also annotate our Dafny code with manual triggers to

reduce instantiations. In particularly problematic formulas,

such as chains of alternating quantifiers (e.g., for all X there

exists a Y such that for all Z...) and set comprehensions,

we mark the containing predicate opaque. Temporal logic

formulas can easily lead to alternating quantifiers, so we

define � and ♦ to be opaque by default.

7. Evaluation
IronFleet’s premise is that automated verification is a viable

engineering approach, ready for developing real distributed

systems. We evaluate that hypothesis by answering the follow-

ing questions: (1) How does verification affect the develop-

Spec Impl Proof Time to Verify
(source lines of code) (minutes)

High-Level Spec:
IronRSL 85 – – –

IronKV 34 – – –

Temporal Logic 208 – – –

Distributed Protocol:
IronRSL Protocol – – 1202 4

Refinement 35 – 3379 26

Liveness 167 – 7869 115

IronKV Protocol – – 726 2

Refinement 36 – 3998 12

Liveness 98 – 2093 23

TLA Library – – 1824 2

Implementation:
IO/Native Interface 591 – – –

Common Libraries 134 833 7690 13

IronRSL 6 2941 7535 152

IronKV 6 1340 2937 42

Total 1400 5114 39253 395

Figure 12. Code sizes and verification times.

ment of distributed systems? (2) How does the performance

of a verified system compare with an unverified one?

7.1 Developer Experience

To assess practicality, we evaluate the developer experience

as well as the effort required to produce verified systems.

The experience of producing verified software shares

some similarities with that of unverified software. Dafny

provides near-real-time IDE-integrated feedback. Hence, as

the developer writes a given method or proof, she typically

sees feedback in 1–10 seconds indicating whether the verifier

is satisfied. To ensure the entire system verifies, our build

system tracks dependencies across files and outsources, in

parallel, each file’s verification to a cloud virtual machine.

Thus, while a full integration build done serially requires

approximately six hours, in practice, the developer rarely

waits more than 6–8 minutes, which is comparable to any

other large system integration build.

An IronFleet developer must write a formal trusted spec,

a distributed protocol layer, and proof annotations to help the

verifier see the refinements between them. Figure 12 quanti-

fies this effort by reporting the amount of proof annotation

required for each layer of the system. We count all non-spec,

non-executable code as proof annotation; this includes, for

example, requires and ensures clauses, loop invariants, and

all lemmas and invocations thereof. Note that the high-level

trusted specification for IronRSL is only 85 SLOC, and for

IronKV it is only 34, making them easy to inspect for correct-

ness. At the implementation layer, our ratio of proof annota-

tion to executable code is 3.6 to 1. We attribute this relatively

low ratio to our proof-writing techniques (§3.3, §4.1, §6) and

our automated tools (§6.3.1).

In total, developing the IronFleet methodology and apply-

ing it to build and verify two real systems required approxi-

mately 3.7 person-years.

12

 1

 10

 100

 1000

10 20 30 40 50

Latency
(ms)

Throughput (kilo reqs/s)

IronRSL
Baseline

IronRSL (Batch)
Baseline (Batch)

Figure 13. IronRSL’s performance is competitive with an unveri-
fied baseline. Results averaged over 3 trials.

In exchange for this effort, IronFleet produces a provably

correct implementation with desirable liveness properties. In-

deed, except for unverified components like our C# client,

both IronRSL (including replication, view changes, log trun-

cation, batching, etc.) as well as IronKV (including delegation

and reliable delivery) worked the first time we ran them.

7.2 Performance of Verified Distributed Systems

A reasonable criticism of any new toolchain focused on veri-

fication is that its structure might impair runtime efficiency.

While we focus most of our energy on overcoming verifica-

tion burdens, we also try to produce viable implementations.

Our IronRSL experiments run three replicas on three

separate machines, each equipped with an Intel Xeon L5630

2.13 GHz processor and 12 GB RAM, connected over a

1 Gbps network. Our IronKV experiments use two such

machines connected over a 10 Gbps network.

IronRSL. Workload is offered by 1–256 parallel client

threads, each making a serial request stream and measur-

ing latency. As an unverified baseline, we use the MultiPaxos

Go-based implementation from the EPaxos codebase [15, 45]

For both systems, we use the same application state machine:

it maintains a counter and it increments the counter for every

client request. Figure 13 summarizes our results. We find that

IronRSL’s peak throughput is within 2.4× of the baseline.

IronKV. To measure the throughput and latency of IronKV,

we preload the server with 1000 keys, then run a client with

1–256 parallel threads; each thread generates a stream of Get

(or Set) requests in a closed loop. As an unverified baseline,

we use Redis [58], a popular key/value store written in C

and C++, with the client-side write buffer disabled. For both

systems, we use 64-bit unsigned integers as keys and byte

arrays of varying sizes as values. Figure 14 summarizes our

results. We find that IronKV’s performance is competitive

with that of Redis.

As a final note, in all our experiments the bottleneck was

the CPU (not the memory, disk, or network).

8. Discussion and Future Work
§7.1 shows that in exchange for strong guarantees (which

depend on several assumptions, per §2.5), IronFleet requires

considerably more developer effort. Furthermore, in our

experience, there is a distinct learning curve when bringing

10
20
30
40
50

128B 1KB
Get

8KB 128B 1KB
Set

8KB

Pe
ak

 th
ro

ug
hp

ut
(k

ilo
 r

eq
s/

se
c)

 IronKV
Redis

Figure 14. IronKV’s performance is competitive with Redis, an
unverified key-value store. Results averaged over 3 trials.

aboard developers unfamiliar with writing verified code. Most

developers would prefer to use a language like C++, so

enabling that is an important topic of future work.

§7.2 shows that while our systems achieve respectable

performance, they do not yet match that of the unverified

baselines. Some of that gap stems directly from our use of

verification. Verifying mutable data structures is challenging

(§6.2), and our measurements indicate that this is a significant

bottleneck for our code. The baselines we compare against

have been highly optimized; we have also optimized our

code, but each optimization must be proven correct. Hence,

given a fixed time budget, IronFleet will likely produce fewer

optimizations. IronFleet also pays a penalty for compiling to

C#, which imposes run-time overhead to enforce type safety

on code that provably does not need it.

More fundamentally, aiming for full verification makes

it challenging to reuse existing libraries, e.g., for optimized

packet serialization. Before our previous [21] and current

work (§5.3), Dafny had no standard libraries, necessitating

significant work to build them; more such work lies ahead.

While our systems are more full-featured than previous

work (§9), they still lack many standard features offered by

the unverified baselines. Some features, such as reconfigu-

ration in IronRSL, only require additional developer time.

Other features require additional verification techniques; e.g.,

post-crash recovery requires reasoning about the effects of

machine crashes that wipe memory but not disk.

In future work, we aim to mechanically verify our reduc-

tion argument and prove that our implementation run its main

loop in bounded time [2], never exhausts memory, and never

reaches its overflow-prevention limit under reasonable condi-

tions, e.g., if it never performs more than 264 operations.

9. Related Work
9.1 Protocol Verification

Distributed system protocols are known to be difficult to

design correctly. Thus, a systems design is often accompanied

by a formal English proof of correctness, typically relegated

to a technical report or thesis. Examples include Paxos [55],

the BFT protocol for Byzantine fault tolerance [6, 7], the

reconfiguration algorithm in SMART [23, 41], Raft [49, 50],

Zookeeper’s consistent broadcast protocol Zab [28, 29],

Egalitarian Paxos [44, 45], and the Chord DHT [62, 63].

13

However, paper proofs, no matter how formal, can con-

tain errors. Zane showed that the “provably correct” Chord

protocol, when subjected to Alloy abstract model checking,

maintains none of its published invariants [71]. Thus, some re-

searchers have gone further and generated machine-checkable

proofs. Kellomäki created a proof of the Paxos consensus pro-

tocol checked in PVS [30]. Lamport’s TLAPS proof system

has been used to prove safety, but not liveness, properties of

the BFT protocol [38]. In all such cases, the protocols proven

correct have been much smaller and simpler than ours. For

instance, Kellomäki’s and Lamport’s proofs concerned single-

instance Paxos and BFT, which make only one decision total.

9.2 Model Checking

Model checking exhaustively explores a system’s state space,

testing whether a safety property holds in every reachable

state. This combinatorial exploration requires that the system

be instantiated with finite, typically tiny, parameters. As

a result, a positive result provides only confidence, not

proof of safety; furthermore, that confidence depends on the

modeler’s wisdom in parameter selection. Model checking

has been applied to myriad systems including a Python

implementation of Paxos [26]; Mace implementations of a

variety of distributed systems [31]; and, via MODIST [69],

unmodified binaries of Berkeley DB, MPS Paxos, and the

PacificA primary-backup replication system.

Model checking scales poorly to complex distributed

specs [4]. Abstract interpretation can help with such scal-

ing but does not fundamentally eliminate model checking’s

limitations. For instance, Zave’s correction to Chord uses the

Alloy model checker but only to partially automate the proof

of a single necessary invariant [72].

9.3 System Verification

The recent increase in the power of software verification has

emboldened several research groups to use it to prove the

correctness of entire systems implementations. seL4 is a mi-

crokernel written in C [32], with full functional correctness

proven using the Isabelle/HOL theorem prover. mCertiKOS-

hyp [19] is a small verified hypervisor, whose verification in

the Coq interactive proof assistant places a strong emphasis

on modularity and abstraction. ExpressOS [43] uses Dafny

to sanity-check a policy manager for a microkernel. Our Iron-

clad project [21] shows how to completely verify the security

of sensitive services all the way down to the assembly. Iron-

Fleet differs by verifying a distributed implementation rather

than code running on a single machine, and by verifying

liveness, as well as safety, properties.

Researchers have also begun to apply software verification

to distributed systems. Ridge [59] proves the correctness of

a persistent message queue written in OCaml; however, his

system is substantially smaller in scale than ours and has no

proven liveness properties.

Rahli et al. [57] verify the correctness of a Paxos im-

plementation by building it in EventML [56] and proving

correctness, but not liveness, with the NuPRL prover [10].

However, they do not verify the state machine replication

layer of this Paxos implementation, only the consensus al-

gorithm, ignoring complexities such as state transfer. They

also make unclear assumptions about network behavior. In

contrast to our methodology, which exploits multiple levels

of abstraction and refinement, the EventML approach posits

a language below which all code generation is automatic, and

above which a human can produce a one-to-one refinement.

It is unclear if this approach will scale up to more complex

and diverse distributed systems.

In concurrent work, Wilcox et al. [67, 68] propose Verdi,

a compiler-inspired approach to building verified distributed

system implementations. With Verdi, the developer writes

and proves her system correct in Coq using a simplified

environment (e.g., a single-machine system with a perfectly

reliable network). Verdi’s verified system transformers then

convert the developer’s implementation into an equivalent

implementation that is robust in a more hostile environment;

their largest system transformer is an implementation of Raft

that adds fault tolerance. Compared with IronFleet, Verdi

offers a cleaner approach to composition. Unlike IronRSL,

at present Verdi’s Raft implementation does not support

verified marshalling and parsing, state transfer, log truncation,

dynamic view-change timeouts, a reply cache, or batching.

Also, Verdi does not prove any liveness properties.

10. Conclusion
The IronFleet methodology slices a system into specific lay-

ers to make verification of practical distributed system im-

plementations feasible. The high-level spec gives the sim-

plest description of the system’s behavior. The protocol

layer deals solely with distributed protocol design; we con-

nect it to the spec using TLA+ [36] style verification. At

the implementation layer, the programmer reasons about a

single-host program without worrying about concurrency.

Reduction and refinement tie these individually-feasible

components into a methodology that scales to practically-

sized concrete implementations. This methodology admits

conventionally-structured implementations capable of pro-

cessing up to 18,200 requests/second (IronRSL) and 28,800

requests/second (IronKV), performance competitive with un-

verified reference implementations.

Acknowledgments
We thank Rustan Leino for not just building Dafny but also

cheerfully providing ongoing guidance and support in improv-

ing it. We thank Leslie Lamport for useful discussions about

refinement and formal proofs, particularly proofs of liveness.

We thank Shaz Qadeer for introducing us to the power of

reduction. We thank Andrew Baumann, Ernie Cohen, Galen

Hunt, Lidong Zhou, and the anonymous reviewers for useful

feedback. Finally, we thank our shepherd Jim Larus for his

interactive feedback that significantly improved the paper.

14

References
[1] ABADI, M., AND LAMPORT, L. The existence of refinement

mappings. Theoretical Computer Science 82, 2 (May 1991).

[2] BLACKHAM, B., SHI, Y., CHATTOPADHYAY, S., ROYCHOUD-

HURY, A., AND HEISER, G. Timing analysis of a protected

operating system kernel. In Proceedings of the IEEE Real-Time
Systems Symposium (RTSS) (2011).

[3] BOKOR, P., KINDER, J., SERAFINI, M., AND SURI, N.

Efficient model checking of fault-tolerant distributed protocols.

In Proceedings of the Conference on Dependable Systems and
Networks (DSN) (2011).

[4] BOLOSKY, W. J., DOUCEUR, J. R., AND HOWELL, J. The

Farsite project: a retrospective. ACM SIGOPS Operating
Systems Review 41 (2) (April 2007).

[5] BURROWS, M. The Chubby lock service for loosely-coupled

distributed systems. In Proceedings of the Symposium on
Operating Systems Design and Implementation (OSDI) (2006).

[6] CASTRO, M., AND LISKOV, B. A correctness proof for a prac-

tical Byzantine-fault-tolerant replication algorithm. Tech. Rep.

MIT/LCS/TM-590, MIT Laboratory for Computer Science,

June 1999.

[7] CASTRO, M., AND LISKOV, B. Practical Byzantine fault

tolerance and proactive recovery. ACM Transactions on
Computer Systems (TOCS) 20, 4 (Nov. 2002).

[8] COHEN, E. First-order verification of cryptographic protocols.

Journal of Computer Security 11, 2 (2003).

[9] COHEN, E., AND LAMPORT, L. Reduction in TLA. In

Concurrency Theory (CONCUR) (1998).

[10] CONSTABLE, R. L., ALLEN, S. F., BROMLEY, H. M.,

CLEAVELAND, W. R., CREMER, J. F., HARPER, R. W.,

HOWE, D. J., KNOBLOCK, T. B., MENDLER, N. P., PANAN-

GADEN, P., SASAKI, J. T., AND SMITH, S. F. Implement-
ing Mathematics with the Nuprl Proof Development System.

Prentice-Hall, Inc., 1986.

[11] DE MOURA, L. M., AND BJØRNER, N. Z3: An efficient

SMT solver. In Proceedings of the Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(2008).

[12] DETLEFS, D., NELSON, G., AND SAXE, J. B. Simplify: A

theorem prover for program checking. In J. ACM (2003).

[13] DOUCEUR, J. R., AND HOWELL, J. Distributed directory

service in the Farsite file system. In Proceedings of the
Symposium on Operating Systems Design and Implementation
(OSDI) (November 2006).

[14] ELMAS, T., QADEER, S., AND TASIRAN, S. A calculus of

atomic actions. In Proceedings of the ACM Symposium on
Principles of Programming Languages (POPL) (Jan. 2009).

[15] EPaxos code. https://github.com/efficient/
epaxos/, 2013.

[16] FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S.

Impossibility of distributed consensus with one faulty process.

Journal of the ACM (JACM) 32, 2 (April 1985).

[17] FLOYD, R. Assigning meanings to programs. In Proceedings
of Symposia in Applied Mathematics (1967).

[18] GARLAND, S. J., AND LYNCH, N. A. Using I/O automata for

developing distributed systems. Foundations of Component-
Based Systems 13 (2000).

[19] GU, R., KOENIG, J., RAMANANANDRO, T., SHAO, Z., WU,

X. N., WENG, S.-C., ZHANG, H., AND GUO, Y. Deep speci-

fications and certified abstraction layers. In Proceedings of the
ACM Symposium on Principles of Programming Languages
(POPL) (2015).

[20] GUO, H., WU, M., ZHOU, L., HU, G., YANG, J., AND

ZHANG, L. Practical software model checking via dynamic

interface reduction. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP) (2011), ACM.

[21] HAWBLITZEL, C., HOWELL, J., LORCH, J. R., NARAYAN,

A., PARNO, B., ZHANG, D., AND ZILL, B. Ironclad apps:

End-to-end security via automated full-system verification. In

Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (October 2014).

[22] HOARE, T. An axiomatic basis for computer programming.

Communications of the ACM 12 (1969).

[23] HOWELL, J., LORCH, J. R., AND DOUCEUR, J. R. Cor-

rectness of Paxos with replica-set-specific views. Tech. Rep.

MSR-TR-2004-45, Microsoft Research, 2004.

[24] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.

ZooKeeper: Wait-free coordination for Internet-scale systems.

In Proceedings of the USENIX Annual Technical Conference
(ATC) (2010).

[25] IronFleet code. https://research.microsoft.com/
projects/ironclad/, 2015.

[26] JONES, E. Model checking a Paxos implementation. http:
//www.evanjones.ca/model-checking-paxos.
html, 2009.

[27] JOSHI, R., LAMPORT, L., MATTHEWS, J., TASIRAN, S., TUT-

TLE, M., AND YU, Y. Checking cache coherence protocols

with TLA+. Journal of Formal Methods in System Design 22,

2 (March 2003).

[28] JUNQUEIRA, F. P., REED, B. C., AND SERAFINI, M. Dissect-

ing Zab. Tech. Rep. YL-2010-007, Yahoo! Research, Decem-

ber 2010.

[29] JUNQUEIRA, F. P., REED, B. C., AND SERAFINI, M. Zab:

High-performance broadcast for primary-backup systems. In

Proceedings of the IEEE/IFIP Conference on Dependable
Systems & Networks (DSN) (2011).

[30] KELLOMÄKI, P. An annotated specification of the consensus

protocol of Paxos using superposition in PVS. Tech. Rep. 36,

Tampere University of Technology, 2004.

[31] KILLIAN, C. E., ANDERSON, J. W., BRAUD, R., JHALA, R.,

AND VAHDAT, A. M. Mace: Language support for building

distributed systems. In Proceedings of the ACM Conference on
Programming Language Design and Implementation (PLDI)
(2007).

[32] KLEIN, G., ANDRONICK, J., ELPHINSTONE, K., MURRAY,

T., SEWELL, T., KOLANSKI, R., AND HEISER, G. Com-

prehensive formal verification of an OS microkernel. ACM
Transactions on Computer Systems 32, 1 (2014).

15

[33] LAMPORT, L. A theorem on atomicity in distributed algo-

rithms. Tech. Rep. SRC-28, DEC Systems Research Center,

May 1988.

[34] LAMPORT, L. The temporal logic of actions. ACM Trans-
actions on Programming Languages and Systems 16, 3 (May

1994).

[35] LAMPORT, L. The part-time parliament. ACM Transactions
on Computer Systems (TOCS) 16, 2 (May 1998).

[36] LAMPORT, L. Specifying Systems: The TLA+ Languange and
Tools for Hardware and Software Engineers. Addison-Wesley,

2002.

[37] LAMPORT, L. The PlusCal algorithm language. In Proceedings
of the International Colloquium on Theoretical Aspects of
Computing (ICTAC) (Aug. 2009).

[38] LAMPORT, L. Byzantizing Paxos by refinement. In Proceed-
ings of the International Conference on Distributed Computing
(DISC) (2011).

[39] LEINO, K. R. M. Dafny: An automatic program verifier for

functional correctness. In Proceedings of the Conference on
Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR) (2010).

[40] LIPTON, R. J. Reduction: A method of proving properties of

parallel programs. Communications of the ACM, 18, 12 (1975).

[41] LORCH, J. R., ADYA, A., BOLOSKY, W. J., CHAIKEN, R.,

DOUCEUR, J. R., AND HOWELL, J. The SMART way to

migrate replicated stateful services. In Proceedings of the
ACM European Conference on Computer Systems (EuroSys)
(2006).

[42] LU, T., MERZ, S., WEIDENBACH, C., BENDISPOSTO, J.,

LEUSCHEL, M., ROGGENBACH, M., MARGARIA, T., PAD-

BERG, J., TAENTZER, G., LU, T., MERZ, S., AND WEI-

DENBACH, C. Model checking the Pastry routing protocol.

In Workshop on Automated Verification of Critical Systems
(2010).

[43] MAI, H., PEK, E., XUE, H., KING, S. T., AND MADHUSU-

DAN, P. Verifying security invariants in ExpressOS. In Pro-
ceedings of the ACM Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS)
(March 2013).

[44] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M. A

proof of correctness of Egalitarian Paxos. Tech. Rep. CMU-

PDL-13-111, Carnegie Mellon University Parallel Data Labo-

ratory, August 2013.

[45] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M. There

is more consensus in egalitarian parliaments. In Proceedings of
the ACM Symposium on Operating System Principles (SOSP)
(2013).

[46] MUSUVATHI, M., PARK, D., CHOU, A., ENGLER, D., AND

DILL, D. L. CMC: A pragmatic approach to model checking

real code. In Proceedings of the USENIX Symposium Operating
Systems Design and Implementation (OSDI) (2002).

[47] MUSUVATHI, M., QADEER, S., BALL, T., BASLER, G.,

NAINAR, P. A., AND NEAMTIU, I. Finding and reproduc-

ing heisenbugs in concurrent programs. In Proceedings of
the USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (2008).

[48] NEWCOMBE, C., RATH, T., ZHANG, F., MUNTEANU, B.,

BROOKER, M., AND DEARDEUFF, M. How Amazon Web

Services uses formal methods. Communications of the ACM
58, 4 (Apr. 2015).

[49] ONGARO, D. Consensus: Bridging theory and practice. Tech.

Rep. Ph.D. thesis, Stanford University, August 2014.

[50] ONGARO, D., AND OUSTERHOUR, J. In search of an under-

standable consensus algorithm. In Proceedings of the USENIX
Annual Technical Conference (ATC) (June 2014).

[51] PARKINSON, M. The next 700 separation logics. In Proceed-
ings of the IFIP Conference on Verified Software: Theories,
Tools, Experiments (VSTTE) (Aug. 2010).

[52] PARNO, B., LORCH, J. R., DOUCEUR, J. R., MICKENS, J.,

AND MCCUNE, J. M. Memoir: Practical state continuity for

protected modules. In Proceedings of the IEEE Symposium on
Security and Privacy (May 2011).

[53] PEK, E., AND BOGUNOVIC, N. Formal verification of com-

munication protocols in distributed systems. In Proceedings of
the Joint Conferences on Computers in Technical Systems and
Intelligent Systems (2003).

[54] PRIOR, A. N. Papers on Time and Tense. Oxford University

Press, 1968.

[55] PRISCO, R. D., AND LAMPSON, B. Revisiting the Paxos

algorithm. In Proceedings of the International Workshop on
Distributed Algorithms (WDAG) (1997).

[56] RAHLI, V. Interfacing with proof assistants for domain

specific programming using EventML. In Proceedings of
the International Workshop on User Interfaces for Theorem
Provers (UITP) (July 2012).

[57] RAHLI, V., SCHIPER, N., BICKFORD, M., CONSTABLE,

R., AND VAN RENESSE, R. Developing correctly replicated

databases using formal tools. In Proceedings of the IEEE/IFIP
Conference on Dependable Systems and Networks (DSN) (June

2014).

[58] Redis. http://redis.io/. Implementation used: ver-

sion 2.8.2101 of the MSOpenTech distribution https://
github.com/MSOpenTech/redis, 2015.

[59] RIDGE, T. Verifying distributed systems: The operational

approach. In Proceedings of the ACM Symposium on Principles
of Programming Languages (POPL) (January 2009).

[60] SAISSI, H., BOKOR, P., MUFTUOGLU, C., SURI, N., AND

SERAFINI, M. Efficient verification of distributed protocols us-

ing stateful model checking. In Proceedings of the Symposium
on Reliable Distributed Systems SRDS (Sept 2013).

[61] SCIASCIO, E., DONINI, F., MONGIELLO, M., AND

PISCITELLI, G. Automatic support for verification of secure

transactions in distributed environment using symbolic model

checking. In Conference on Information Technology Interfaces
(June 2001), vol. 1.

[62] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F.,

AND BALAKRISHNAN, H. Chord: A scalable peer-to-peer

lookup service for Internet applications. In Proceedings of the
ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication
(August 2001).

16

[63] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F.,

AND BALAKRISHNAN, H. Chord: A scalable peer-to-

peer lookup service for Internet applications. Tech. Rep.

MIT/LCS/TR-819, MIT Laboratory for Computer Science,

March 2001.

[64] TASIRAN, S., YU, Y., BATSON, B., AND KREIDER, S. Using

formal specifications to monitor and guide simulation: Verify-

ing the cache coherence engine of the Alpha 21364 micropro-

cessor. In International Workshop on Microprocessor Test and
Verification (June 2002), IEEE.

[65] WANG, L., AND STOLLER, S. D. Runtime analysis of

atomicity for multithreaded programs. IEEE Transactions
on Software Engineering 32 (Feb. 2006).

[66] WANG, Y., KELLY, T., KUDLUR, M., LAFORTUNE, S., AND

MAHLKE, S. A. Gadara: Dynamic deadlock avoidance for

multithreaded programs. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI) (December 2008).

[67] WILCOX, J., WOOS, D., PANCHEKHA, P., TATLOCK, Z.,

WANG, X., ERNST, M., AND ANDERSON, T. UW CSE

News: UW CSE’s Verdi team completes first full formal

verification of Raft consensus protocol. https://news.
cs.washington.edu/2015/08/07/, August 2015.

[68] WILCOX, J. R., WOOS, D., PANCHEKHA, P., TATLOCK,

Z., WANG, X., ERNST, M. D., AND ANDERSON, T. Verdi:

A framework for implementing and formally verifying dis-

tributed systems. In Proceedings of the ACM Conference on
Programming Language Design and Implementation (PLDI)
(June 2015).

[69] YANG, J., CHEN, T., WU, M., XU, Z., LIU, X., LIN, H.,

YANG, M., LONG, F., ZHANG, L., AND ZHOU, L. MODIST:

Transparent model checking of unmodified distributed systems.

In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI) (April 2009).

[70] YUAN, D., LUO, Y., ZHUANG, X., RODRIGUES, G. R.,

ZHAO, X., ZHANG, Y., JAIN, P. U., AND STUMM, M. Sim-

ple testing can prevent most critical failures: An analysis of

production failures in distributed data-intensive systems. In

Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (October 2014).

[71] ZAVE, P. Using lightweight modeling to understand Chord.

ACM SIGCOMM Computer Communication Review 42, 2

(April 2012).

[72] ZAVE, P. How to make Chord correct (using a stable base).

Tech. Rep. 1502.06461 [cs.DC], arXiv, February 2015.

17

