
CS 424/624 Reliable Software Systems

Lecture 3: Static Analysis

Prof. Ryan Huang

Spring 2022

(Slides based on Stephen Chong’s lecture notes)



Static Analysis Basics

• Goal: analyze all possible behaviors of a program without running it

• Some basic static analysis questions:
- Where does the source of a variable come from?
- What program locations use the value of a variable?
- How does a variable’s value propagate throughout the program?

• For reliability purpose: check some rules during the analysis
- Does the program dereference a null pointer?
- Does the program free all allocations?
- Is every file handle closed?

1/31/22 CS 624 – Lecture 3 2



Static Analysis Basics

• Different flavors: 
- intra-procedural, inter-procedural
- data flow, control flow
- flow sensitive, path sensitive, context sensitive, field sensitive, etc.

• Relies on compiler techniques
- Usually work on intermediate representation, e.g., static single assignment 

(SSA) form
§ Each variable is defined (assigned to) exactly once
§ But may be used multiple times

- Popular tools: LLVM, Frama-C, Soot, FindBugs

1/31/22 CS 624 – Lecture 3 3



Bad News: No Silver Bullet

• No Perfect Static Analysis Method Exists
- Why?
- the general problem of finding all possible run-time errors in an arbitrary 

program is undecidable: reducible to the halting problem

• Each method makes trade-off between soundness and 
completeness
- Overapproximate or underapproximate the problem
- Try to solve this simpler version

1/31/22 CS 624 – Lecture 3 4



Sound, Complete Analysis?

• A sound static analysis over-approximates 
the program behaviors
- guaranteed to identify all violations
- but may report false positives

• A complete static analysis under-
approximates the program behaviors
- every reported violation is a true violation
- but no guarantee all violations will be reported

• Most existing bug detection static analyses 
are neither sound nor complete!

1/31/22 CS 624 – Lecture 3 5

Possible behavior

Overapproximate

Underapproximate

One execution



Control-Flow Graph (CFG)

• A control flow graph is a representation of a program that makes 
certain analyses (including dataflow analyses) easier

• A directed graph where
- Each node represents a statement
- Edges represent control flow

• Statements may be
- Assignments or x := y op z or x := op z 
- Copy statements x := y 
- Branches goto L or if b then goto L
- Etc.

1/31/22 CS 624 – Lecture 3 6



Control-flow Graph Example

x := a + b;

y := a * b;

while (y > a){

a := a +1;

x := a + b;

}

1/31/22 CS 624 – Lecture 3 7

x := a + b

y := a * b

y > a

a := a + 1

x := a + b



Variations on CFGs

• Usually do not include declarations (e.g., int x;) in the CFG
- but there is usually something in the implementation

• May want a unique entry and exit point.

• May group statements into basic blocks
- A sequence of instructions with no branches into or out of the block.

§ i.e., execution starts only at the beginning of the block, and executes all of the block. Final 
statement in block may be a branch.

1/31/22 CS 624 – Lecture 3 8



Control-Flow Graph with Basic Blocks

• Can lead to more efficient implementations
- But more complicated to explain

• We will use single-statement blocks in lecture

1/31/22 CS 624 – Lecture 3 9

x := a + b;

y := a * b;

while (y > a){

a := a +1;

x := a + b;

}

x := a + b
y := a * b

y > a

a := a + 1
x := a + b



CFG with Entry and Exit

• All nodes without a normal predecessor 
should be pointed to by entry

• All nodes without a successor should 
point to exit

1/31/22 CS 624 – Lecture 3 10

x := a + b;

y := a * b;

while (y > a){

a := a +1;

x := a + b;

}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit



CFG vs. AST (Abstract Syntax Tree)
• CFGs are much simpler than ASTs

- fewer forms, less redundancy, only 
simple expressions

• But, ASTs are a more faithful 
representation
- CFGs introduce temporaries
- lose block structure of program

• So for AST,
- easier to report error + other messages
- easier to explain to programmer
- easier to unparse to produce readable 

code

1/31/22 CS 624 – Lecture 3 11

program

while

block

=

x +

a b

…

…

>

=

a +

a 1

y a

AST



Data Flow Analysis

• A framework for proving facts about program

• Reasons about lots of little facts

• Little or no interaction between facts
- works best on properties about how program computes

• Based on all paths through program
• including infeasible paths

• Let's consider some dataflow analyses

1/31/22 CS 624 – Lecture 3 12



Available Expressions

• An expression e = x op y is available at a program point p, if 
- e is computed on every path from the graph entry to node p, and
- e’s value has not changed since the last time e was computed on the paths

§ i.e., there are no definitions of x or y since the most recent occurrence of e on the path

• Available expression can be used to optimize code
- if an expression is available, it need not be recomputed
- at least, if it is in a register somewhere

1/31/22 CS 624 – Lecture 3 13



Data Flow Facts

• Is expression e available?

• Facts:
- a + b is available
- a * b is available
- a + 1 is available

• For each program point, we 
will compute which facts hold

1/31/22 CS 624 – Lecture 3 14

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit



Gen and Kill

• What is the effect of each statement 
on the facts?

1/31/22 CS 624 – Lecture 3 15

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

stmt gen kill
x := a + b a + b

y := a * b a * b

y > a

a := a + 1 a + 1
a + b
a * b



Computing Available Expressions

1/31/22 CS 624 – Lecture 3 16

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

∅
∅

{a + b}
{a + b}

{a + b, a * b}
{a + b, a * b}

{a + b, a * b}
{a + b, a * b}

∅
∅

{a + b}

{a + b}

{a + b}
{a + b}

stmt gen kill
x := a + b a + b

y := a * b a * b

y > a

a := a + 1 a + 1
a + b
a * b



Terminology

• A join point is a program point where two branches meet

• Available expressions is a forward, must problem
- Forward = data Flow from in to out
- Must = at join point, property must hold on all paths that are joined

1/31/22 CS 624 – Lecture 3 17



Data Flow Equations

• Let s be a statement
- succ(s)	=	{immediate	successor	statements	of	s}
- pred(s)	=	{immediate	predecessor	statements	of	s}
- In(s)	=	facts	that	hold	just	before	executing	s
- Out(s)	=	facts	that	hold	after	executing	s

• In(s)	= ∩s’∊	pred(s) Out(s’)	

• Out(s)	= Gen(s)	∪	(In(s)	– Kill(s))	

• These are also called transfer functions

1/31/22 CS 624 – Lecture 3 18



Computing Available Expressions

1/31/22 CS 624 – Lecture 3 19

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

∅
∅

{a + b}
{a + b}

{a + b, a * b}
{a + b, a * b}

{a + b, a * b}
{a + b, a * b}

∅
∅

{a + b}

{a + b}

{a + b}
{a + b}

stmt gen kill
x := a + b a + b

y := a * b a * b

y > a

a := a + 1 a + 1
a + b
a * b

• In(s)	= ∩s’∊	pred(s) Out(s’)	
• Out(s)	= Gen(s)	∪	(In(s)	– Kill(s))	



Live Variables

• A variable v is live at a program point p if 
- v will be used on some execution path originating from p before v is overwritten

• Optimization
- If a variable is not live, no need to keep it in a register
- If a variable is dead at assignment, can eliminate assignment

1/31/22 CS 624 – Lecture 3 20



Data Flow Equations

• Available expressions is a forward must analysis
- propagate facts in same direction as control flow
- expression is available if available on all paths

• Liveness is a backward may analysis
- to know if variable is live, need to look at future uses
- variable is live if available on some path

• Out(s)	= ∪	s’∊	succ(s) In(s’)

• In(s)	= Gen(s)	∪	(Out(s)	– Kill(s))

1/31/22 CS 624 – Lecture 3 21

• In(s)	= ∩s’∊	pred(s) Out(s’)	
• Out(s)	= Gen(s)	∪	(In(s)	– Kill(s))	



Gen and Kill

• What is the effect of each statement 
on the facts?

1/31/22 CS 624 – Lecture 3 22

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

entry

exit

stmt gen kill
x := a + b a, b x

y := a * b a, b y

y > a a, y

a := a + 1 a a



Computing Live Variables

1/31/22 CS 624 – Lecture 3 23

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

• Out(s)	= ∪	s’∊	succ(s) In(s’)
• In(s)	= Gen(s)	∪	(Out(s)	– Kill(s))

stmt gen kill
x := a + b a, b x

y := a * b a, b y

y > a a, y

a := a + 1 a a

{x}

{x}

{x, y, a}

{x, y, a}

{y, a, b}
{y, a, b}

{y, a, b}

{y, a, b}

{x, y, a, b}
{x, y, a, b}

{x, a, b}
{x, a, b}

{a, b}

doing multiple iterations 
until reaching fixed point



Very Busy Expressions

• An expression e is very busy at point p if
- On every path from p, e is evaluated before the value of e is changed
- i.e., it is guaranteed that e will be computed at some time in the future

• Optimization
- Can hoist very busy expression computation
- Very busy expressions are ideal candidates for invariant loop motion

§ If an expression, invariant in a loop, is also very busy, we know it must be used in the future, and 
hence evaluation outside the loop must be worthwhile

• What kind of problem?
- Forward or backward?
- May or must?

1/31/22 CS 624 – Lecture 3 24



Examples

1/31/22 CS 624 – Lecture 3 25

t := b + c

for (...) {
if (...)

a=b+c;
else 

a=d+c;
}

for (...) {
if (a>b+c)

x=1;
else 

x=0;
}

a := b + c a := d + c

b + c is not very busy 
at loop entrance

t := b + c

a > b + c

x := 1 x := 0

b + c is very busy at 
loop entrance



Reaching Definitions

• A definition of a variable v is an assignment to v

• A definition of variable v reaches point p if
- There is no intervening assignment to v

• Also called def-use information

• What kind of problem?
- Forward or backward?
- May or must?

1/31/22 CS 624 – Lecture 3 26



Space of Data Flow Analyses

• Most data flow analyses can be classified this way
- A few don’t fit: bidirectional

• Lots of literature on data flow analysis

1/31/22 CS 624 – Lecture 3 27

May Must

Forward Reaching 
definitions

Available 
expressions

Backward Live variables Very busy 
expressions



Forward Must Data Flow Algorithm

1/31/22 CS 624 – Lecture 3 28

Out(s) := Gen(s) for all statements s

W := {all statements} 

repeat {

take s from W

In(s) := ∩s’ ∈ pred(s) Out(s’)

temp := Gen(s) ∪ (In(s) – Kill(s))

if (temp != Out(s)) {

Out(s) := temp

W := W ∪ succ(s)

}

} until W = Æ

(worklist)

Will the algorithm terminate?



Practical Implementation

• Data flow facts are assertions that are true or false at a program 
point

• Can represent set of facts as bit vector
- Fact i represented by bit i
- Intersection=bitwise and, union=bitwise or, etc

• “Only” a constant factor speedup

• But very useful in practice

1/31/22 CS 624 – Lecture 3 29



Basic Blocks

• A basic block is a sequence of statements such that
- No branches to any statement except the first
- No statement in the block branches except the last

• In practical data flow implementations
- Compute Gen/Kill for each basic block

§ Compose transfer functions
- Store only In/Out for each basic block
- Typical basic block is about 5 statements

1/31/22 CS 624 – Lecture 3 30



Flow Sensitivity

• Data flow analysis is flow sensitive
- The order of statements is taken into account
- I.e., we keep track of facts per program point

• Alternative: Flow-insensitive analysis
- Analysis the same regardless of statement order
- Standard example: types describe facts that are true at all program points

§ /*x:int*/ x:=… /*x:int*/

1/31/22 CS 624 – Lecture 3 31



A Problem...

• Consider following program

• Can pFile be NULL when used for fputs?

• What dataflow analysis could we use to determine if it is?

1/31/22 CS 624 – Lecture 3 32

FILE *pFile = NULL;
if (debug) {
pFile = fopen(“debuglog.txt”, “a”)

}
…
if (debug) {
fputs(“foo”, pFile);

}



Path Sensitivity

1/31/22 CS 624 – Lecture 3 33

debug

pFile = ...FILE *pFile = NULL;
if (debug) {
pFile = fopen(…)

}
…
if (debug) {
fputs(“foo”, pFile);

}

...

debug

...

fputs(“foo”, pFile)

pFile != NULL

∅

∅

∅
∅



Path Sensitivity

• A path-sensitive analysis tracks data flow facts depending on the 
path taken
- Path often represented by which branches of conditionals taken

• Can reason more accurately about correlated conditionals (or 
dependent conditionals) such as in previous example

• How can we make a path sensitive analysis
- Could do a dataflow analysis where we track facts for each possible path
- But exponentially many paths make it difficult to scale

1/31/22 CS 624 – Lecture 3 34



Data Flow Analysis and Heap

• Data Flow is good at analyzing local variables
- But what about values stored in the heap?

• Not modeled in traditional data flow

• In practice: *x := e
- Assume all data flow facts killed (!)
- Or, assume write through x may affect any variable whose address has been 

taken

• In general, hard to analyze pointers

1/31/22 CS 624 – Lecture 3 35



Terminology Review

• Must vs. May

• (Not always followed in literature)

• Forwards vs. Backwards

• Flow-sensitive vs. Flow-insensitive

• Path-sensitive vs Path-insensitive

1/31/22 CS 624 – Lecture 3 36



More Terminology

• An analysis that models only a single function at a time is intra-
procedural

• An analysis that takes multiple functions into account is inter-
procedural

• An analysis that takes the whole program into account is whole 
program

• An inter-procedural analysis that considers the calling context 
when analyzing the target of a function call is context-sensitive 
- otherwise, it is context-insensitive

1/31/22 CS 624 – Lecture 3 37



Call Graph

• Inter-procedural analysis uses calling relationships among 
multiple procedures
- Enables more precise analysis information

• First problem: how do we know what procedures are called from 
where?
- Especially difficult in higher-order languages, languages where functions are 

values

• Let’s assume we have a (static) call graph
- Indicates which procedures can call which other procedures, and from which 

program points.

1/31/22 CS 624 – Lecture 3 38



Call Graph Example

1/31/22 CS 624 – Lecture 3 39

f() {
1: g();
2: g();
3: h();
}

g() {
4: h();
}

h() {
5: f();
6: i();
}

i() { … } 

f

g

h

i

1
2

3

4

6

5



Inter-procedural Dataflow Analysis

• How do we deal with procedure calls?

• Obvious idea: make one big CFG

1/31/22 CS 624 – Lecture 3 40

main() {
x := 7;
r := p(x);
x := r;
z := p(x + 10);

}

p(int a) {
if (a < 9)

y := 0;
else

y := 1;
return a;

}

x := 7

call p(x)

enter 
main

r := return p(x)

x := r

call p(x+10)

z := return p(x+10)

exit 
main

a < 9

y := 0

enter 
p

y := 1

return a

exit 
p



Example

1/31/22 CS 624 – Lecture 3 41

x := 7

call p(x)

enter 
main

r := return p(x)

x := r

call p(x+10)

z := return p(x+10)

exit 
main

a < 9

y := 0

enter 
p

y := 1

return a

exit 
p

main() {
x := 7;
r := p(x);
x := r;
z := p(x + 10);

}

p(int a) {
if (a < 9)

y := 0;
else

y := 1;
return a;

}

x=7

a=7

a=7

a=7

r=7, x=7

r=7, x=7

a=17 a=⊥
a=7

a=⊥
a=7

r=⊥, x=⊥



Context Sensitivity

• Problem: dataflow facts from one call site “tainting” results at 
other call site
- p analyzed with merge of dataflow facts from all call sites

• How to address?

1/31/22 CS 624 – Lecture 3 42



Inlining

• Inlining
- Use a new copy of a 

procedure’s CFG at 
each call site

• Concerns?
- May be expensive! 

Exponential increase in 
size of CFG
§ p() { q(); q(); } q() { r(); 

r() } r() { … }
- What about recursive 

procedures? 

1/31/22 CS 624 – Lecture 3 43

x := 7

call p(x)

enter 
main

r := return p(x)

x := r

call p(x+10)

z := return p(x+10)

exit 
main

a < 9

y := 0

enter 
p

y := 1

return a

exit 
p

a < 9

y := 0

enter 
p

y := 1

return a

exit 
p



Context Sensitivity

• Solution: make a finite number of copies

• Use context information to determine when to share a copy
- Results in a context-sensitive analysis

• Choice of what to use for context will produce different tradeoffs 
between precision and scalability

• Common choice: approximation of call stack

1/31/22 CS 624 – Lecture 3 44


