
Windows Azure Storage: A Highly Available  
Cloud Storage Service with Strong Consistency  

 

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, 
Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju,  

Hemal Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal,  
Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand,  

Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan, Leonidas Rigas 
 

 Microsoft
 

Abstract 
Windows Azure Storage (WAS) is a cloud storage system that 
provides customers the ability to store seemingly limitless 
amounts of data for any duration of time.  WAS customers have 
access to their data from anywhere at any time and only pay for 
what they use and store.  In WAS, data is stored durably using 
both local and geographic replication to facilitate disaster 
recovery.  Currently, WAS storage comes in the form of Blobs 
(files), Tables (structured storage), and Queues (message 
delivery).  In this paper, we describe the WAS architecture, global 
namespace, and data model, as well as its resource provisioning, 
load balancing, and replication systems.  

Categories and Subject Descriptors 
D.4.2 [Operating Systems]: Storage Management—Secondary 
storage; D.4.3 [Operating Systems]: File Systems 
Management—Distributed file systems; D.4.5 [Operating 
Systems]: Reliability—Fault tolerance; D.4.7 [Operating 
Systems]: Organization and Design—Distributed systems; D.4.8 
[Operating Systems]: Performance—Measurements 

General Terms 
Algorithms, Design, Management, Measurement, Performance, 
Reliability. 

Keywords 
Cloud storage, distributed storage systems, Windows Azure. 

1. Introduction 
Windows Azure Storage (WAS) is a scalable cloud storage 
system that has been in production since November 2008.  It is 
used inside Microsoft for applications such as social networking 
search, serving video, music and game content, managing medical 
records, and more.  In addition, there are thousands of customers 
outside Microsoft using WAS, and anyone can sign up over the 
Internet to use the system. 
WAS provides cloud storage in the form of Blobs (user files), 
Tables (structured storage), and Queues (message delivery).  
These three data abstractions provide the overall storage and 

workflow for many applications.  A common usage pattern we see 
is incoming and outgoing data being shipped via Blobs, Queues 
providing the overall workflow for processing the Blobs, and 
intermediate service state and final results being kept in Tables or 
Blobs.  
An example of this pattern is an ingestion engine service built on 
Windows Azure to provide near real-time Facebook and Twitter 
search.  This service is one part of a larger data processing 
pipeline that provides publically searchable content (via our 
search engine, Bing) within 15 seconds of a Facebook or Twitter 
user’s posting or status update.  Facebook and Twitter send the 
raw public content to WAS (e.g., user postings, user status 
updates, etc.) to be made publically searchable.  This content is 
stored in WAS Blobs.  The ingestion engine annotates this data 
with user auth, spam, and adult scores; content classification; and 
classification for language and named entities.  In addition, the 
engine crawls and expands the links in the data.  While 
processing, the ingestion engine accesses WAS Tables at high 
rates and stores the results back into Blobs.  These Blobs are then 
folded into the Bing search engine to make the content publically 
searchable.  The ingestion engine uses Queues to manage the flow 
of work, the indexing jobs, and the timing of folding the results 
into the search engine.  As of this writing, the ingestion engine for 
Facebook and Twitter keeps around 350TB of data in WAS 
(before replication).  In terms of transactions, the ingestion engine 
has a peak traffic load of around 40,000 transactions per second 
and does between two to three billion transactions per day (see 
Section 7 for discussion of additional workload profiles). 
In the process of building WAS, feedback from potential internal 
and external customers drove many design decisions.  Some key 
design features resulting from this feedback include: 
Strong Consistency – Many customers want strong consistency: 
especially enterprise customers moving their line of business 
applications to the cloud.  They also want the ability to perform 
conditional reads, writes, and deletes for optimistic concurrency 
control [12] on the strongly consistent data.  For this, WAS 
provides three properties that the CAP theorem [2] claims are 
difficult to achieve at the same time: strong consistency, high 
availability, and partition tolerance (see Section 8). 
Global and Scalable Namespace/Storage – For ease of use, 
WAS implements a global namespace that allows data to be stored 
and accessed in a consistent manner from any location in the 
world.  Since a major goal of WAS is to enable storage of massive 
amounts of data, this global namespace must be able to address 
exabytes of data and beyond.  We discuss our global namespace 
design in detail in Section 2. 

 
 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. 
SOSP '11, October 23-26, 2011, Cascais, Portugal. 
Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

143



Disaster Recovery – WAS stores customer data across multiple 
data centers hundreds of miles apart from each other.  This 
redundancy provides essential data recovery protection against 
disasters such as earthquakes, wild fires, tornados, nuclear reactor 
meltdown, etc.   
Multi-tenancy and Cost of Storage – To reduce storage cost, 
many customers are served from the same shared storage 
infrastructure. WAS combines the workloads of many different 
customers with varying resource needs together so that 
significantly less storage needs to be provisioned at any one point 
in time than if those services were run on their own dedicated 
hardware. 
We describe these design features in more detail in the following 
sections.  The remainder of this paper is organized as follows.  
Section 2 describes the global namespace used to access the WAS 
Blob, Table, and Queue data abstractions.  Section 3 provides a 
high level overview of the WAS architecture and its three layers: 
Stream, Partition, and Front-End layers.  Section 4 describes the 
stream layer, and Section 5 describes the partition layer.  Section 
6 shows the throughput experienced by Windows Azure 
applications accessing Blobs and Tables.  Section 7 describes 
some internal Microsoft workloads using WAS.  Section 8 
discusses design choices and lessons learned.  Section 9 presents 
related work, and Section 10 summarizes the paper. 

2. Global Partitioned Namespace  
A key goal of our storage system is to provide a single global 
namespace that allows clients to address all of their storage in the 
cloud and scale to arbitrary amounts of storage needed over time. 
To provide this capability we leverage DNS as part of the storage 
namespace and break the storage namespace into three parts: an 
account name, a partition name, and an object name.  As a result, 
all data is accessible via a URI of the form: 
http(s)://AccountName.<service>1.core.windows.net/PartitionNa
me/ObjectName 
The AccountName is the customer selected account name for 
accessing storage and is part of the DNS host name.  The 
AccountName DNS translation is used to locate the primary 
storage cluster and data center where the data is stored.   This 
primary location is where all requests go to reach the data for that 
account. An application may use multiple AccountNames to store 
its data across different locations.  
In conjunction with the AccountName, the PartitionName locates 
the data once a request reaches the storage cluster.  The 
PartitionName is used to scale out access to the data across 
storage nodes based on traffic needs.  
When a PartitionName holds many objects, the ObjectName 
identifies individual objects within that partition.   The system 
supports atomic transactions across objects with the same 
PartitionName value.  The ObjectName is optional since, for some 
types of data, the PartitionName uniquely identifies the object 
within the account. 
This naming approach enables WAS to flexibly support its three 
data abstractions2. For Blobs, the full blob name is the 
PartitionName.  For Tables, each entity (row) in the table has a 

                                                           
1 <service> specifies the service type, which can be blob, table, or queue. 
2 APIs for Windows Azure Blobs, Tables, and Queues can be found  here: 

http://msdn.microsoft.com/en-us/library/dd179355.aspx 

primary key that consists of two properties: the PartitionName and 
the ObjectName.  This distinction allows applications using 
Tables to group rows into the same partition to perform atomic 
transactions across them. For Queues, the queue name is the 
PartitionName and each message has an ObjectName to uniquely 
identify it within the queue.  

3. High Level Architecture 
Here we present a high level discussion of the WAS architecture 
and how it fits into the Windows Azure Cloud Platform. 

3.1 Windows Azure Cloud Platform 
The Windows Azure Cloud platform runs many cloud services 
across different data centers and different geographic regions.  
The Windows Azure Fabric Controller is a resource provisioning 
and management layer that provides resource allocation, 
deployment/upgrade, and management for cloud services on the 
Windows Azure platform.  WAS is one such service running on 
top of the Fabric Controller. 
The Fabric Controller provides node management, network 
configuration, health monitoring, starting/stopping of service 
instances, and service deployment for the WAS system.  In 
addition, WAS retrieves network topology information, physical 
layout of the clusters, and hardware configuration of the storage 
nodes from the Fabric Controller.  WAS is responsible for 
managing the replication and data placement across the disks and 
load balancing the data and application traffic within the storage 
cluster. 

3.2 WAS Architectural Components 
An important feature of WAS is the ability to store and provide 
access to an immense amount of storage (exabytes and beyond).  
We currently have 70 petabytes of raw storage in production and 
are in the process of provisioning a few hundred more petabytes 
of raw storage based on customer demand for 2012.   
The WAS production system consists of Storage Stamps and the 
Location Service (shown in Figure 1). 

Storage Stamp

Stream Layer
Intra-Stamp Replication

Partition Layer

Front-Ends

VIP

Storage Stamp

Stream Layer
Intra-Stamp Replication

Partition Layer

Front-Ends

VIP

Inter-Stamp
Replication

Location
Service

DNS

https://AccountName.service.core.windows.net/

Account Management

DNS Lookup

Access Blobs,
Tables and Queues

for account

 
Figure 1: High-level architecture 

Storage Stamps – A storage stamp is a cluster of N racks of 
storage nodes, where each rack is built out as a separate fault 
domain with redundant networking and power.  Clusters typically 
range from 10 to 20 racks with 18 disk-heavy storage nodes per 
rack.  Our first generation storage stamps hold approximately 2PB 
of raw storage each.  Our next generation stamps hold up to 30PB 
of raw storage each.     

144



To provide low cost cloud storage, we need to keep the storage 
provisioned in production as highly utilized as possible.   Our goal 
is to keep a storage stamp around 70% utilized in terms of 
capacity, transactions, and bandwidth.   We try to avoid going 
above 80% because we want to keep 20% in reserve for (a) disk 
short stroking to gain better seek time and higher throughput by 
utilizing the outer tracks of the disks and (b) to continue providing 
storage capacity and availability in the presence of a rack failure 
within a stamp.  When a storage stamp reaches 70% utilization, 
the location service migrates accounts to different stamps using 
inter-stamp replication (see Section 3.4).  
Location Service (LS) – The location service manages all the 
storage stamps.  It is also responsible for managing the account 
namespace across all stamps. The LS allocates accounts to storage 
stamps and manages them across the storage stamps for disaster 
recovery and load balancing. The location service itself is 
distributed across two geographic locations for its own disaster 
recovery. 
WAS provides storage from multiple locations in each of the three 
geographic regions: North America, Europe, and Asia.  Each 
location is a data center with one or more buildings in that 
location, and each location holds multiple storage stamps. To 
provision additional capacity, the LS has the ability to easily add 
new regions, new locations to a region, or new stamps to a 
location.  Therefore, to increase the amount of storage, we deploy 
one or more storage stamps in the desired location’s data center 
and add them to the LS.  The LS can then allocate new storage 
accounts to those new stamps for customers as well as load 
balance (migrate) existing storage accounts from older stamps to 
the new stamps. 
Figure 1 shows the location service with two storage stamps and 
the layers within the storage stamps.  The LS tracks the resources 
used by each storage stamp in production across all locations.  
When an application requests a new account for storing data, it 
specifies the location affinity for the storage (e.g., US North).  
The LS then chooses a storage stamp within that location as the 
primary stamp for the account using heuristics based on the load 
information across all stamps (which considers the fullness of the 
stamps and other metrics such as network and transaction 
utilization).  The LS then stores the account metadata information 
in the chosen storage stamp, which tells the stamp to start taking 
traffic for the assigned account.  The LS then updates DNS to 
allow requests to now route from the name 
https://AccountName.service.core.windows.net/ to that storage 
stamp’s virtual IP (VIP, an IP address the storage stamp exposes 
for external traffic).  

3.3 Three Layers within a Storage Stamp 
Also shown in Figure 1 are the three layers within a storage 
stamp.  From bottom up these are: 
Stream Layer – This layer stores the bits on disk and is in charge 
of distributing and replicating the data across many servers to 
keep data durable within a storage stamp. The stream layer can be 
thought of as a distributed file system layer within a stamp.  It 
understands files, called “streams” (which are ordered lists of 
large storage chunks called “extents”), how to store them, how to 
replicate them, etc., but it does not understand higher level object 
constructs or their semantics. The data is stored in the stream 
layer, but it is accessible from the partition layer.  In fact, partition 
servers (daemon processes in the partition layer) and stream 
servers are co-located on each storage node in a stamp. 

Partition Layer – The partition layer is built for (a) managing 
and understanding higher level data abstractions (Blob, Table, 
Queue), (b) providing a scalable object namespace, (c) providing 
transaction ordering and strong consistency for objects, (d) storing 
object data on top of the stream layer, and (e) caching object data 
to reduce disk I/O. 
Another responsibility of this layer is to achieve scalability by 
partitioning all of the data objects within a stamp. As described 
earlier, all objects have a PartitionName; they are broken down 
into disjointed ranges based on the PartitionName values and 
served by different partition servers.  This layer manages which 
partition server is serving what PartitionName ranges for Blobs, 
Tables, and Queues.  In addition, it provides automatic load 
balancing of PartitionNames across the partition servers to meet 
the traffic needs of the objects.  
Front-End (FE) layer – The Front-End (FE) layer consists of a 
set of stateless servers that take incoming requests.  Upon 
receiving a request, an FE looks up the AccountName, 
authenticates and authorizes the request, then routes the request to 
a partition server in the partition layer (based on the 
PartitionName). The system maintains a Partition Map that keeps 
track of the PartitionName ranges and which partition server is 
serving which PartitionNames. The FE servers cache the Partition 
Map and use it to determine which partition server to forward 
each request to.  The FE servers also stream large objects directly 
from the stream layer and cache frequently accessed data for 
efficiency. 

3.4 Two Replication Engines 
Before describing the stream and partition layers in detail, we first 
give a brief overview of the two replication engines in our system 
and their separate responsibilities. 
Intra-Stamp Replication (stream layer) – This system provides 
synchronous replication and is focused on making sure all the 
data written into a stamp is kept durable within that stamp.  It 
keeps enough replicas of the data across different nodes in 
different fault domains to keep data durable within the stamp in 
the face of disk, node, and rack failures.     Intra-stamp replication 
is done completely by the stream layer and is on the critical path 
of the customer’s write requests. Once a transaction has been 
replicated successfully with intra-stamp replication, success can 
be returned back to the customer.   
Inter-Stamp Replication (partition layer) – This system 
provides asynchronous replication and is focused on replicating 
data across stamps.  Inter-stamp replication is done in the 
background and is off the critical path of the customer’s request.  
This replication is at the object level, where either the whole 
object is replicated or recent delta changes are replicated for a 
given account.  Inter-stamp replication is used for (a) keeping a 
copy of an account’s data in two locations for disaster recovery 
and (b) migrating an account’s data between stamps.  Inter-stamp 
replication is configured for an account by the location service 
and performed by the partition layer. 
Inter-stamp replication is focused on replicating objects and the 
transactions applied to those objects, whereas intra-stamp 
replication is focused on replicating blocks of disk storage that are 
used to make up the objects.    
We separated replication into intra-stamp and inter-stamp at these 
two different layers for the following reasons.  Intra-stamp 
replication provides durability against hardware failures, which 
occur frequently in large scale systems, whereas inter-stamp 
replication provides geo-redundancy against geo-disasters, which 

145



are rare.  It is crucial to provide intra-stamp replication with low 
latency, since that is on the critical path of user requests; whereas 
the focus of inter-stamp replication is optimal use of network 
bandwidth between stamps while achieving an acceptable level of 
replication delay. They are different problems addressed by the 
two replication schemes.  
Another reason for creating these two separate replication layers 
is the namespace each of these two layers has to maintain.  
Performing intra-stamp replication at the stream layer allows the 
amount of information that needs to be maintained to be scoped 
by the size of a single storage stamp.  This focus allows all of the 
meta-state for intra-stamp replication to be cached in memory for 
performance (see Section 4), enabling WAS to provide fast 
replication with strong consistency by quickly committing 
transactions within a single stamp for customer requests.  In 
contrast, the partition layer combined with the location service 
controls and understands the global object namespace across 
stamps, allowing it to efficiently replicate and maintain object 
state across data centers. 

4. Stream Layer 
The stream layer provides an internal interface used only by the 
partition layer.  It provides a file system like namespace and API, 
except that all writes are append-only. It allows clients (the 
partition layer) to open, close, delete, rename, read, append to, and 
concatenate these large files, which are called streams.   A stream 
is an ordered list of extent pointers, and an extent is a sequence of 
append blocks.   
Figure 2 shows stream “//foo”, which contains (pointers to) four 
extents (E1, E2, E3, and E4).  Each extent contains a set of blocks 
that were appended to it.  E1, E2 and E3 are sealed extents.  It 
means that they can no longer be appended to; only the last extent 
in a stream (E4) can be appended to.  If an application reads the 
data of the stream from beginning to end, it would get the block 
contents of the extents in the order of E1, E2, E3 and E4.   

Stream //foo

Pointer to Extent E1

B11 B12 ….. B1x

Pointer to Extent E2

B21 B22 ….. B2y

Extent E1 - Sealed Extent E2 - Sealed

Pointer to Extent E3

B31 B32 ….. B3z

Extent E3 - Sealed

Pointer to Extent E4

B41 B42 B43

Extent E4 - Unsealed

Figure 2: Example stream with four extents 
In more detail these data concepts are: 
Block – This is the minimum unit of data for writing and reading.  
A block can be up to N bytes (e.g. 4MB). Data is written 
(appended) as one or more concatenated blocks to an extent, 
where blocks do not have to be the same size.  The client does an 
append in terms of blocks and controls the size of each block.  A 
client read gives an offset to a stream or extent, and the stream 
layer reads as many blocks as needed at the offset to fulfill the 
length of the read.  When performing a read, the entire contents of 
a block are read. This is because the stream layer stores its 
checksum validation at the block level, one checksum per block. 
The whole block is read to perform the checksum validation, and 
it is checked on every block read.  In addition, all blocks in the 
system are validated against their checksums once every few days 
to check for data integrity issues.     
Extent – Extents are the unit of replication in the stream layer, 
and the default replication policy is to keep three replicas within a 
storage stamp for an extent.   Each extent is stored in an NTFS file 

and consists of a sequence of blocks.  The target extent size used 
by the partition layer is 1GB.  To store small objects, the partition 
layer appends many of them to the same extent and even in the 
same block; to store large TB-sized objects (Blobs), the object is 
broken up over many extents by the partition layer.  The partition 
layer keeps track of what streams, extents, and byte offsets in the 
extents in which objects are stored as part of its index. 
Streams – Every stream has a name in the hierarchical namespace 
maintained at the stream layer, and a stream looks like a big file to 
the partition layer.  Streams are appended to and can be randomly 
read from.  A stream is an ordered list of pointers to extents 
which is maintained by the Stream Manager. When the extents are 
concatenated together they represent the full contiguous address 
space in which the stream can be read in the order they were 
added to the stream.  A new stream can be constructed by 
concatenating extents from existing streams, which is a fast 
operation since it just updates a list of pointers.  Only the last 
extent in the stream can be appended to.  All of the prior extents 
in the stream are immutable. 

4.1 Stream Manager and Extent Nodes 
The two main architecture components of the stream layer are the 
Stream Manager (SM) and Extent Node (EN) (shown in Figure 3). 

EN EN EN

EN EN EN

SM

EN

EN

SMSM

paxos

Partition 
Layer/
Client

write

ack

A. Create extent

B. Allocate extent 
replica set

Stream Layer

1

2

2

3

3 456

7

Primary Secondary Secondary

 
Figure 3: Stream Layer Architecture 

Stream Manager (SM) – The SM keeps track of the stream 
namespace, what extents are in each stream, and the extent 
allocation across the Extent Nodes (EN). The SM is a standard 
Paxos cluster [13] as used in prior storage systems [3], and is off 
the critical path of client requests. The SM is responsible for (a) 
maintaining the stream namespace and state of all active streams 
and extents, (b) monitoring the health of the ENs, (c) creating and 
assigning extents to ENs,  (d) performing the lazy re-replication of 
extent replicas that are lost due to hardware failures or 
unavailability, (e) garbage collecting extents that are no longer 
pointed to by any stream, and (f) scheduling the erasure coding of 
extent data according to stream policy (see Section 4.4). 
The SM periodically polls (syncs) the state of the ENs and what 
extents they store.  If the SM discovers that an extent is replicated 
on fewer than the expected number of ENs, a re-replication of the 
extent will lazily be created by the SM to regain the desired level 
of replication.  For extent replica placement, the SM randomly 
chooses ENs across different fault domains, so that they are stored 
on nodes that will not have correlated failures due to power, 
network, or being on the same rack. 

146



The SM does not know anything about blocks, just streams and 
extents. The SM is off the critical path of client requests and does 
not track each block append, since the total number of blocks can 
be huge and the SM cannot scale to track those.  Since the stream 
and extent state is only tracked within a single stamp, the amount 
of state can be kept small enough to fit in the SM’s memory.  The 
only client of the stream layer is the partition layer, and the 
partition layer and stream layer are co-designed so that they will 
not use more than 50 million extents and no more than 100,000 
streams for a single storage stamp given our current stamp sizes.  
This parameterization can comfortably fit into 32GB of memory 
for the SM. 
Extent Nodes (EN) – Each extent node maintains the storage for 
a set of extent replicas assigned to it by the SM.  An EN has N 
disks attached, which it completely controls for storing extent 
replicas and their blocks.  An EN knows nothing about streams, 
and only deals with extents and blocks.  Internally on an EN 
server, every extent on disk is a file, which holds data blocks and 
their checksums, and an index which maps extent offsets to blocks 
and their file location.  Each extent node contains a view about the 
extents it owns and where the peer replicas are for a given extent.  
This view is a cache kept by the EN of the global state the SM 
keeps.  ENs only talk to other ENs to replicate block writes 
(appends) sent by a client, or to create additional copies of an 
existing replica when told to by the SM.  When an extent is no 
longer referenced by any stream, the SM garbage collects the 
extent and notifies the ENs to reclaim the space. 

4.2 Append Operation and Sealed Extent  
Streams can only be appended to; existing data cannot be 
modified.  The append operations are atomic: either the entire data 
block is appended, or nothing is.  Multiple blocks can be 
appended at once, as a single atomic “multi-block append” 
operation.   The minimum read size from a stream is a single 
block.  The “multi-block append” operation allows us to write a 
large amount of sequential data in a single append and to later 
perform small reads.  The contract used between the client 
(partition layer) and the stream layer is that the multi-block 
append will occur atomically, and if the client never hears back 
for a request (due to failure) the client should retry the request (or 
seal the extent).  This contract implies that the client needs to 
expect the same block to be appended more than once in face of 
timeouts and correctly deal with processing duplicate records. The 
partition layer deals with duplicate records in two ways (see 
Section 5 for details on the partition layer streams).  For the 
metadata and commit log streams, all of the transactions written 
have a sequence number and duplicate records will have the same 
sequence number.  For the row data and blob data streams, for 
duplicate writes, only the last write will be pointed to by the 
RangePartition data structures, so the prior duplicate writes will 
have no references and will be garbage collected later. 
An extent has a target size, specified by the client (partition layer), 
and when it fills up to that size the extent is sealed at a block 
boundary, and then a new extent is added to the stream and 
appends continue into that new extent.  Once an extent is sealed it 
can no longer be appended to.  A sealed extent is immutable, and 
the stream layer performs certain optimizations on sealed extents 
like erasure coding cold extents.   Extents in a stream do not have 
to be the same size, and they can be sealed anytime and can even 
grow arbitrarily large.   

4.3 Stream Layer Intra-Stamp Replication 
The stream layer and partition layer are co-designed to provide 
strong consistency at the object transaction level.  The correctness 

of the partition layer providing strong consistency is built upon 
the following guarantees from the stream layer:  
1. Once a record is appended and acknowledged back to the 
client, any later reads of that record from any replica will see the 
same data (the data is immutable).   
2. Once an extent is sealed, any reads from any sealed replica will 
always see the same contents of the extent. 
The data center, Fabric Controller, and WAS have security 
mechanisms in place to guard against malicious adversaries, so 
the stream replication does not deal with such threats.  We 
consider faults ranging from disk and node errors to power 
failures, network issues, bit-flip and random hardware failures, as 
well as software bugs.  These faults can cause data corruption; 
checksums are used to detect such corruption.  The rest of the 
section discusses the intra-stamp replication scheme within this 
context. 

4.3.1 Replication Flow 
As shown in Figure 3, when a stream is first created (step A), the 
SM assigns three replicas for the first extent (one primary and two 
secondary) to three extent nodes (step B), which are chosen by the 
SM to randomly spread the replicas across different fault and 
upgrade domains while considering extent node usage (for load 
balancing).  In addition, the SM decides which replica will be the 
primary for the extent.  Writes to an extent are always performed 
from the client to the primary EN, and the primary EN is in charge 
of coordinating the write to two secondary ENs. The primary EN 
and the location of the three replicas never change for an extent 
while it is being appended to (while the extent is unsealed).  
Therefore, no leases are used to represent the primary EN for an 
extent, since the primary is always fixed while an extent is 
unsealed.   
When the SM allocates the extent, the extent information is sent 
back to the client, which then knows which ENs hold the three 
replicas and which one is the primary.  This state is now part of 
the stream’s metadata information held in the SM and cached on 
the client.  When the last extent in the stream that is being 
appended to becomes sealed, the same process repeats. The SM 
then allocates another extent, which now becomes the last extent 
in the stream, and all new appends now go to the new last extent 
for the stream.   
For an extent, every append is replicated three times across the 
extent’s replicas.  A client sends all write requests to the primary 
EN, but it can read from any replica, even for unsealed extents.  
The append is sent to the primary EN for the extent by the client, 
and the primary is then in charge of (a) determining the offset of 
the append in the extent, (b) ordering (choosing the offset of) all 
of the appends if there are concurrent append requests to the same 
extent outstanding, (c) sending the append with its chosen offset 
to the two secondary extent nodes, and (d) only returning success 
for the append to the client after a successful append has occurred 
to disk for all three extent nodes.  The sequence of steps during an 
append is shown in Figure 3 (labeled with numbers).  Only when 
all of the writes have succeeded for all three replicas will the 
primary EN then respond to the client that the append was a 
success.  If there are multiple outstanding appends to the same 
extent, the primary EN will respond success in the order of their 
offset (commit them in order) to the clients. As appends commit 
in order for a replica, the last append position is considered to be 
the current commit length of the replica.  We ensure that the bits 
are the same between all replicas by the fact that the primary EN 
for an extent never changes, it always picks the offset for appends, 

147



appends for an extent are committed in order, and how extents are 
sealed upon failures (discussed in Section 4.3.2). 
When a stream is opened, the metadata for its extents is cached at 
the client, so the client can go directly to the ENs for reading and 
writing without talking to the SM until the next extent needs to be 
allocated for the stream. If during writing, one of the replica’s 
ENs is not reachable or there is a disk failure for one of the 
replicas, a write failure is returned to the client.  The client then 
contacts the SM, and the extent that was being appended to is 
sealed by the SM at its current commit length (see Section 4.3.2).  
At this point the sealed extent can no longer be appended to.  The 
SM will then allocate a new extent with replicas on different 
(available) ENs, which makes it now the last extent of the stream. 
The information for this new extent is returned to the client.  The 
client then continues appending to the stream with its new extent.  
This process of sealing by the SM and allocating the new extent is 
done on average within 20ms.  A key point here is that the client 
can continue appending to a stream as soon as the new extent has 
been allocated, and it does not rely on a specific node to become 
available again. 
For the newly sealed extent, the SM will create new replicas to 
bring it back to the expected level of redundancy in the 
background if needed. 

4.3.2 Sealing 
From a high level, the SM coordinates the sealing operation 
among the ENs; it determines the commit length of the extent 
used for sealing based on the commit length of the extent replicas.  
Once the sealing is done, the commit length will never change 
again.   
To seal an extent, the SM asks all three ENs their current length.  
During sealing, either all replicas have the same length, which is 
the simple case, or a given replica is longer or shorter than another 
replica for the extent.  This latter case can only occur during an 
append failure where some but not all of the ENs for the replica 
are available (i.e., some of the replicas get the append block, but 
not all of them).  We guarantee that the SM will seal the extent 
even if the SM may not be able to reach all the ENs involved.  
When sealing the extent, the SM will choose the smallest commit 
length based on the available ENs it can talk to.  This will not 
cause data loss since the primary EN will not return success 
unless all replicas have been written to disk for all three ENs. This 
means the smallest commit length is sure to contain all the writes 
that have been acknowledged to the client.  In addition, it is also 
fine if the final length contains blocks that were never 
acknowledged back to the client, since the client (partition layer) 
correctly deals with these as described in Section 4.2. During the 
sealing, all of the extent replicas that were reachable by the SM 
are sealed to the commit length chosen by the SM. 
Once the sealing is done, the commit length of the extent will 
never be changed.  If an EN was not reachable by the SM during 
the sealing process but later becomes reachable, the SM will force 
the EN to synchronize the given extent to the chosen commit 
length.  This ensures that once an extent is sealed, all its available 
replicas (the ones the SM can eventually reach) are bitwise 
identical. 

4.3.3 Interaction with Partition Layer 
An interesting case is when, due to network partitioning, a client 
(partition server) is still able to talk to an EN that the SM could 
not talk to during the sealing process.  This section explains how 
the partition layer handles this case. 
The partition layer has two different read patterns: 

1. Read records at known locations. The partition layer uses two 
types of data streams (row and blob).  For these streams, it always 
reads at specific locations (extent+offset, length).  More 
importantly, the partition layer will only read these two streams 
using the location information returned from a previous successful 
append at the stream layer.  That will only occur if the append was 
successfully committed to all three replicas.  The replication 
scheme guarantees such reads always see the same data. 
2. Iterate all records sequentially in a stream on partition 
load.  Each partition has two additional streams (metadata and 
commit log). These are the only streams that the partition layer 
will read sequentially from a starting point to the very last record 
of a stream. This operation only occurs when the partition is 
loaded (explained in Section 5).  The partition layer ensures that 
no useful appends from the partition layer will happen to these 
two streams during partition load.  Then the partition and stream 
layer together ensure that the same sequence of records is returned 
on partition load. 
At the start of a partition load, the partition server sends a “check 
for commit length” to the primary EN of the last extent of these 
two streams. This checks whether all the replicas are available and 
that they all have the same length.   If not, the extent is sealed and 
reads are only performed, during partition load, against a replica 
sealed by the SM.  This ensures that the partition load will see all 
of its data and the exact same view, even if we were to repeatedly 
load the same partition reading from different sealed replicas for 
the last extent of the stream.  

4.4 Erasure Coding Sealed Extents 
To reduce the cost of storage, WAS erasure codes sealed extents 
for Blob storage.  WAS breaks an extent into N roughly equal 
sized fragments at block boundaries.  Then, it adds M error 
correcting code fragments using Reed-Solomon for the erasure 
coding algorithm [19].  As long as it does not lose more than M 
fragments (across the data fragments + code fragments), WAS can 
recreate the full extent.     
Erasure coding sealed extents is an important optimization, given 
the amount of data we are storing. It reduces the cost of storing 
data from three full replicas within a stamp, which is three times 
the original data, to only 1.3x – 1.5x the original data, depending 
on the number of fragments used.  In addition, erasure coding 
actually increases the durability of the data when compared to 
keeping three replicas within a stamp. 

4.5 Read Load-Balancing 
When reads are issued for an extent that has three replicas, they 
are submitted with a “deadline” value which specifies that the 
read should not be attempted if it cannot be fulfilled within the 
deadline.  If the EN determines the read cannot be fulfilled within 
the time constraint, it will immediately reply to the client that the 
deadline cannot be met.  This mechanism allows the client to 
select a different EN to read that data from, likely allowing the 
read to complete faster. 
This method is also used with erasure coded data.  When reads 
cannot be serviced in a timely manner due to a heavily loaded 
spindle to the data fragment, the read may be serviced faster by 
doing a reconstruction rather than reading that data fragment.  In 
this case, reads (for the range of the fragment needed to satisfy the 
client request) are issued to all fragments of an erasure coded 
extent, and the first N responses are used to reconstruct the desired 
fragment. 

148



4.6 Spindle Anti-Starvation 
Many hard disk drives are optimized to achieve the highest 
possible throughput, and sacrifice fairness to achieve that goal. 
They tend to prefer reads or writes that are sequential.  Since our 
system contains many streams that can be very large, we observed 
in developing our service that some disks would lock into 
servicing large pipelined reads or writes while starving other 
operations.  On some disks we observed this could lock out non-
sequential IO for as long as 2300 milliseconds.  To avoid this 
problem we avoid scheduling new IO to a spindle when there is 
over 100ms of expected pending IO already scheduled or when 
there is any pending IO request that has been scheduled but not 
serviced for over 200ms. Using our own custom IO scheduling 
allows us to achieve fairness across reads/writes at the cost of 
slightly increasing overall latency on some sequential requests. 

4.7 Durability and Journaling 
The durability contract for the stream layer is that when data is 
acknowledged as written by the stream layer, there must be at 
least three durable copies of the data stored in the system.  This 
contract allows the system to maintain data durability even in the 
face of a cluster-wide power failure.  We operate our storage 
system in such a way that all writes are made durable to power 
safe storage before they are acknowledged back to the client. 
As part of maintaining the durability contract while still achieving 
good performance, an important optimization for the stream layer 
is that on each extent node we reserve a whole disk drive or SSD 
as a journal drive for all writes into the extent node. The journal 
drive [11] is dedicated solely for writing a single sequential 
journal of data, which allows us to reach the full write throughput 
potential of the device.  When the partition layer does a stream 
append, the data is written by the primary EN while in parallel 
sent to the two secondaries to be written.  When each EN 
performs its append, it (a) writes all of the data for the append to 
the journal drive and (b) queues up the append to go to the data 
disk where the extent file lives on that EN.  Once either succeeds, 
success can be returned.  If the journal succeeds first, the data is 
also buffered in memory while it goes to the data disk, and any 
reads for that data are served from memory until the data is on the 
data disk.  From that point on, the data is served from the data 
disk.  This also enables the combining of contiguous writes into 
larger writes to the data disk, and better scheduling of concurrent 
writes and reads to get the best throughput.  It is a tradeoff for 
good latency at the cost of an extra write off the critical path. 
Even though the stream layer is an append-only system, we found 
that adding a journal drive provided important benefits, since the 
appends do not have to contend with reads going to the data disk 
in order to commit the result back to the client.  The journal 
allows the append times from the partition layer to have more 
consistent and lower latencies.  Take for example the partition 
layer’s commit log stream, where an append is only as fast as the 
slowest EN for the replicas being appended to.  For small appends 
to the commit log stream without journaling we saw an average 
end-to-end stream append latency of 30ms. With journaling we 
see an average append latency of 6ms.  In addition, the variance of 
latencies decreased significantly. 

5. Partition Layer 
The partition layer stores the different types of objects and 
understands what a transaction means for a given object type 
(Blob, Table, or Queue). The partition layer provides the (a) data 
model for the different types of objects stored, (b) logic and 
semantics to process the different types of objects, (c) massively 

scalable namespace for the objects, (d) load balancing to access 
objects across the available partition servers, and (e) transaction 
ordering and strong consistency for access to objects. 

5.1 Partition Layer Data Model 
The partition layer provides an important internal data structure 
called an Object Table (OT).  An OT is a massive table which can 
grow to several petabytes. Object Tables are dynamically broken 
up into RangePartitions (based on traffic load to the table) and 
spread across Partition Servers (Section 5.2) in a stamp. A 
RangePartition is a contiguous range of rows in an OT from a 
given low-key to a high-key.  All RangePartitions for a given OT 
are non-overlapping, and every row is represented in some 
RangePartition.  
The following are the Object Tables used by the partition layer.  
The Account Table stores metadata and configuration for each 
storage account assigned to the stamp.  The Blob Table stores all 
blob objects for all accounts in the stamp.  The Entity Table stores 
all entity rows for all accounts in the stamp; it is used for the 
public Windows Azure Table data abstraction.  The Message 
Table stores all messages for all accounts’ queues in the stamp.  
The Schema Table keeps track of the schema for all OTs.  The 
Partition Map Table keeps track of the current RangePartitions for 
all Object Tables and what partition server is serving each 
RangePartition.  This table is used by the Front-End servers to 
route requests to the corresponding partition servers. 
Each of the above OTs has a fixed schema stored in the Schema 
Table. The primary key for the Blob Table, Entity Table, and 
Message Table consists of three properties: AccountName, 
PartitionName, and ObjectName.  These properties provide the 
indexing and sort order for those Object Tables.    

5.1.1 Supported Data Types and Operations 
The property types supported for an OT’s schema are the standard 
simple types (bool, binary, string, DateTime, double, GUID, 
int32, int64).  In addition, the system supports two special types – 
DictionaryType and BlobType.  The DictionaryType allows for 
flexible properties (i.e., without a fixed schema) to be added to a 
row at any time. These flexible properties are stored inside of the 
dictionary type as (name, type, value) tuples.  From a data access 
standpoint, these flexible properties behave like first-order 
properties of the row and are queryable just like any other 
property in the row.  The BlobType is a special property used to 
store large amounts of data and is currently used only by the Blob 
Table.  BlobType avoids storing the blob data bits with the row 
properties in the “row data stream”.   Instead, the blob data bits 
are stored in a separate “blob data stream” and a pointer to the 
blob’s data bits (list of “extent + offset, length” pointers) is stored 
in the BlobType’s property in the row.  This keeps the large data 
bits separated from the OT’s queryable row property values stored 
in the row data stream. 
OTs support standard operations including insert, update, and 
delete operations on rows as well as query/get operations.  In 
addition, OTs allows batch transactions across rows with the same 
PartitionName value.  The operations in a single batch are 
committed as a single transaction.  Finally, OTs provide snapshot 
isolation to allow read operations to happen concurrently with 
writes. 

5.2 Partition Layer Architecture  
The partition layer has three main architectural components as 
shown in Figure 4: a Partition Manager (PM), Partition Servers 
(PS), and a Lock Service. 

149



Front End/
Client

PS1 PS2 PS3

Stream Layer

PM

Partition Assignment
Load Balance

Lock
Service

Lease Renewal

Monitor Lease
Status

Lookup partition

writes

Persist partition state Read partition state 
from streams

reads

Partition
Map Table

Update

Partition Layer

 
Figure 4: Partition Layer Architecture 

Partition Manager (PM) – Responsible for keeping track of and 
splitting the massive Object Tables into RangePartitions and 
assigning each RangePartition to a Partition Server to serve access 
to the objects.  The PM splits the Object Tables into N 
RangePartitions in each stamp, keeping track of the current 
RangePartition breakdown for each OT and to which partition 
servers they are assigned.  The PM stores this assignment in the 
Partition Map Table.  The PM ensures that each RangePartition is 
assigned to exactly one active partition server at any time, and that 
two RangePartitions do not overlap.  It is also responsible for load 
balancing RangePartitions among partition servers.  Each stamp 
has multiple instances of the PM running, and they all contend for 
a leader lock that is stored in the Lock Service (see below). The 
PM with the lease is the active PM controlling the partition layer.  
Partition Server (PS) – A partition server is responsible for 
serving requests to a set of RangePartitions assigned to it by the 
PM.  The PS stores all the persistent state of the partitions into 
streams and maintains a memory cache of the partition state for 
efficiency.  The system guarantees that no two partition servers 
can serve the same RangePartition at the same time by using 
leases with the Lock Service.  This allows the PS to provide 
strong consistency and ordering of concurrent transactions to 
objects for a RangePartition it is serving.  A PS can concurrently 
serve multiple RangePartitions from different OTs. In our 
deployments, a PS serves on average ten RangePartitions at any 
time.   
Lock Service – A Paxos Lock Service [3,13] is used for leader 
election for the PM. In addition, each PS also maintains a lease 
with the lock service in order to serve partitions.  We do not go 
into the details of the PM leader election, or the PS lease 
management, since the concepts used are similar to those 
described in the Chubby Lock [3] paper. 
On partition server failure, all N RangePartitions served by the 
failed PS are assigned to available PSs by the PM.  The PM will 
choose N (or fewer) partition servers, based on the load on those 
servers. The PM will assign a RangePartition to a PS, and then 
update the Partition Map Table specifying what partition server is 
serving each RangePartition.  This allows the Front-End layer to 
find the location of RangePartitions by looking in the Partition 
Map Table (see Figure 4).  When the PS gets a new assignment it 
will start serving the new RangePartitions for as long as the PS 
holds its partition server lease.   

5.3 RangePartition Data Structures  
A PS serves a RangePartition by maintaining a set of in-memory 
data structures and a set of persistent data structures in streams. 

5.3.1 Persistent Data Structure 
A RangePartition uses a Log-Structured Merge-Tree [17,4] to 
maintain its persistent data.  Each Object Table’s RangePartition 
consists of its own set of streams in the stream layer, and the 
streams belong solely to a given RangePartition, though the 
underlying extents can be pointed to by multiple streams in 
different RangePartitions due to RangePartition splitting.  The 
following are the set of streams that comprise each RangePartition 
(shown in Figure 5): 

Row Data Stream

Memory
Table

Bloom Filters

Row Page Cache
RangePartition Memory Data Module

Checkpoint
Commit Log Stream

Persistent Data for a Range Partition
(Data Stored in Stream Layer)

Read/Query

Index cache

Metadata Stream

Checkpoint Checkpoint

Write

Blob Data Stream
Extent Ptr Extent Ptr Extent Ptr

Adaptive
Range Profiling

Load Metrics

 
Figure 5: RangePartition Data Structures 

Metadata Stream – The metadata stream is the root stream for a 
RangePartition.  The PM assigns a partition to a PS by providing 
the name of the RangePartition’s metadata stream.  The metadata 
stream contains enough information for the PS to load a 
RangePartition, including the name of the commit log stream and 
data streams for that RangePartition, as well as pointers 
(extent+offset) into those streams for where to start operating in 
those streams (e.g., where to start processing in the commit log 
stream and the root of the index for the row data stream).   The PS 
serving the RangePartition also writes in the metadata stream the 
status of outstanding split and merge operations that the 
RangePartition may be involved in.  
Commit Log Stream – Is a commit log used to store the recent 
insert, update, and delete operations applied to the RangePartition 
since the last checkpoint was generated for the RangePartition.  
Row Data Stream – Stores the checkpoint row data and index for 
the RangePartition. 
Blob Data Stream – Is only used by the Blob Table to store the 
blob data bits.   
Each of the above is a separate stream in the stream layer owned 
by an Object Table’s RangePartition. 
Each RangePartition in an Object Table has only one data stream, 
except the Blob Table.  A RangePartition in the Blob Table has a 
“row data stream” for storing its row checkpoint data (the blob 
index), and a separate “blob data stream” for storing the blob data 
bits for the special BlobType described earlier.   

5.3.2 In-Memory Data Structures 
A partition server maintains the following in-memory components 
as shown in Figure 5: 
Memory Table – This is the in-memory version of the commit 
log for a RangePartition, containing all of the recent updates that 
have not yet been checkpointed to the row data stream.  When a 

150



lookup occurs the memory table is checked to find recent updates 
to the RangePartition.   
Index Cache – This cache stores the checkpoint indexes of the 
row data stream.  We separate this cache out from the row data 
cache to make sure we keep as much of the main index cached in 
memory as possible for a given RangePartition. 
Row Data Cache – This is a memory cache of the checkpoint row 
data pages.  The row data cache is read-only. When a lookup 
occurs, both the row data cache and the memory table are 
checked, giving preference to the memory table.   
Bloom Filters – If the data is not found in the memory table or 
the row data cache, then the index/checkpoints in the data stream 
need to be searched.  It can be expensive to blindly examine them 
all.  Therefore a bloom filter is kept for each checkpoint, which 
indicates if the row being accessed may be in the checkpoint.     
We do not go into further details about these components, since 
these are similar to those in [17,4]. 

5.4 Data Flow 
When the PS receives a write request to the RangePartition (e.g., 
insert, update, delete), it appends the operation into the commit 
log, and then puts the newly changed row into the memory table.  
Therefore, all the modifications to the partition are recorded 
persistently in the commit log, and also reflected in the memory 
table.  At this point success can be returned back to the client (the 
FE servers) for the transaction. When the size of the memory table 
reaches its threshold size or the size of the commit log stream 
reaches its threshold, the partition server will write the contents of 
the memory table into a checkpoint stored persistently in the row 
data stream for the RangePartition.  The corresponding portion of 
the commit log can then be removed.  To control the total number 
of checkpoints for a RangePartition, the partition server will 
periodically combine the checkpoints into larger checkpoints, and 
then remove the old checkpoints via garbage collection. 
For the Blob Table’s RangePartitions, we also store the Blob data 
bits directly into the commit log stream (to minimize the number 
of stream writes for Blob operations), but those data bits are not 
part of the row data so they are not put into the memory table.  
Instead, the BlobType property for the row tracks the location of 
the Blob data bits (extent+offset, length).  During checkpoint, the 
extents that would be removed from the commit log are instead 
concatenated to the RangePartition’s Blob data stream.  Extent 
concatenation is a fast operation provided by the stream layer 
since it consists of just adding pointers to extents at the end of the 
Blob data stream without copying any data.   
A PS can start serving a RangePartition by “loading” the partition.  
Loading a partition involves reading the metadata stream of the 
RangePartition to locate the active set of checkpoints and 
replaying the transactions in the commit log to rebuild the in-
memory state.  Once these are done, the PS has the up-to-date 
view of the RangePartition and can start serving requests. 

5.5 RangePartition Load Balancing 
A critical part of the partition layer is breaking these massive 
Object Tables into RangePartitions and automatically load 
balancing them across the partition servers to meet their varying 
traffic demands. 
The PM performs three operations to spread load across partition 
servers and control the total number of partitions in a stamp: 
Load Balance – This operation identifies when a given PS has 
too much traffic and reassigns one or more RangePartitions to less 
loaded partition servers. 

Split – This operation identifies when a single RangePartition has 
too much load and splits the RangePartition into two or more 
smaller and disjoint RangePartitions, then load balances 
(reassigns) them across two or more partition servers. 
Merge – This operation merges together cold or lightly loaded 
RangePartitions that together form a contiguous key range within 
their OT. Merge is used to keep the number of RangePartitions 
within a bound proportional to the number of partition servers in a 
stamp. 
WAS keeps the total number of partitions between a low 
watermark and a high watermark (typically around ten times the 
partition server count within a stamp).  At equilibrium, the 
partition count will stay around the low watermark.  If there are 
unanticipated traffic bursts that concentrate on a single 
RangePartition, it will be split to spread the load.  When the total 
RangePartition count is approaching the high watermark, the 
system will increase the merge rate to eventually bring the 
RangePartition count down towards the low watermark.  
Therefore, the number of RangePartitions for each OT changes 
dynamically based upon the load on the objects in those tables. 
Having a high watermark of RangePartitions ten times the number 
of partition servers (a storage stamp has a few hundred partition 
servers) was chosen based on how big we can allow the stream 
and extent metadata to grow for the SM, and still completely fit 
the metadata in memory for the SM.  Keeping many more 
RangePartitions than partition servers enables us to quickly 
distribute a failed PS or rack’s load across many other PSs.  A 
given partition server can end up serving a single extremely hot 
RangePartition, tens of lightly loaded RangePartitions, or a 
mixture in-between, depending upon the current load to the 
RangePartitions in the stamp.   The number of RangePartitions for 
the Blob Table vs. Entity Table vs. Message Table depends upon 
the load on the objects in those tables and is continuously 
changing within a storage stamp based upon traffic.   
For each stamp, we typically see 75 splits and merges and 200 
RangePartition load balances per day.   

5.5.1 Load Balance Operation Details 
We track the load for each RangePartition as well as the overall 
load for each PS.  For both of these we track 
(a) transactions/second, (b) average pending transaction count, 
(c) throttling rate, (d) CPU usage, (e) network usage, (f) request 
latency, and (g) data size of the RangePartition.   The PM 
maintains heartbeats with each PS.  This information is passed 
back to the PM in responses to the heartbeats.  If the PM sees a 
RangePartition that has too much load based upon the metrics, 
then it will decide to split the partition and send a command to the 
PS to perform the split.  If instead a PS has too much load, but no 
individual RangePartition seems to be too highly loaded, the PM 
will take one or more RangePartitions from the PS and reassign 
them to a more lightly loaded PS. 
To load balance a RangePartition, the PM sends an offload 
command to the PS, which will have the RangePartition write a 
current checkpoint before offloading it.  Once complete, the PS 
acks back to the PM that the offload is done.  The PM then 
assigns the RangePartition to its new PS and updates the Partition 
Map Table to point to the new PS.  The new PS loads and starts 
serving traffic for the RangePartition.  The loading of the 
RangePartition on the new PS is very quick since the commit log 
is small due to the checkpoint prior to the offload.  

151



5.5.2 Split Operation  
WAS splits a RangePartition due to too much load as well as the 
size of its row or blob data streams. If the PM identifies either 
situation, it tells the PS serving the RangePartition to split based 
upon load or size.  The PM makes the decision to split, but the PS 
chooses the key (AccountName, PartitionName) where the 
partition will be split.  To split based upon size, the 
RangePartition maintains the total size of the objects in the 
partition and the split key values where the partition can be 
approximately halved in size, and the PS uses that to pick the key 
for where to split.   If the split is based on load, the PS chooses the 
key based upon Adaptive Range Profiling [16].  The PS 
adaptively tracks which key ranges in a RangePartition have the 
most load and uses this to determine on what key to split the 
RangePartition.  
To split a RangePartition (B) into two new RangePartitions (C,D), 
the following steps are taken.   
1. The PM instructs the PS to split B into C and D. 
2. The PS in charge of B checkpoints B, then stops serving traffic 
briefly during step 3 below.   
3. The PS uses a special stream operation “MultiModify” to take 
each of B’s streams (metadata, commit log and data) and creates 
new sets of streams for C and D respectively with the same 
extents in the same order as in B.  This step is very fast, since a 
stream is just a list of pointers to extents.  The PS then appends 
the new partition key ranges for C and D to their metadata 
streams.   
4. The PS starts serving requests to the two new partitions C and 
D for their respective disjoint PartitionName ranges.   
5. The PS notifies the PM of the split completion, and the PM 
updates the Partition Map Table and its metadata information 
accordingly. The PM then moves one of the split partitions to a 
different PS. 

5.5.3 Merge Operation 
To merge two RangePartitions, the PM will choose two 
RangePartitions C and D with adjacent PartitionName ranges that 
have low traffic.  The following steps are taken to merge C and D 
into a new RangePartition E. 
1. The PM moves C and D so that they are served by the same PS.  
The PM then tells the PS to merge (C,D) into E.  
2. The PS performs a checkpoint for both C and D, and then 
briefly pauses traffic to C and D during step 3.   
3. The PS uses the MultiModify stream command to create a new 
commit log and data streams for E.  Each of these streams is the 
concatenation of all of the extents from their respective streams in 
C and D.  This merge means that the extents in the new commit 
log stream for E will be all of C’s extents in the order they were in 
C’s commit log stream followed by all of D’s extents in their 
original order.  This layout is the same for the new row and Blob 
data stream(s) for E.   
4. The PS constructs the metadata stream for E, which contains 
the names of the new commit log and data stream, the combined 
key range for E, and pointers (extent+offset) for the start and end 
of the commit log regions in E’s commit log derived from C and 
D, as well as the root of the data index in E’s data streams.   
5. At this point, the new metadata stream for E can be correctly 
loaded, and the PS starts serving the newly merged RangePartition 
E.  

6. The PM then updates the Partition Map Table and its metadata 
information to reflect the merge.  

5.6 Partition Layer Inter-Stamp Replication  
Thus far we have talked about an AccountName being associated 
(via DNS) to a single location and storage stamp, where all data 
access goes to that stamp.  We call this the primary stamp for an 
account.  An account actually has one or more secondary stamps 
assigned to it by the Location Service, and this primary/secondary 
stamp information tells WAS to perform inter-stamp replication 
for this account from the primary stamp to the secondary 
stamp(s).    
One of the main scenarios for inter-stamp replication is to geo-
replicate an account’s data between two data centers for disaster 
recovery.  In this scenario, a primary and secondary location is 
chosen for the account.  Take, for example, an account, for which 
we want the primary stamp (P) to be located in US South and the 
secondary stamp (S) to be located in US North.  When 
provisioning the account, the LS will choose a stamp in each 
location and register the AccountName with both stamps such that 
the US South stamp (P) takes live traffic and the US North stamp 
(S) will take only inter-stamp replication (also called geo-
replication) traffic from stamp P for the account. The LS updates 
DNS to have hostname AccountName.service.core.windows.net 
point to the storage stamp P’s VIP in US South.  When a write 
comes into stamp P for the account, the change is fully replicated 
within that stamp using intra-stamp replication at the stream layer 
then success is returned to the client.  After the update has been 
committed in stamp P, the partition layer in stamp P will 
asynchronously geo-replicate the change to the secondary stamp S 
using inter-stamp replication.  When the change arrives at stamp 
S, the transaction is applied in the partition layer and this update 
fully replicates using intra-stamp replication within stamp S.   
Since the inter-stamp replication is done asynchronously, recent 
updates that have not been inter-stamp replicated can be lost in the 
event of disaster.  In production, changes are geo-replicated and 
committed on the secondary stamp within 30 seconds on average 
after the update was committed on the primary stamp.   
Inter-stamp replication is used for both account geo-replication 
and migration across stamps.  For disaster recovery, we may need 
to perform an abrupt failover where recent changes may be lost, 
but for migration we perform a clean failover so there is no data 
loss.  In both failover scenarios, the Location Service makes an 
active secondary stamp for the account the new primary and 
switches DNS to point to the secondary stamp’s VIP.  Note that 
the URI used to access the object does not change after failover. 
This allows the existing URIs used to access Blobs, Tables and 
Queues to continue to work after failover. 

6. Application Throughput 
For our cloud offering, customers run their applications as a 
tenant (service) on VMs.  For our platform, we separate 
computation and storage into their own stamps (clusters) within a 
data center since this separation allows each to scale 
independently and control their own load balancing.  Here we 
examine the performance of a customer application running from 
their hosted service on VMs in the same data center as where their 
account data is stored.   Each VM used is an extra-large VM with 
full control of the entire compute node and a 1Gbps NIC.  The 
results were gathered on live shared production stamps with 
internal and external customers. 

152



Figure 6 shows the WAS Table operation throughput in terms of 
the entities per second (y-axis) for 1-16 VMs (x-axis) performing 
random 1KB single entity get and put requests against a single 
100GB Table.  It also shows batch inserts of 100 entities at a time 
– a common way applications insert groups of entities into a WAS 
Table.  Figure 7 shows the throughput in megabytes per second 
(y-axis) for randomly getting and putting 4MB blobs vs. the 
number of VMs used (x-axis). All of the results are for a single 
storage account.   

 
Figure 6 Table Entity Throughput for 1-16 VMs 

 
Figure 7: Blob Throughput for 1-16 VMs 

These results show a linear increase in scale is achieved for 
entities/second as the application scales out the amount of 
computing resources it uses for accessing WAS Tables. For 
Blobs, the throughput scales linearly up to eight VMs, but tapers 
off as the aggregate throughput reaches the network capacity on 
the client side where the test traffic was generated.  The results 
show that, for Table operations, batch puts offer about three times 
more throughput compared to single entity puts.  That is because 
the batch operation significantly reduces the number of network 
roundtrips and requires fewer stream writes.  In addition, the 
Table read operations have slightly lower throughput than write 
operations.  This difference is due to the particular access pattern 
of our experiment, which randomly accesses a large key space on 
a large data set, minimizing the effect of caching.  Writes on the 
other hand always result in sequential writes to the journal. 

7. Workload Profiles 
Usage patterns for cloud-based applications can vary significantly.  
Section 1 already described a near-real time ingestion engine to 
provide Facebook and Twitter search for Bing.  In this section we 
describe a few additional internal services using WAS, and give 
some high-level metrics of their usage. 
The XBox GameSaves service was announced at E3 this year and 
will provide a new feature in Fall 2011 for providing saved game 
data into the cloud for millions of XBox users. This feature will 
enable subscribed users to upload their game progress into the 

WAS cloud storage service, which they can then access from any 
XBox console they sign into. The backing storage for this feature 
leverages Blob and Table storage.  
The XBox Telemetry service stores console-generated diagnostics 
and telemetry information for later secure retrieval and offline 
processing.  For example, various Kinect related features running 
on Xbox 360 generate detailed usage files which are uploaded to 
the cloud to analyze and improve the Kinect experience based on 
customer opt-in.  The data is stored directly into Blobs, and 
Tables are used to maintain metadata information about the files. 
Queues are used to coordinate the processing and the cleaning up 
of the Blobs.   
Microsoft’s Zune backend uses Windows Azure for media file 
storage and delivery, where files are stored as Blobs. 
Table 1 shows the relative breakdown among Blob, Table, and 
Queue usage across all (All) services (internal and external) using 
WAS as well as for the services described above.  The table 
shows the breakdown of requests, capacity usage, and ingress and 
egress traffic for Blobs, Tables and Queues.  
Notice that, the percentage of requests for all services shows that 
about 17.9% of all requests are Blob requests, 46.88% of the 
requests are Table operations and 35.22% are Queue requests for 
all services using WAS.  But in terms of capacity, 70.31% of 
capacity is in Blobs, 29.68% of capacity is used by Tables, and 
0.01% used by Queues. “%Ingress” is the percentage breakdown 
of incoming traffic (bytes) among Blob, Table, and Queue; 
“%Egress” is the same for outbound traffic (bytes). The results 
show that different customers have very different usage patterns.  
In term of capacity usage, some customers (e.g., Zune and Xbox 
GameSaves) have mostly unstructured data (such as media files) 
and put those into Blobs, whereas other customers like Bing and 
XBox Telemetry that have to index a lot of data have a significant 
amount of structured data in Tables.  Queues use very little space 
compared to Blobs and Tables, since they are primarily used as a 
communication mechanism instead of storing data over a long 
period of time.   

Table 1: Usage Comparison for (Blob/Table/Queue) 
%Requests %Capacity %Ingress %Egress 

All 
Blob 17.9 70.31 48.28 66.17 
Table 46.88 29.68 49.61 33.07 

Queue 35.22 0.01 2.11 0.76 

Bing 
Blob 0.46 60.45 16.73 29.11 
Table 98.48 39.55 83.14 70.79 

Queue 1.06 0 0.13 0.1 

XBox 
GameSaves 

Blob 99.68 99.99 99.84 99.88 
Table 0.32 0.01 0.16 0.12 

Queue 0 0 0 0 

XBox 
Telemetry 

Blob 26.78 19.57 50.25 11.26 
Table 44.98 80.43 49.25 88.29 

Queue 28.24 0 0.5 0.45 

Zune 
Blob 94.64 99.9 98.22 96.21 
Table 5.36 0.1 1.78 3.79 

Queue 0 0 0 0 

8. Design Choices and Lessons Learned 
Here, we discuss a few of our WAS design choices and relate 
some of the lessons we have learned thus far. 
Scaling Computation Separate from Storage – Early on we 
decided to separate customer VM-based computation from storage 
for Windows Azure.  Therefore, nodes running a customer’s 

153



service code are separate from nodes providing their storage.  As a 
result, we can scale our supply of computation cores and storage 
independently to meet customer demand in a given data center. 
This separation also provides a layer of isolation between 
compute and storage given its multi-tenancy usage, and allows 
both of the systems to load balance independently. 
Given this decision, our goal from the start has been to allow 
computation to efficiently access storage with high bandwidth 
without the data being on the same node or even in the same rack. 
To achieve this goal we are in the process of moving towards our 
next generation data center networking architecture [10], which 
flattens the data center networking topology and provides full 
bisection bandwidth between compute and storage. 
Range Partitions vs. Hashing – We decided to use range-based 
partitioning/indexing instead of hash-based indexing (where the 
objects are assigned to a server based on the hash values of their 
keys) for the partition layer’s Object Tables.  One reason for this 
decision is that range-based partitioning makes performance 
isolation easier since a given account’s objects are stored together 
within a set of RangePartitions (which also provides efficient 
object enumeration).  Hash-based schemes have the simplicity of 
distributing the load across servers, but lose the locality of objects 
for isolation and efficient enumeration.  The range partitioning 
allows WAS to keep a customer’s objects together in their own set 
of partitions to throttle and isolate potentially abusive accounts.  
For these reasons, we took the range-based approach and built an 
automatic load balancing system (Section 5.5) to spread the load 
dynamically according to user traffic by splitting and moving 
partitions among servers.  
A downside of range partitioning is scaling out access to 
sequential access patterns.  For example, if a customer is writing 
all of their data to the very end of a table’s key range (e.g., insert 
key 2011-06-30:12:00:00, then key 2011-06-30:12:00:02, then 
key 2011-06:30-12:00:10), all of the writes go to the very last 
RangePartition in the customer’s table.  This pattern does not take 
advantage of the partitioning and load balancing our system 
provides.  In contrast, if the customer distributes their writes 
across a large number of PartitionNames, the system can quickly 
split the table into multiple RangePartitions and spread them 
across different servers to allow performance to scale linearly 
with load (as shown in Figure 6).  To address this sequential 
access pattern for RangePartitions, a customer can always use 
hashing or bucketing for the PartitionName, which avoids the 
above sequential access pattern issue. 
Throttling/Isolation – At times, servers become overloaded by 
customer requests.  A difficult problem was identifying which 
storage accounts should be throttled when this happens and 
making sure well-behaving accounts are not affected.   
Each partition server keeps track of the request rate for 
AccountNames and PartitionNames.  Because there are a large 
number of AccountNames and PartitionNames it may not be 
practical to keep track of them all.  The system uses a Sample-
Hold algorithm [7] to track the request rate history of the top N 
busiest AccountNames and PartitionNames.  This information is 
used to determine whether an account is well-behaving or not 
(e.g., whether the traffic backs off when it is throttled).  If a server 
is getting overloaded, it uses this information to selectively 
throttle the incoming traffic, targeting accounts that are causing 
the issue.  For example, a PS computes a throttling probability of 
the incoming requests for each account based on the request rate 
history for the account (those with high request rates will have a 
larger probability being throttled, whereas accounts with little 

traffic will not).  In addition, based on the request history at the 
AccountName and PartitionName levels, the system determines 
whether the account has been well-behaving.  Load balancing will 
try to keep the servers within an acceptable load, but when access 
patterns cannot be load balanced (e.g., high traffic to a single 
PartitionName, high sequential access traffic, repetitive sequential 
scanning, etc.), the system throttles requests of such traffic 
patterns when they are too high. 
Automatic Load Balancing – We found it crucial to have 
efficient automatic load balancing of partitions that can quickly 
adapt to various traffic conditions.  This enables WAS to maintain 
high availability in this multi-tenancy environment as well as deal 
with traffic spikes to a single user’s storage account. Gathering 
the adaptive profile information, discovering what metrics are 
most useful under various traffic conditions, and tuning the 
algorithm to be smart enough to effectively deal with different 
traffic patterns we see in production were some of the areas we 
spent a lot of time working on before achieving a system that 
works well for our multi-tenancy environment.  
We started with a system that used a single number to quantify 
“load” on each RangePartition and each server.   We first tried the 
product of request latency and request rate to represent the load on 
a PS and each RangePartition.  This product is easy to compute 
and reflects the load incurred by the requests on the server and 
partitions.  This design worked well for the majority of the load 
balancing needs (moving partitions around), but it did not 
correctly capture high CPU utilization that can occur during scans 
or high network utilization.  Therefore, we now take into 
consideration request, CPU, and network loads to guide load 
balancing.  However, these metrics are not sufficient to correctly 
guide splitting decisions.  
For splitting, we introduced separate mechanisms to trigger splits 
of partitions, where we collect hints to find out whether some 
partitions are reaching their capacity across several metrics.  For 
example, we can trigger partition splits based on request 
throttling, request timeouts, the size of a partition, etc.  Combining 
split triggers and the load balancing allows the system to quickly 
split and load balance hot partitions across different servers. 
From a high level, the algorithm works as follows.  Every N 
seconds (currently 15 seconds) the PM sorts all RangePartitions 
based on each of the split triggers. The PM then goes through 
each partition, looking at the detailed statistics to figure out if it 
needs to be split using the metrics described above (load, 
throttling, timeouts, CPU usage, size, etc.).  During this process, 
the PM picks a small number to split for this quantum, and 
performs the split action on those. 
After doing the split pass, the PM sorts all of the PSs based on 
each of the load balancing metrics - request load, CPU load and 
network load.  It then uses this to identify which PSs are 
overloaded versus lightly loaded.  The PM then chooses the PSs 
that are heavily loaded and, if there was a recent split from the 
prior split pass, the PM will offload one of those RangePartitions 
to a lightly loaded server.   If there are still highly loaded PSs 
(without a recent split to offload), the PM offloads 
RangePartitions from them to the lightly loaded PSs.  
The core load balancing algorithm can be dynamically “swapped 
out” via configuration updates.  WAS includes scripting language 
support that enables customizing the load balancing logic, such as 
defining how a partition split can be triggered based on different 
system metrics.  This support gives us flexibility to fine-tune the 
load balancing algorithm at runtime as well as try new algorithms 
according to various traffic patterns observed.   

154



Separate Log Files per RangePartition – Performance isolation 
for storage accounts is critical in a multi-tenancy environment.  
This requirement is one of the reasons we used separate log 
streams for each RangePartition, whereas BigTable [4] uses a 
single log file across all partitions on the same server.  Having 
separate log files enables us to isolate the load time of a 
RangePartition to just the recent object updates in that 
RangePartition.   
Journaling – When we originally released WAS, it did not have 
journaling.  As a result, we experienced many hiccups with 
read/writes contending with each other on the same drive, 
noticeably affecting performance.  We did not want to write to 
two log files (six replicas) like BigTable [4] due to the increased 
network traffic. We also wanted a way to optimize small writes, 
especially since we wanted separate log files per RangePartition.  
These requirements led us to the journal approach with a single 
log file per RangePartition.  We found this optimization quite 
effective in reducing the latency and providing consistent 
performance. 
Append-only System – Having an append-only system and 
sealing an extent upon failure have greatly simplified the 
replication protocol and handling of failure scenarios.  In this 
model, the data is never overwritten once committed to a replica, 
and, upon failures, the extent is immediately sealed.  This model 
allows the consistency to be enforced across all the replicas via 
their commit lengths.   
Furthermore, the append-only system has allowed us to keep 
snapshots of the previous states at virtually no extra cost, which 
has made it easy to provide snapshot/versioning features.  It also 
has allowed us to efficiently provide optimizations like erasure 
coding.  In addition, append-only has been a tremendous benefit 
for diagnosing issues as well as repairing/recovering the system in 
case something goes wrong.  Since the history of changes is 
preserved, tools can easily be built to diagnose issues and to repair 
or recover the system from a corrupted state back to a prior known 
consistent state.  When operating a system at this scale, we cannot 
emphasize enough the benefit we have seen from using an 
append-only system for diagnostics and recovery.  
An append-based system comes with certain costs.  An efficient 
and scalable garbage collection (GC) system is crucial to keep the 
space overhead low, and GC comes at a cost of extra I/O.  In 
addition, the data layout on disk may not be the same as the 
virtual address space of the data abstraction stored, which led us 
to implement prefetching logic for streaming large data sets back 
to the client. 
End-to-end Checksums – We found it crucial to keep checksums 
for user data end to end.  For example, during a blob upload, once 
the Front-End server receives the user data, it immediately 
computes the checksum and sends it along with the data to the 
backend servers.  Then at each layer, the partition server and the 
stream servers verify the checksum before continuing to process 
it.  If a mismatch is detected, the request is failed.  This prevents 
corrupted data from being committed into the system.  We have 
seen cases where a few servers had hardware issues, and our end-
to-end checksum caught such issues and helped maintain data 
integrity.  Furthermore, this end-to-end checksum mechanism also 
helps identify servers that consistently have hardware issues so we 
can take them out of rotation and mark them for repair. 
Upgrades – A rack in a storage stamp is a fault domain. A 
concept orthogonal to fault domain is what we call an upgrade 
domain (a set of servers briefly taken offline at the same time 
during a rolling upgrade). Servers for each of the three layers are 

spread evenly across different fault and upgrade domains for the 
storage service. This way, if a fault domain goes down, we lose at 
most 1/X of the servers for a given layer, where X is the number 
of fault domains.   Similarly, during a service upgrade at most 1/Y 
of the servers for a given layer are upgraded at a given time, 
where Y is the number of upgrade domains. To achieve this, we 
use rolling upgrades, which enable us to maintain high availability 
when upgrading the storage service, and we upgrade a single 
upgrade domain at a time. For example, if we have ten upgrade 
domains, then upgrading a single domain would potentially 
upgrade ten percent of the servers from each layer at a time.  
During a service upgrade, storage nodes may go offline for a few 
minutes before coming back online.  We need to maintain 
availability and ensure that enough replicas are available at any 
point in time.  Even though the system is built to tolerate isolated 
failures, these planned (massive) upgrade “failures” can be more 
efficiently dealt with instead of being treated as abrupt massive 
failures. The upgrade process is automated so that it is tractable to 
manage a large number of these large-scale deployments.  The 
automated upgrade process goes through each upgrade domain 
one at a time for a given storage stamp. Before taking down an 
upgrade domain, the upgrade process notifies the PM to move the 
partitions out of that upgrade domain and notifies the SM to not 
allocate new extents in that upgrade domain.  Furthermore, before 
taking down any servers, the upgrade process checks with the SM 
to ensure that there are sufficient extent replicas available for each 
extent outside the given upgrade domain.  After upgrading a given 
domain, a set of validation tests are run to make sure the system is 
healthy before proceeding to the next upgrade domain.  This 
validation is crucial for catching issues during the upgrade process 
and stopping it early should an error occur.  
Multiple Data Abstractions from a Single Stack – Our system 
supports three different data abstraction from the same storage 
stack: Blobs, Tables and Queues.  This design enables all data 
abstractions to use the same intra-stamp and inter-stamp 
replication, use the same load balancing system, and realize the 
benefits from improvements in the stream and partition layers.  In 
addition, because the performance needs of Blobs, Tables, and 
Queues are different, our single stack approach enables us to 
reduce costs by running all services on the same set of hardware.  
Blobs use the massive disk capacity, Tables use the I/O spindles 
from the many disks on a node (but do not require as much 
capacity as Blobs), and Queues mainly run in memory.  
Therefore, we are not only blending different customer’s 
workloads together on shared resources, we are also blending 
together Blob, Table, and Queue traffic across the same set of 
storage nodes.      
Use of System-defined Object Tables – We chose to use a fixed 
number of system defined Object Tables to build Blob, Table, and 
Queue abstractions instead of exposing the raw Object Table 
semantics to end users.  This decision reduces management by our 
system to only the small set of schemas of our internal, system 
defined Object Tables.  It also provides for easy maintenance and 
upgrade of the internal data structures and isolates changes of 
these system defined tables from end user data abstractions. 
Offering Storage in Buckets of 100TBs – We currently limit the 
amount of storage for an account to be no more than 100TB.  This 
constraint allows all of the storage account data to fit within a 
given storage stamp, especially since our initial storage stamps 
held only two petabytes of raw data (the new ones hold 20-30PB).  
To obtain more storage capacity within a single data center, 
customers use more than one account within that location.  This 

155



ended up being a reasonable tradeoff for many of our large 
customers (storing petabytes of data), since they are typically 
already using multiple accounts to partition their storage across 
different regions and locations (for local access to data for their 
customers).  Therefore, partitioning their data across accounts 
within a given location to add more storage often fits into their 
existing partitioning design.  Even so, it does require large 
services to have account level partitioning logic, which not all 
customers naturally have as part of their design. Therefore, we 
plan to increase the amount of storage that can be held within a 
given storage account in the future.   
CAP Theorem – WAS provides high availability with strong 
consistency guarantees.  This combination seems to violate the 
CAP theorem [2], which says a distributed system cannot have 
availability, consistency, and partition tolerance at the same time.  
However, our system, in practice, provides all three of these 
properties within a storage stamp.  This situation is made possible 
through layering and designing our system around a specific fault 
model.   
The stream layer has a simple append-only data model, which 
provides high availability in the face of network partitioning and 
other failures, whereas the partition layer, built upon the stream 
layer, provides strong consistency guarantees.  This layering 
allows us to decouple the nodes responsible for providing strong 
consistency from the nodes storing the data with availability in the 
face of network partitioning.  This decoupling and targeting a 
specific set of faults allows our system to provide high availability 
and strong consistency in face of various classes of failures we see 
in practice.  For example, the type of network partitioning we 
have seen within a storage stamp are node failures and top-of-rack 
(TOR) switch failures. When a TOR switch fails, the given rack 
will stop being used for traffic — the stream layer will stop using 
that rack and start using extents on available racks to allow 
streams to continue writing. In addition, the partition layer will 
reassign its RangePartitions to partition servers on available racks 
to allow all of the data to continue to be served with high 
availability and strong consistency.  Therefore, our system is 
designed to be able to provide strong consistency with high 
availability for the network partitioning issues that are likely to 
occur in our system (at the node level as well as TOR failures).   
High-performance Debug Logging – We used an extensive 
debug logging infrastructure throughout the development of 
WAS.  The system writes logs to the local disks of the storage 
nodes and provides a grep-like utility to do a distributed search 
across all storage node logs. We do not push these verbose logs 
off the storage nodes, given the volume of data being logged.   
When bringing WAS to production, reducing logging for 
performance reasons was considered.  The utility of verbose 
logging though made us wary of reducing the amount of logging 
in the system.  Instead, the logging system was optimized to 
vastly increase its performance and reduce its disk space overhead 
by automatically tokenizing and compressing output, achieving a 
system that can log 100’s of MB/s with little application 
performance impact per node.  This feature allows retention of 
many days of verbose debug logs across a cluster.  The high-
performance logging system and associated log search tools are 
critical for investigating any problems in production in detail 
without the need to deploy special code or reproduce problems. 
Pressure Point Testing – It is not practical to create tests for all 
combinations of all complex behaviors that can occur in a large 
scale distributed system.  Therefore, we use what we call Pressure 
Points to aid in capturing these complex behaviors and 

interactions. The system provides a programmable interface for all 
of the main operations in our system as well as the points in the 
system to create faults.    Some examples of these pressure point 
commands are: checkpoint a RangePartition, combine a set of 
RangePartition checkpoints, garbage collect a RangePartition, 
split/merge/load balance RangePartitions, erasure code or un-
erasure code an extent, crash each type of server in a stamp, inject 
network latencies, inject disk latencies, etc. 
The pressure point system is used to trigger all of these 
interactions during a stress run in specific orders or randomly.  
This system has been instrumental in finding and reproducing 
issues from complex interactions that might have taken years to 
naturally occur on their own. 

9. Related Work  
Prior studies [9] revealed the challenges in achieving strong 
consistency and high availability in a poorly-connected network 
environment.  Some systems address this by reducing consistency 
guarantees to achieve high availability [22,14,6]. But this shifts 
the burden to the applications to deal with conflicting views of 
data.  For instance, Amazon’s SimpleDB was originally 
introduced with an eventual consistency model and more recently 
added strongly consistent operations [23]. Van Renesse et. al. [20] 
has shown, via Chain Replication, the feasibility of building large-
scale storage systems providing both strong consistency and high 
availability, which was later extended to allow reading from any 
replica [21].  Given our customer needs for strong consistency, we 
set out to provide a system that can provide strong consistency 
with high availability along with partition tolerance for our fault 
model. 
As in many other highly-available distributed storage systems 
[6,14,1,5], WAS also provides geo-redundancy.  Some of these 
systems put geo-replication on the critical path of the live 
application requests, whereas we made a design trade-off to take a 
classical asynchronous geo-replication approach [18] and leave it 
off the critical path. Performing the geo-replication completely 
asynchronously allows us to provide better write latency for 
applications, and allows more optimizations, such as batching and 
compaction for geo-replication, and efficient use of cross-data 
center bandwidth. The tradeoff is that if there is a disaster and an 
abrupt failover needs to occur, then there is unavailability during 
the failover and a potential loss of recent updates to a customer’s 
account. 
The closest system to ours is GFS [8,15] combined with BigTable 
[4].  A few differences from these prior publications are: (1) GFS 
allows relaxed consistency across replicas and does not guarantee 
that all replicas are bitwise the same, whereas WAS provides that 
guarantee, (2) BigTable combines multiple tablets into a single 
commit log and writes them to two GFS files in parallel to avoid 
GFS hiccups, whereas we found we could work around both of 
these by using journaling in our stream layer, and (3) we provide a 
scalable Blob storage system and batch Table transactions 
integrated into a BigTable-like framework.  In addition, we 
describe how WAS automatically load balances, splits, and 
merges RangePartitions according to application traffic demands. 

10. Conclusions 
The Windows Azure Storage platform implements essential 
services for developers of cloud based solutions. The combination 
of strong consistency, global partitioned namespace, and disaster 
recovery has been important customer features in WAS’s multi-
tenancy environment. WAS runs a disparate set of workloads with 

156



various peak usage profiles from many customers on the same set 
of hardware. This significantly reduces storage cost since the 
amount of resources to be provisioned is significantly less than the 
sum of the peak resources required to run all of these workloads 
on dedicated hardware.  
As our examples demonstrate, the three storage abstractions, 
Blobs, Tables, and Queues, provide mechanisms for storage and 
workflow control for a wide range of applications. Not mentioned, 
however, is the ease with which the WAS system can be 
utilized. For example, the initial version of the Facebook/Twitter 
search ingestion engine took one engineer only two months from 
the start of development to launching the service. This experience 
illustrates our service's ability to empower customers to easily 
develop and deploy their applications to the cloud. 
Additional information on Windows Azure and Windows Azure 
Storage is available at http://www.microsoft.com/windowsazure/. 

Acknowledgements 
We would like to thank Geoff Voelker, Greg Ganger, and 
anonymous reviewers for providing valuable feedback on this 
paper.   
We would like to acknowledge the creators of Cosmos (Bing’s 
storage system): Darren Shakib, Andrew Kadatch, Sam McKelvie, 
Jim Walsh and Jonathan Forbes.  We started Windows Azure 5 
years ago with Cosmos as our intra-stamp replication system.  The 
data abstractions and append-only extent-based replication system 
presented in Section 4 was created by them.  We extended 
Cosmos to create our stream layer by adding mechanisms to allow 
us to provide strong consistency in coordination with the partition 
layer, stream operations to allow us to efficiently split/merge 
partitions, journaling, erasure coding, spindle anti-starvation, read 
load-balancing, and other improvements. 
We would also like to thank additional contributors to Windows 
Azure Storage: Maneesh Sah, Matt Hendel, Kavitha Golconda, 
Jean Ghanem, Joe Giardino, Shuitao Fan, Justin Yu, Dinesh 
Haridas, Jay Sreedharan, Monilee Atkinson, Harshawardhan 
Gadgil, Phaneesh Kuppahalli, Nima Hakami, Maxim Mazeev, 
Andrei Marinescu, Garret Buban, Ioan Oltean, Ritesh Kumar, 
Richard Liu, Rohit Galwankar, Brihadeeshwar Venkataraman, 
Jayush Luniya, Serdar Ozler, Karl Hsueh, Ming Fan, David 
Goebel, Joy Ganguly, Ishai Ben Aroya, Chun Yuan, Philip Taron, 
Pradeep Gunda, Ryan Zhang, Shyam Antony, Qi Zhang, Madhav 
Pandya, Li Tan, Manish Chablani, Amar Gadkari, Haiyong Wang, 
Hakon Verespej, Ramesh Shankar, Surinder Singh, Ryan Wu, 
Amruta Machetti, Abhishek Singh Baghel, Vineet Sarda, Alex 
Nagy, Orit Mazor, and Kayla Bunch.  
Finally we would like to thank Amitabh Srivastava, G.S. Rana, 
Bill Laing, Satya Nadella, Ray Ozzie, and the rest of the Windows 
Azure team for their support. 

Reference 
[1] J. Baker et al., "Megastore: Providing Scalable, Highly 

Available Storage for Interactive Services," in Conf. on 
Innovative Data Systems Research, 2011. 

[2] Eric A. Brewer, "Towards Robust Distributed Systems. 
(Invited Talk)," in Principles of Distributed Computing, 
Portland, Oregon, 2000. 

[3] M. Burrows, "The Chubby Lock Service for Loosely-
Coupled Distributed Systems," in OSDI, 2006. 
 

[4] F. Chang et al., "Bigtable: A Distributed Storage System for 
Structured Data," in OSDI, 2006. 

[5] B. Cooper et al., "PNUTS: Yahoo!'s Hosted Data Serving 
Platform," VLDB, vol. 1, no. 2, 2008. 

[6] G. DeCandia et al., "Dynamo: Amazon's Highly Available 
Key-value Store," in SOSP, 2007. 

[7] Cristian Estan and George Varghese, "New Directions in 
Traffic Measurement and Accounting," in SIGCOMM, 2002. 

[8] S. Ghemawat, H. Gobioff, and S.T. Leung, "The Google 
File System," in SOSP, 2003. 

[9] J. Gray, P. Helland, P. O'Neil, and D. Shasha, "The Dangers 
of Replication and a Solution," in SIGMOD, 1996. 

[10] Albert Greenberg et al., "VL2: A Scalable and Flexible Data 
Center Network," Communications of the ACM, vol. 54, no. 
3, pp. 95-104, 2011. 

[11] Y. Hu and Q. Yang, "DCD—Disk Caching Disk: A New 
Approach for Boosting I/O Performance," in ISCA, 1996. 

[12] H.T. Kung and John T. Robinson, "On Optimistic Methods 
for Concurrency Control," ACM Transactions on Database 
Systems, vol. 6, no. 2, pp. 213-226, June 1981. 

[13] Leslie Lamport, "The Part-Time Parliament," ACM 
Transactions on Computer Systems, vol. 16, no. 2, pp. 133-
169, May 1998. 

[14] A. Malik and P. Lakshman, "Cassandra: a decentralized 
structured storage system," SIGOPS Operating System 
Review, vol. 44, no. 2, 2010. 

[15] M. McKusick and S. Quinlan, "GFS: Evolution on Fast-
forward," ACM File Systems, vol. 7, no. 7, 2009. 

[16] S. Mysore, B. Agrawal, T. Sherwood, N. Shrivastava, and S. 
Suri, "Profiling over Adaptive Ranges," in Symposium on 
Code Generation and Optimization, 2006. 

[17] P. O'Neil, E. Cheng, D. Gawlick, and E. O'Neil, "The Log-
Structured Merge-Tree (LSM-tree)," Acta Informatica - 
ACTA, vol. 33, no. 4, 1996. 

[18] H. Patterson et al., "SnapMirror: File System Based 
Asynchronous Mirroring for Disaster Recovery," in 
USENIX-FAST, 2002. 

[19] Irving S. Reed and Gustave Solomon, "Polynomial Codes 
over Certain Finite Fields," Journal of the Society for 
Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300-
304, 1960. 

[20] R. Renesse and F. Schneider, "Chain Replication for 
Supporting High Throughput and Availability," in USENIX-
OSDI, 2004. 

[21] J. Terrace and M. Freedman, "Object Storage on CRAQ: 
High-throughput chain replication for read-mostly 
workloads," in USENIX'09, 2009. 

[22] D. Terry, K. Petersen M. Theimer, A. Demers, M. Spreitzer, 
and C. Hauser, "Managing Update Conflicts in Bayou, A 
Weakly Connected Replicated Storage System," in ACM 
SOSP, 1995. 

[23] W. Vogel, "All Things Distributed - Choosing Consistency," 
in 
http://www.allthingsdistributed.com/2010/02/strong_consist
ency_simpledb.html, 2010. 

 

157



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




