
Program Analysis via Graph Reachability

Thomas Reps
Computer Sciences Department
University of Wisconsin
1210 West Dayton Street
Madison, WI 53706, USA
reps@cs.wisc.edu
http://www.cs.wisc.edu/˜reps/

Abstract
This paper describes how a number of program-analysis problems can be solved by transforming
them to graph-reachability problems. Some of the program-analysis problems that are amenable to
this treatment include program slicing, certain dataflow-analysis problems, and the problem of
approximating the possible “shapes” that heap-allocated structures in a program can take on. Rela-
tionships between graph reachability and other approaches to program analysis are described.
Some techniques that go beyond pure graph reachability are also discussed.

1. Introduction
The purpose of program analysis is to ascertain information about a program without actually run-
ning the program. For example, in classical dataflow analysis of imperative programs, the goal is
to associate an appropriate set of “dataflow facts” with each program point (i.e., with each assign-
ment statement, call statement, I/O statement, predicate of a loop or conditional statement, etc.).
Typically, the dataflow facts associated with a program point p describe some aspect of the execu-
tion state that holds when control reaches p, such as available expressions, live variables, reaching
definitions, etc. Information obtained from program analysis is used in program optimizers, as well
as in tools for software engineering and re-engineering.

Program-analysis frameworks abstract on the common characteristics of some class of program-
analysis problems. Examples of analysis frameworks range from the gen/kill dataflow-analysis
problems described in many compiler textbooks to much more elaborate frameworks [6]. Typi-
cally, there is an “analysis engine” that can find solutions to all problems that can be specified
within the framework. Analyzers for different program-analysis problems are created by “plugging
in” certain details that specify the program-analysis problem of interest (e.g., the dataflow functions
associated with the edges of a program’s control-flow graph, etc.).

For many program-analysis frameworks, an instantiation of the framework for a particular
program-analysis problem yields a set of equations. The analysis engine underlying the framework
is a mechanism for solving a particular family of equation sets (e.g., using chaotic iteration to find a
least or greatest solution). For example, each gen/kill dataflow-analysis problem instance yields a
set of equations that are solved over a domain of finite sets, where the variables in the equations
correspond to program points and each equation is of the form
valp = ((

q ∈ pred (p)
∪ valq) − killp) ∪ genp . The values killp and genp are constants associated with pro-

gram point p: genp represents dataflow facts “created” at p, and killp represents dataflow facts
“removed” by p.

This paper presents a program-analysis framework based on a somewhat different principle:
Analysis problems are posed as graph-reachability problems. As will be discussed below, we
express (or convert) program-analysis problems to context-free-language reachability problems
(“CFL-reachability problems”), which are a generalization of ordinary graph-reachability problems.
CFL-reachability is defined in Section 2. Some of the program-analysis problems that are amen-
able to this treatment include:
g Interprocedural program slicing.
g Interprocedural versions of a large class of dataflow-analysis problems.
g A method for approximating the possible “shapes” that heap-allocated structures can take on.

There are a number of benefits to be gained from expressing a program-analysis problem as a
graph-reachability problem:
g We obtain an efficient algorithm for solving the program-analysis problem. In a case where the

program-analysis problem is expressed as a single-source ordinary graph-reachability problem,
the problem can be solved in time linear in the number of nodes and edges in the graph; in a case
where the program-analysis problem is expressed as a CFL-reachability problem, the problem
can be solved in time cubic in the number of nodes in the graph.

g The difference in asymptotic running time needed to solve ordinary reachability problems and
CFL-reachability problems provides insight into possible trade-offs between accuracy and run-
ning time for certain program-analysis problems: Because a CFL-reachability problem can be
solved in an approximate fashion by treating it as an ordinary reachability problem, this provides
an automatic way to obtain an approximate (but safe) solution, via a method that is asymptoti-
cally faster than the method for obtaining the more accurate solution.

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

g In program optimization, most of the gains are obtained from making improvements at a
program’s “hot spots”, such as the innermost loops, which means that dataflow information is
really only needed for selected locations in the program. Similarly, software-engineering tools
that use dataflow analysis often require information only at a certain set of program points (in
response to user queries, for example). This suggests that applications that use dataflow analysis
could be made more efficient by using a demand dataflow-analysis algorithm, which determines
whether a given dataflow fact holds at a given point [1,39,27,7,31,14]. For program-analysis
problems that can be expressed as CFL-reachability problems, demand algorithms are typically
obtained by solving single-target CFL-reachability problems [14].

g The graph-reachability approach provides insight into the prospects for creating parallel
program-analysis algorithms. The connection between program analysis and CFL-reachability
has been used to establish a number of results that very likely imply that there are limitations on
the ability to create efficient parallel algorithms for interprocedural slicing and interprocedural
dataflow analysis [29]. Specifically, it was shown that
− Interprocedural slicing is log-space complete for P.
− Interprocedural dataflow analysis is P-hard.
− Interprocedural dataflow-analysis problems that involve finite sets of dataflow facts (such as

the classical “gen/kill” problems) are log-space complete for P.
The consequence of these results is that, unless P = NC, there do not exist algorithms for interpro-
cedural slicing and interprocedural dataflow analysis in which (i) the number of processors is
bounded by a polynomial in the input size, and (ii) the running time is bounded by a polynomial
in the log of the input size.

g The graph-reachability approach offers insight into ways that more powerful machinery can be
brought to bear on program-analysis problems [27,31].
The remainder of the paper is organized into five sections, as follows: Section 2 defines CFL-

reachability. Section 3 discusses how the graph-reachability approach can be used to tackle inter-
procedural dataflow analysis, interprocedural program slicing, and shape analysis. Section 4
discusses algorithms for solving CFL-reachability problems. Section 5 concerns demand versions
of program-analysis problems. Section 6 describes some techniques that go beyond pure graph
reachability.

2. Context-Free-Language Reachability Problems
The theme of this paper is that a number of program-analysis problems can be viewed as instances
of a more general problem: CFL-reachability. A CFL-reachability problem is not an ordinary
reachability problem (e.g., transitive closure), but one in which a path is considered to connect two
nodes only if the concatenation of the labels on the edges of the path is a word in a particular
context-free language:

Definition 2.1. Let L be a context-free language over alphabet Σ, and let G be a graph whose
edges are labeled with members of Σ. Each path in G defines a word over Σ, namely, the word
obtained by concatenating, in order, the labels of the edges on the path. A path in G is an L-path if
its word is a member of L. We define four varieties of CFL-reachability problems as follows:
(i) The all-pairs L-path problem is to determine all pairs of nodes n 1 and n 2 such that there exists

an L-path in G from n 1 to n 2 .
(ii) The single-source L-path problem is to determine all nodes n 2 such that there exists an L-path

in G from a given source node n 1 to n 2 .
(iii) The single-target L-path problem is to determine all nodes n 1 such that there exists an L-path

in G from n 1 to a given target node n 2 .
(iv) The single-source/single-target L-path problem is to determine whether there exists an L-path

in G from a given source node n 1 to a given target node n 2 . `
Other variants of CFL-reachability include the multi-source L-path problem, the multi-target L-

path problem, and the multi-source/multi-target L-path problem.
Example. Consider the graph shown below, and let L be the language that consists of strings of

matched parentheses and square brackets, with zero or more e’s interspersed:

s t

[[e

e

e

e(

)

]

]]

L : matched → matched matched
| (matched)
| [matched]
| e
| ε

In this graph, there is exactly one L-path from s to t: The path goes exactly once around the cycle,
and generates the word “[(e [])eee [e]]”. `

It is instructive to consider how CFL-reachability relates to two more familiar problems:
g An ordinary graph-reachability problem can be treated as a CFL-reachability problem by label-

ing each edge with the symbol e and letting L be the regular language e * . For instance, transitive
closure is the all-pairs e *-problem. (Thus, ordinary graph reachability is an example of regular-

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

language reachability—the special case of CFL-reachability in which the language L referred to
in Definition 2.1 is a regular language.)

g The context-free-language recognition problem (CFL-recognition) answers questions of the form
“Given a string ω and a context-free language L, is ω ∈ L?” The CFL-recognition problem for ω
and L can be formulated as the following special kind of single-source/single-target CFL-
reachability problem: Create a linear graph s → . . . → t that has | ω | edges, and label the i th

edge with the i th letter of ω. There is an L-path from s to t iff ω ∈ L [37].
There is a general result that all CFL-reachability problems can be solved in time cubic in the

number of nodes in the graph (see Section 4). This method provides the “analysis engine” for our
program-analysis framework. Again, it is instructive to consider how the general case relates to the
special cases of ordinary reachability and CFL-recognition:
g A single-source ordinary reachability problem can be solved in time linear in the size of the

graph (nodes plus edges) using depth-first search.
g Valiant showed that CFL-recognition can be performed in less than cubic time [34]. Unfor-

tunately, the algorithm does not seem to generalize to arbitrary CFL-reachability problems.
From the standpoint of program analysis, the CFL-reachability constraint is a tool that can be

employed to filter out paths that are irrelevant to the solution of an analysis problem. In many
program-analysis problems, a graph is used as an intermediate representation of a program, but not
all paths in the graph represent potential execution paths. Consequently, it is desirable that the
analysis results not be polluted (or polluted as little as possible) by the presence of such paths.
Although the question of whether a given path in a program representation corresponds to a possi-
ble execution path is, in general, undecidable, in many cases certain paths can be identified as being
infeasible because they correspond to “execution paths” with mismatched calls and returns.

In the case of interprocedural dataflow analysis, we can characterize a superset of the feasible
paths by introducing a context-free language (L (realizable), defined below) that mimics the call-
return structure of a program’s execution: The only paths that can possibly be feasible are those in
which “returns” are matched with corresponding “calls”. These paths are called realizable paths.

Realizable paths are defined in terms of a program’s supergraph G * , an example of which is
shown in Fig. 1. A supergraph consists of a collection of control-flow graphs, one for each pro-
cedure in the program. Each procedure call in the program is represented in G * by two nodes, a
call node and a return-site node. In addition to the ordinary intraprocedural edges that connect the
nodes of the individual control-flow graphs, for each procedure call—represented, say, by call node
c and return-site node r—G * contains three edges: an intraprocedural call-to-return-site edge from
c to r; an interprocedural call-to-start edge from c to the start node of the called procedure; an inter-
procedural exit-to-return-site edge from the exit node of the called procedure to r.

Let each call node in G * be given a unique index from 1 to CallSites, where CallSites is the total
number of call sites in the program. For each call site ci , label the call-to-start edge and the exit-
to-return-site edge with the symbols “(i” and “)i”, respectively. Label all other edges with the sym-
bol e. A path in G * is a matched path iff the path’s word is in the language L (matched) of
balanced-parenthesis strings (interspersed with strings of zero or more e’s) generated from nonter-
minal realizable according to the following context-free grammar:

matched → matched matched
| (i matched)i for 1 ≤ i ≤ CallSites
| e
| ε

A path is a realizable path iff the path’s word is in the language L (realizable):
realizable → matched realizable

| (i realizable for 1 ≤ i ≤ CallSites
| ε

The language L (realizable) is a language of partially balanced parentheses: Every right parenthesis
“)i” is balanced by a preceding left parenthesis “(i”, but the converse need not hold.

To understand these concepts, it helps to examine a few of the paths that occur in Fig. 1.
g The path “startmain → n1 → n2 → startP → n4 → exitP → n3”, which has word “ee(1ee)1”, is a

matched path (and hence a realizable path, as well). In general, a matched path from m to n,
where m and n are in the same procedure, represents a sequence of execution steps during which
the call stack may temporarily grow deeper—because of calls—but never shallower than its ori-
ginal depth, before eventually returning to its original depth.

g The path “startmain → n1 → n2 → startP → n4”, which has word “ee(1e”, is a realizable path but
not a matched path: The call-to-start edge n2 → startP has no matching exit-to-return-site edge.
A realizable path from the program’s start-node smain to a node n represents a sequence of execu-
tion steps that ends, in general, with some number of activation records on the call stack. These
correspond to unmatched (i’s in the path’s word.

g The path “startmain → n1 → n2 → startP → n4 → exitP → n8”, which has word “ee(1ee)2”, is
neither a matched path nor a realizable path: The exit-to-return-site edge exitP → n8 does not
correspond to the preceding call-to-start edge n2 → startP . This path represents an infeasible
execution path.

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

hh

declare g: int

procedure main
begin
declare x: int
read(x)
call P (x)

end

procedure P (value a : int)
begin
if (a > 0) then
read(g)
a := a − g
call P (a)
print(a, g)

fi
end

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

S.S−{x}

S.S−{g}

S.S

S.S

S.S

S.S

S.S−{g}

S.S

S.S−{g}

S.S

ENTER P
P

IF a > 0

n4

ENTER main
main

READ(x)

n1

CALL P

n2

RETURN
FROM P

n3

EXIT main
main

RETURN
FROM P

n8

EXIT P

CALL P

n7

n6

a := a − g

n5

READ(g)

PRINT(a,g)

n9

S.{x,g}

S.if (a S) or (g S)
 then S {a}
 else S−{a}

U
εε

S.S<x/a>

S.S−{a}

S.S−{a}

S.S

start

exit

Pexit

start

(

)

(

)

1

1

2

2

(a) Example program (b) Supergraph G *

hh
Fig. 1. An example program and its supergraph G * . The supergraph is annotated with the dataflow
functions for the “possibly-uninitialized variables” problem. The notation S<x/a> denotes the set S
with x renamed to a.

3. Three Examples
In this section, we show how three program-analysis problems can be transformed into partially
balanced parenthesis problems (using languages similar to the language L (realizable) defined in
Section 2). Although these examples illustrate the use of only a limited class of context-free
languages, the full power of the CFL-reachability framework is also useful in some situations. That
is, there are other program-analysis problems that can be solved by expressing them as L-path prob-
lems, where L is a context-free language that is something other than a language of partially bal-
anced parentheses [22].

3.1. Interprocedural Dataflow Analysis
Dataflow analysis is concerned with determining an appropriate dataflow value to associate with
each point p in a program to summarize (safely) some aspect of the execution state that holds when
control reaches p. To define an instance of a dataflow problem, one needs
g The control-flow graph for the program.
g A domain V of dataflow values. Each point in the program is to be associated with some

member of V.
g A meet operator cddc , used for combining information obtained along different paths.
g An assignment of dataflow functions (of type V → V) to the edges of the control-flow graph.

Example. In Fig. 1, the supergraph G * is annotated with the dataflow functions for the
“possibly-uninitialized variables” problem. The possibly-uninitialized variables problem is to
determine, for each node n in G * , a set of program variables that may be uninitialized just before
execution reaches n. Thus, V is the power set of the set of program variables. A variable x is possi-
bly uninitialized at n either if there is an x-definition-free path from the start of the program to n, or
if there is a path from the start of the program to n on which the last definition of x uses some vari-
able y that itself is possibly uninitialized. For example, the dataflow function associated with edge
n6 → n7 shown in Fig. 1 adds a to the set of possibly-uninitialized variables after node n6 if either

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

a or g is in the set of possibly-uninitialized variables before node n6. `
Below we show how a large class of interprocedural dataflow-analysis problems can be handled

by transforming them into realizable-path reachability problems. This is a non-standard treatment
of dataflow analysis. Ordinarily, a dataflow-analysis problem is formulated as a path-function
problem: The path function pfq for path q is the composition of the functions that label the edges of
q; the goal is to determine, for each node n, the “meet-over-all-paths” solution:
MOPn =

q ∈ Paths(start, n)
cddc pfq(ici), where Paths(start, n) denotes the set of paths in the control-flow

graph from the start node to n [16].1 MOPn represents a summary of the possible execution states
that can arise at n; ici ∈ V is a special value that represents the execution state at the beginning of
the program; pfq(ici) represents the contribution of path q to the summarized state at n.

In interprocedural dataflow analysis, the goal shifts from the meet-over-all-paths solution to the
more precise “meet-over-all-realizable-paths” solution: MRPn =

q ∈ RPaths(startmain , n)
cddc pfq(ici), where

RPaths(startmain , n) denotes the set of realizable paths from the main procedure’s start node to n
(and “realizable path” means a path whose word is in the language L (realizable) defined in Sec-
tion 2) [32,5,19,17,28,7]. Although some realizable paths may also be impossible execution paths,
none of the non-realizable paths are possible execution paths. By restricting attention to just the
realizable paths from startmain , we exclude some of the impossible execution paths. In general,
therefore, MRPn characterizes the execution state at n more precisely than MOPn .

The interprocedural, finite, distributive, subset problems (IFDS problems) are those interpro-
cedural dataflow-analysis problems that involve a finite set of dataflow facts, and dataflow func-
tions that distribute over the confluence operator (either set union or set intersection, depending on
the problem). Thus, an instance of an IFDS problem consists of the following:
g A supergraph G * .
g A finite set D (the universe of dataflow facts). Each point in the program is to be associated with

some member of the domain 2D .
g An assignment of distributive dataflow functions (of type 2D → 2D) to the edges of G * .
We assume that the meet operator is union; problems in which the meet operator is intersection can
always be converted into an equivalent problem in which the meet operator is union.

The IFDS framework can be used for languages with a variety of features (including procedure
calls, parameters, global and local variables, and pointers). The call-to-return-site edges are
included in G * so that the IFDS framework can handle programs with local variables and parame-
ters. The dataflow functions on call-to-return-site and exit-to-return-site edges permit the informa-
tion about local variables and value parameters that holds at the call site to be combined with the
information about global variables and reference parameters that holds at the end of the called pro-
cedure. The IFDS problems include, but are not limited to, the classical “gen/kill” problems (also
known as the “bit-vector” or “separable” problems), e.g., reaching definitions, available expres-
sions, and live variables. In addition, the IFDS problems include many non-gen/kill problems,
including possibly-uninitialized variables, truly-live variables [10], and copy-constant propagation
[9, pp. 660].

Expressing a problem so that it falls within the IFDS framework may, in some cases, involve a
loss of precision. For example, there may be a loss of precision involved in formulating an IFDS
version of a problem that must account for aliasing. However, once a problem has been cast as an
IFDS problem, it is possible to find the MRP solution with no further loss of precision.

One way to solve an IFDS problem is to convert it to a realizable-path reachability problem
[28,14]. For each problem instance, we build an exploded supergraph G # , in which each node
〈n,d 〉 represents dataflow fact d ∈ D at supergraph node n, and each edge represents a dependence
between individual dataflow facts at different supergraph nodes.

The key insight behind this “explosion” is that a distributive function f in 2D→2D can be
represented using a graph with 2 D + 2 nodes; this graph is called f’s representation relation. Half
of the nodes in this graph represent f’s input; the other half represent its output. D of these nodes
represent the “individual” dataflow facts that form set D, and the remaining node (which we call Λ)
essentially represents the empty set. An edge Λ → d means that d is in f (S) regardless of the value
of S (in particular, d is in f (∅)). An edge d 1 → d 2 means that d 2 is not in f (∅), and is in f (S)
whenever d 1 is in S. Every graph includes the edge Λ → Λ; this is so that function composition
corresponds to compositions of representation relations (this is explained below).

Example. The main procedure shown in Fig. 1 has two variables, x and g. Therefore, the
representation relations for the dataflow functions associated with this procedure will each have six
nodes. The function associated with the edge from startmain to n1 is λS.{x,g}; that is, variables x
and g are added to the set of possibly-uninitialized variables regardless of the value of S. The
representation relation for this function is shown in Fig. 2(a).
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1For some dataflow-analysis problems, such as constant propagation, the meet-over-all-paths solution is uncom-
putable. A sufficient condition for the solution to be computable is for each edge function f to distribute over
the meet operator; that is, for all a,b ∈ V, f (a cddc b) = f (a) cddc f (b). The problems amenable to the graph-
reachability approach are distributive.

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

hh

x g

x g

Λ

Λ

x g

x g

Λ

Λ

x g

x g

x g

Λ

Λ

Λ

x g

x g

x g

Λ

Λ

Λ

(a) λS.{x,g} (b) λS.S − {x} (c) λS.S − {x} b λS.{x,g} (d) λS.{x,g} b λS.S − {x}
hh
Fig. 2. Representation relations for two functions and the two ways of composing the functions.

The representation relation for the function λS.S − {x} (which is associated with the edge from
n1 to n2) is shown in Fig. 2(b). Note that x is never in the output set, and g is there iff it is in S. `

A function’s representation relation captures the function’s semantics in the sense that the
representation relation can be used to evaluate the function. In particular, the result of applying
function f to input S is the union of the values represented by the “output” nodes in f’s representa-
tion relation that are the targets of edges from the “input” nodes that represent either Λ or a node in
S. For example, consider applying the dataflow function λS.S − {x} to the set {x} using the
representation relation shown in Fig. 2(b). There is no edge out of the initial x node, and the only
edge out of the initial Λ node is to the final Λ node, so the result of this application is ∅ . The result
of applying the same function to the set {x,g} is {g}, because there is an edge from the initial g
node to the final g node.

The composition of two functions is represented by “pasting together” the graphs that represent
the individual functions. For example, the composition of the two functions discussed above,
λS.S − {x} b λS.{x,g}, is represented by the graph shown in Fig. 2(c). Paths in a “pasted-
together” graph represent the result of applying the composed function. For example, in Fig. 2(c)
there is a path from the initial Λ node to the final g node. This means that g is in the final set
regardless of the value of S to which the composed function is applied. There is no path from an
initial node to the final x node; this means that x is not in the final set, regardless of the value of S.

To understand the need for the Λ → Λ edges in representation relations, consider the composi-
tion of the two example functions in the opposite order, λS.{x,g} b λS.S − {x}, which is
represented by the graph shown in Fig. 2(d). Note that both x and g are in the final set regardless of
the value of S to which the composed functions are applied. In Fig. 2(d), this is reflected by the
paths from the initial Λ node to the final x and g nodes. However, if there were no edge from the
initial Λ node to the intermediate Λ node, there would be no such paths, and the graph would not
correctly represent the composition of the two functions.

Returning to the definition of the exploded supergraph G #: Each node n in supergraph G * is
“exploded” into D + 1 nodes in G # , and each edge m→n in G * is “exploded” into the representa-
tion relation of the function associated with m→n. In particular:
(i) For every node n in G * , there is a node 〈n, Λ〉 in G # .
(ii) For every node n in G * , and every dataflow fact d ∈ D, there is a node 〈n,d 〉 in G # .
Given function f associated with edge m→n of G *:
(iii) There is an edge in G # from node 〈m, Λ〉 to node 〈n,d 〉 for every d ∈ f (∅).
(iv) There is an edge in G # from node 〈m,d 1 〉 to node 〈n,d 2 〉 for every d 1 , d 2 such that

d 2 ∈ f ({ d 1 }) and d 2 ∈/ f (∅).
(v) There is an edge in G # from node 〈m, Λ〉 to node 〈n, Λ〉 .

Because “pasted together” representation relations correspond to function composition, a path in
the exploded supergraph from node 〈m,d 1 〉 to node 〈n,d 2 〉 means that if dataflow fact d 1 holds at
supergraph node m, then dataflow fact d 2 holds at node n. By looking at paths that start from node
〈startmain ,Λ〉 (which represents the fact that no dataflow facts hold at the start of procedure main)
we can determine which dataflow facts hold at each node. However, we are not interested in all
paths in G # , only those that correspond to realizable paths in G *; these are exactly the realizable
paths in G # . (For a proof that a dataflow fact d is in MRPn iff there is a realizable path in G # from
node 〈startmain ,Λ〉 to node 〈n,d 〉 , see [25].)

Example. The exploded supergraph that corresponds to the instance of the “possibly-
uninitialized variables” problem shown in Fig. 1 is shown in Fig. 3. The dataflow functions are
replaced by their representation relations. In Fig. 3, closed circles represent nodes that are reach-
able along realizable paths from 〈startmain ,Λ〉 . Open circles represent nodes not reachable along
realizable paths. (For example, note that nodes 〈n8,g 〉 and 〈n9,g 〉 are reachable only along non-
realizable paths from 〈startmain ,Λ〉 .) This information indicates the nodes’ values in the meet-over-
all-realizable-paths solution to the dataflow-analysis problem. For instance, the meet-over-all-
realizable-paths solution at node exitP is the set {g}. (That is, variable g is the only possibly-

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

hh

a g

ENTER P
P

IF a > 0

n4

ENTER main
main

READ(x)

n1

CALL P

n2

RETURN
FROM P

n3

EXIT main
main

RETURN
FROM P

n8

EXIT P
P

CALL P

n7

n6

a := a − g

n5

READ(g)

PRINT(a,g)

n9

x g

x g

x g

x g

x g

a g

a g

a g

a g

a g

a g

a g

start

exit

exit

startΛ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

(

)

(
1

)
1

2

2

hh
Fig. 3. The exploded supergraph that corresponds to the instance of the possibly-uninitialized vari-
ables problem shown in Fig. 1. Closed circles represent nodes of G # that are reachable along real-
izable paths from 〈startmain ,Λ〉 . Open circles represent nodes not reachable along such paths.

uninitialized variable just before execution reaches the exit node of procedure P.) In Fig. 3, this
information can be obtained by determining that there is a realizable path from 〈startmain ,Λ〉 to
〈exitP ,g 〉 , but not from 〈startmain ,Λ〉 to 〈exitP ,a 〉 . `

3.2. Interprocedural Program Slicing
Slicing is an operation that identifies semantically meaningful decompositions of programs, where
the decompositions consist of elements that are not necessarily textually contiguous
[36,24,8,12,26,33]. Slicing, and subsequent manipulation of slices, has applications in many
software-engineering tools, including tools for program understanding, maintenance, debugging,
testing, differencing, specialization, reuse, and merging. (See [33] for references to the literature.)

There are two kinds of slices: a backward slice of a program with respect to a set of program ele-
ments S is the set of all program elements that might affect (either directly or transitively) the
values of the variables used at members of S; a forward slice with respect to S is the set of all pro-
gram elements that might be affected by the computations performed at members of S. A program
and one of its backward slices is shown in Fig. 4.

The value of a variable x defined at p is directly affected by the values of the variables used at p
and by the predicates that control how many times p is executed; the value of a variable y used at p
is directly affected by assignments to y that reach p and by the predicates that control how many
times p is executed. Consequently, a slice can be obtained by following chains of dependences in
the directly-affects relation. This observation is due to Ottenstein and Ottenstein [24], who noted
that program dependence graphs (PDGs), which were originally devised for use in parallelizing
and vectorizing compilers, are a convenient data structure for slicing. The PDG for a program is a
directed graph whose nodes are connected by several kinds of edges. The nodes in the PDG
represent the individual statements and predicates of the program. The edges of a PDG represent

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

hh
int add(a, b)
int a, b;
{
return(a + b);

}

void main()
{
int sum, i;

sum = 0;
i = 1;
while (i < 11) {
sum = add(sum,i);
i = add(i,1);

}
printf("sum=%d\n",sum);
printf("i=%d\n",i);

}

int add(a, b)
int a, b;
{
return(a + b);

}

void main()
{
int c cddddiiii i;

c cdddddddiiiiiii
i = 1;
while (i < 11) {
c cdddddddddddddiiiiiiiiiiiii
i = add(i,1);

}
c cddddddddddddddddiiiiiiiiiiiiiiii
printf("i=%d\n",i);

}

enter

i ret

call

sum i

in

in in

= 1b inin

= 1= 0

= sum ret= =

= =

=
in

=a sum

a a b b

call

(
1

(
1

(
1 (

(
2

(
2

2

1
)

)
2

ret = a+b

printfprintf

Edge Key
control edge

flow edge
edge in the slicecall, parameter−in, or

parameter−out edge

b i

sum i

add add

while i<11

entermain

a i

add

hh
Fig. 4. A program, the slice of the program with respect to the statement printf(“i = %d\n”, i), and
the program’s system dependence graph. In the slice, the starting point for the slice is shown in
italics, and the empty boxes indicate where program elements have been removed from the original
program. In the dependence graph, the edges shown in boldface are the edges in the slice.

the control and flow dependences among the procedure’s statements and predicates [18,24,8].
Once a program is represented by its PDG, slices can be obtained in time linear in the size of the
PDG by solving an ordinary reachability problem on the PDG. For example, to compute the back-
ward slice with respect to PDG node v, find all PDG nodes from which there is a path to v along
control and/or flow edges.

The problem of interprocedural slicing concerns how to determine a slice of an entire program,
where the slice crosses the boundaries of procedure calls. For this purpose, it is convenient to use
system dependence graphs (SDGs), which are a variant of PDGs extended to handle multiple pro-
cedures [12]. An SDG consists of a collection of procedure dependence graphs (which we will
refer to as PDGs)—one for each procedure, including the main procedure. In addition to nodes that
represent the assignment statements, I/O statements, and predicates of a procedure, each call state-
ment is represented in the procedure’s PDG by a call node and by a collection of actual-in and
actual-out nodes: There is an actual-in node for each actual parameter; there is an actual-out node
for the return value (if any) and for each value-result parameter that might be modified during the
call. Similarly, procedure entry is represented by an entry node and a collection of formal-in and
formal-out nodes. (Global variables are treated as “extra” value-result parameters, and thus give
rise to additional actual-in, actual-out, formal-in, and formal-out nodes.) The edges of a PDG
represent the control and flow dependences in the usual way. The PDGs are connected together to
form the SDG by call edges (which represent procedure calls, and run from a call node to an entry
node) and by parameter-in and parameter-out edges (which represent parameter passing, and
which run from an actual-in node to the corresponding formal-in node, and from a formal-out node
to all corresponding actual-out nodes, respectively). In Fig. 4, the graph shown on the right is the
SDG for the program that appears on the left.

One algorithm for interprocedural slicing was presented in Weiser’s original paper on slicing
[36]. This algorithm is equivalent to solving an ordinary reachability problem on the SDG. How-
ever, Weiser’s algorithm is imprecise in the sense that it may report effects that are transmitted
through paths that have mismatched calls and returns (and hence do not represent feasible execu-
tion paths). The slices obtained in this way may include unwanted components. For example,
there is a path in the SDG shown in Fig. 4 from the node of procedure main labeled “sum = 0” to
the node of main labeled “printf i.” However, this path corresponds to an “execution” in which pro-
cedure add is called from the first call site in main, but returns to the second call site in main. This
could never happen, and so the node labeled “sum = 0” should not be included in the slice with
respect to the node labeled “printf i”.

Although it is undecidable whether a path in the SDG actually corresponds to a possible execu-
tion path, we can again use a language of partially balanced parentheses to exclude from considera-
tion paths in which calls and returns are mismatched. The parentheses are defined as follows: Let
each call node in SDG G be given a unique index from 1 to CallSites, where CallSites is the total
number of call sites in the program. For each call site ci , label the outgoing parameter-in edges and
the incoming parameter-out edges with the symbols “(i” and “)i”, respectively; label the outgoing
call edge with “(i”. Label all other edges in G with the symbol e. (See Fig. 4.)

Slicing is slightly different from the CFL-reachability problems defined in Definition 2.1. For
instance, a backward slice with respect to a given target node t consists of the set of nodes that lie

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

on a realizable path from the entry node of main to t (cf. Definition 2.1). However, as long as t is
located within a procedure that is transitively callable from main, we can change this problem into
a single-target CFL-reachability problem (in the sense of Definition 2.1(iii)). We say that a path in
an SDG is a slice path iff the path’s word is in the language L (slice):

unbalanced-right → unbalanced-right matched
| unbalanced-right)i for 1 ≤ i ≤ CallSites
| ε

slice → unbalanced-right realizable
The nodes in the backward slice with respect to t are all nodes n such that there exists an L (slice)-
path between n and t. That is, the nodes in the backward slice are the solution to the single-target
L (slice)-path problem for target node t.

To see this, suppose that r ||s is an L (slice)-path that connects n and t, where r is an
L (unbalanced-right)-path and s is an L (realizable)-path. As long as t is located within a procedure
that is transitively callable from main, there exists a path p ||q (of control and call edges) that con-
nects the entry node of main to n, where p is an L (realizable)-path and q “balances” r; that is, the
path q ||r is an L (matched)-path. It can be shown that the path p ||q ||r ||s is an L (realizable)-path.

3.3. Shape Analysis
Shape analysis is concerned with finding approximations to the possible “shapes” that heap-
allocated structures in a program can take on [30,15,23]. This section addresses shape analysis for
imperative languages that support non-destructive manipulation of heap-allocated objects. Similar
techniques apply to shape analysis for pure functional languages.

We assume we are working with an imperative language that has assignment statements, condi-
tional statements, loops, I/O statements, goto statements, and procedure calls; the parameter-
passing mechanism is either by value or value-result; recursion (direct and indirect) is permitted;
the language provides atomic data (e.g., integer, real, boolean, identifiers, etc.) and Lisp-like con-
structor and selector operations (nil, cons, car, and cdr), together with appropriate predicates (equal,
atom, and null), but not rplaca and rplacd operations. Because of the latter restriction, circular
structures cannot be created; however, dag structures (as well as trees) can be created. We assume
that a read statement reads just an atom and not an entire tree or dag. For convenience, we also
assume that only one constructor or selector is performed per statement (e.g., “y := cons(car(x), y)”
must be broken into two statements: “temp := car(x); y := cons(temp, y)”). (The latter assumption
is not essential, but simplifies the presentation.)

Example. An example program is shown in Fig. 5. The program first reads atoms and forms a
list x; it then traverses x to assign y the reversal of x. This example will be used throughout the
remainder of this section to illustrate our techniques. `
hh

x := nil
read(z)
while z ≠ 0 do

x := cons(z, x)
read(z)

od
y := nil
while x ≠ nil do

temp := car(x)
y := cons(temp, y)
x := cdr(x)

od

y := nil

while x != nil

temp := car(x)

y := cons(temp, y)

Exit

Start

x := nil

read(z)

while z != 0

x := cons(z, x)

read(z)

tl

hd

hd −1

tl hd

tl
−1

atom

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

x y z temp

x y z temp

empty

T
F

T F

x := cdr(x)

hh
Fig. 5. A program, its control-flow graph, and its equation dependence graph. All edges of the
equation dependence graph shown without labels have the label id . The path shown by the dotted
lines is a hd_path from atom to node 〈n12,y 〉 .

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

A collection of dataflow equations can be used to capture an approximation to the shapes of a
superset of the terms that can arise at the various points in the program [30,15]. The domain Shape
of shape descriptors is the set of selector sequences terminated by at or nil:
Shape = 2L ((hd + tl)*(at +nil)) . Each sequence in L ((hd + tl)*(at + nil)) represents a possible root-to-leaf
path. Note that a single shape descriptor in Shape may contain both the selector sequences hd.tl.at
and hd.tl.hd.at, even though the two paths cannot occur together in a single term.

Dataflow variables correspond to 〈program-point,program-variable〉 pairs. For example, if x is
a program variable and p is a point in the program, then v 〈p,x 〉 is a dataflow variable. The dataflow
equations are associated with the control-flow graph’s edges; there are several dataflow equations
associated with each edge, one per program variable. The equations on an edge p → q reflect the
execution actions performed at node p. Thus, the value of a dataflow variable v 〈q,x 〉 approximates
the shape of x just before q executes. The dataflow-equation schemas are shown in Fig. 6.

Procedure calls with value parameters are handled by introducing equations between dataflow
variables associated with actual parameters and dataflow variables associated with formal parame-
ters to reflect the binding changes that occur when a procedure is called. (By introducing equations
between dataflow variables associated with formal out-parameters and dataflow variables associ-
ated with the corresponding actuals at the return site, call-by-value-result can also be handled.)

When solved over a suitable domain, the equations define an abstract interpretation of the pro-
gram. The question, however, is: “Over what domain are they to be solved?” One approach is to
let the value of each dataflow variable be a set of shapes (i.e., a set of sets of root-to-leaf paths) and
the join operation be union [30,15]. Functions cons, car, and cdr are appropriate functions from
shape sets to shape sets. For example, cons is defined as:

cons =df λS 1 .λS 2 .{ { hd.p 1 | p 1 ∈ s 1 } ∪ { tl.p 2 | p 2 ∈ s 2 } | s 1 ∈ S 1 , s 2 ∈ S 2 }.
In our work, however, we use an alternative approach: The value of each dataflow variable is a sin-
gle Shape (i.e., a single set of root-to-leaf paths), and the join operation is union [23]. Functions
cons, car, and cdr are functions from Shape to Shape. For example, cons is defined as:

cons =df λS 1 .λS 2 .{ hd.p 1 | p 1 ∈ S 1 } ∪ { tl.p 2 | p 2 ∈ S 2 }.
With both approaches, solutions to shape-analysis equations are, in general, infinite. Thus, in

practice, there must be a way to report the “shape information” that characterizes the possible
values of a program variable at a given program point indirectly—i.e., in terms of the values of
other program variables at other program points. This indirect information can be viewed as a
simplified set of equations [30], or, equivalently, as a regular-tree grammar [15,23].

The use of domain Shape in place of 2Shape does involve some loss of precision. A feeling for
the kind of information that is lost can be obtained by considering the following program fragment:

if . . . then p : A := cons(B, C)
else q : A := cons(D, E)
fi
r: . . .

The information available about the value of A at program point r in the two approaches can be
represented with the following two tree grammars:

(i) v 〈r,A 〉 → cons(v 〈p,B 〉 , v 〈p,C 〉) | cons(v 〈q,D 〉 , v 〈q,E 〉) (ii) v 〈r,A 〉 → cons(v 〈p,B 〉 |v 〈q,D 〉 , v 〈p,C 〉 |v 〈q,E 〉)
Grammar (i) uses multiple cons right-hand sides for a given nonterminal [15]. In grammar (ii), the
link between branches in different cons alternatives is broken, and a single cons right-hand side is
formed with a collection of alternative nonterminals in each arm [23]. The shape descriptions are
sharper with grammars of type (i): With grammar (i), nonterminals v 〈p,B 〉 and v 〈q,E 〉 can never occur
simultaneously as children of v 〈r,A 〉 , whereas grammar (ii) associates nonterminal v 〈r,A 〉 with trees of
the form cons(v 〈p,B 〉 , v 〈q,E 〉).

We now show how shape-analysis information can be obtained by solving CFL-reachability
problems on a graph obtained from the program’s dataflow equations.

Definition 3.1. Let EqnG be the set of equations for the shape-analysis problem on control-
flow-graph G. The associated equation dependence graph has two special nodes atom and empty,
hhiii

Form of source-node p Equations associated with edge p → qii
x := a, where a is an atom v 〈q,x 〉 = { at } v 〈q,z 〉 = v 〈p,z 〉 , for all z ≠ xiii
read(x) v 〈q,x 〉 = { at } "iii
x := nil v 〈q,x 〉 = { nil } "iii
x := y v 〈q,x 〉 = v 〈p,y 〉 "iii
x := car(y) v 〈q,x 〉 = car(v 〈p,y 〉) "iii
x := cdr(y) v 〈q,x 〉 = cdr(v 〈p,y 〉) "iii
x := cons(y, z) v 〈q,x 〉 = cons(v 〈p,y 〉 , v 〈p,z 〉) "iiicc

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

hh
Fig. 6. Dataflow-equation schemas for shape analysis.

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

together with a node 〈p,z 〉 for each variable v 〈p,z 〉 in EqnG . The edges of the graph, each of which is
labeled with one of { id , hd , tl , hd −1 , tl −1 }, are defined as shown in the following table:

iii
Form of equation Edge(s) in the equation dependence graph Labelii
v 〈q,x 〉 = { at } atom → 〈q,x 〉 idii
v 〈q,x 〉 = { nil } empty → 〈q,x 〉 idii
v 〈q,x 〉 = v 〈p,y 〉 〈p,y 〉 → 〈q,x 〉 idii

〈p,y 〉 → 〈q,x 〉 hd
v 〈q,x 〉 = cons(v 〈p,y 〉 , v 〈p,z 〉) 〈p,z 〉 → 〈q,x 〉 tlii
v 〈q,x 〉 = car(v 〈p,y 〉) 〈p,y 〉 → 〈q,x 〉 hd −1ii
v 〈q,x 〉 = cdr(v 〈p,y 〉) 〈p,y 〉 → 〈q,x 〉 tl −1iiicc

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

`
The equation dependence graph for this section’s example is shown in Fig. 5.
Shape-analysis information can be obtained by solving three CFL-reachability problems on the

equation dependence graph, using the following context-free grammars:
L 1: id_path → id_path id_path

| hd id_path hd −1

| tl id_path tl −1

| id
| ε

L 2: hd_path → id_path hd id_path
L 3: tl_path → id_path tl id_path

The language L 1 represents paths in which each hd (tl) is balanced by a matching hd −1 (tl −1);
these paths correspond to values transmitted along execution paths in which each cons operation
(which gives rise to a hd or tl label on an edge in the path) is eventually “taken apart” by a match-
ing car (hd −1) or cdr (tl −1) operation. Thus, the second and third rules of the L 1 grammar are the
grammar-theoretic analogs of McCarthy’s rules: “car(cons(x, y)) = x” and “cdr(cons(x, y)) = y”
[21].

The language L 2 represents paths that are slightly unbalanced—those with one unmatched hd ;
these paths correspond to the possible values that could be accessed by performing one additional
car operation (which would extend the path with an additional hd −1). The language L 3 also
represents paths that are slightly unbalanced—in this case, those with one unmatched tl ; these
paths correspond to the possible values that could be accessed by performing one additional cdr
operation (extending the path with tl −1).

Example. Suppose we are interested in characterizing the shape of program variable y just
before the exit statement of the program shown in Fig. 5. We can determine information about the
possible origin of the root constituent of y at n12 by solving the single-target L 1-path problem for
〈n12,y 〉 . This yields the set { 〈n12,y 〉 , 〈n8,y 〉 , 〈n11,y 〉 , empty }. This indicates that y is either nil or
was allocated at n10 during an execution of the second while loop. Similarly, the solution to the
single-target L 2-path problem for 〈n12,y 〉 is the set { 〈n10,temp 〉 , 〈n5,z 〉 , 〈n4,z 〉 , atom }. This indi-
cates that the atom in car(y) is one originally read in as the value of z. (See Fig. 5, which shows an
L 2-path from atom to 〈n12,y 〉 .) Finally, the solution to the single-target L 3-path problem for
〈n12,y 〉 is the set { 〈n10,y 〉 , 〈n9,y 〉 , 〈n8,y 〉 , 〈n11,y 〉 , empty }. This indicates that the tail of y is
either nil or was allocated at n10 during an execution of the second while loop.

This information can be interpreted as the following regular-tree grammar:
〈n12,y 〉 → 〈n12,y 〉 | 〈n8,y 〉 | 〈n11,y 〉 | empty

| cons(〈n10,temp 〉 | 〈n5,z 〉 | 〈n4,z 〉 | atom, 〈n10,y 〉 | 〈n9,y 〉 | 〈n8,y 〉 | 〈n11,y 〉 | empty) `

4. Algorithms for Solving CFL-Reachability Problems
CFL-reachability problems can be solved via a simple dynamic-programming algorithm. The
grammar is first normalized by introducing new nonterminals wherever necessary so that the right-
hand side of each production has at most two symbols (either terminals or nonterminals). Then,
additional edges are added to the graph according to the patterns shown in Fig. 7 until no more
edges can be added. The solution is obtained from the edges labeled with the grammar’s root sym-
bol. When an appropriate worklist algorithm is used, the running time of this algorithm is cubic in
the number of nodes in the graph [22]. (This algorithm can be thought of as a generalization of the
hh

A A

B B C

A
(a) A → ε (b) A → B (c) A → B C

hh
Fig. 7. Patterns for adding edges to solve a CFL-reachability problem. In each case, the dotted
edge is added to the graph.

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

CYK algorithm for CFL-recognition [38].)
Although all CFL-reachability problems can be solved in time cubic in the number of graph

nodes, one can sometimes do asymptotically better than this by taking advantage of the structure of
the graph that arises in a program-analysis problem. For instance, with IFDS problems, the number
of nodes in the exploded supergraph is ND, where N is the number of nodes in the supergraph and
D is the size of the universe of dataflow facts. However, by taking advantage of the structure of the
exploded supergraph, IFDS problems can be solved in time O (ED 3), which is asymptotically better
than the general-case time bound of O (N 3D 3) [28,14]. A similar improvement over the general-
case time bound can be obtained for interprocedural slicing, as well [26].

5. Solving Demand Versions of Program-Analysis Problems
An exhaustive dataflow-analysis algorithm associates with each point in a program a set of
“dataflow facts” that are guaranteed to hold whenever that point is reached during program execu-
tion. By contrast, a demand dataflow-analysis algorithm determines whether a single given
dataflow fact holds at a single given point [1,27,7,14]. Demand analysis can sometimes be prefer-
able to exhaustive analysis for the following reasons:
g Narrowing the focus to specific points of interest. Software-engineering tools that use dataflow

analysis often require information only at a certain set of program points. Similarly, in program
optimization, most of the gains are obtained from making improvements at a program’s “hot
spots”—in particular, its innermost loops. The use of a demand algorithm has, in some cases, the
potential to reduce greatly the amount of extraneous information computed.

g Narrowing the focus to specific dataflow facts of interest. Even when dataflow information is
desired for every program point p, the full set of dataflow facts at p may not be required. For
example, for the uninitialized-variables problem we are ordinarily interested in determining only
whether the variables used at p might be uninitialized, rather than determining that information at
p for all variables.

g Reducing work in preliminary phases. In problems that can be decomposed into separate phases,
not all of the information from one phase may be required by subsequent phases. For example,
the MayMod problem determines, for each call site, which variables may be modified during the
call. This problem can be decomposed into two phases: computing side effects disregarding
aliases (the so-called DMod problem), and computing alias information [3]. Given a demand
(e.g., “What is the MayMod set for a given call site c?”), a demand algorithm has the potential to
reduce drastically the amount of work spent in earlier phases by propagating only relevant
demands (e.g., “What are the alias pairs (x, y) such that x is in DMod(c)”?).

g Sidestepping incremental-updating problems. A transformation performed at one point in the
program can affect previously computed dataflow information at other points in the program. In
many cases, the old information at such points is no longer safe; the dataflow information needs
to be updated before it is possible to perform further transformations at such points. Incremental
dataflow analysis could be used to maintain complete information at all program points; how-
ever, updating all invalidated information can be expensive. An alternative is to demand only
the dataflow information needed to validate a proposed transformation; each demand would be
solved using the current program, so the answer would be up-to-date.

g Demand analysis as a user-level operation. It is desirable to have program-development tools in
which the user can ask questions interactively about various aspects of a program [20]. Such
tools are particularly useful when debugging, when trying to understand complicated code, or
when trying to transform a program to execute efficiently on a parallel machine. Because it is
unlikely that a programmer will ask questions about all program points, solving just the user’s
sequence of demands is likely to be significantly less costly than performing an exhaustive
analysis.

Of course, determining whether a given fact holds at a given point may require determining
whether other, related facts hold at other points (and those other facts may not be “facts of interest”
in the sense of the second bullet-point above). It is desirable, therefore, for a demand-driven
program-analysis algorithm to minimize the amount of such auxiliary information computed.

For program-analysis problems that have been transformed into graph-reachability problems,
demand algorithms are obtained for free, by solving a single-target or multi-target graph-
reachability problem. For instance, the problem transformation described in Section 3.1 has been
used to devise demand algorithms for interprocedural dataflow analysis [25,14,13]. Because an
algorithm for solving single-target (or multi-target) reachability problems focuses on the nodes that
reach the specific target(s), it minimizes the amount of extraneous information computed.

In the case of IFDS problems, to answer a single demand we need to solve a single-
source/single-target L (realizable)-path problem: “Is there a realizable path in G # from node
〈startmain ,Λ〉 to node 〈n,d 〉?” For an exhaustive algorithm, we need to solve a single-source
L (realizable)-path problem: “What is the set of nodes 〈n,d 〉 such that there is a realizable path in
G # from 〈startmain ,Λ〉 to 〈n,d 〉?” In general, however, it is not known how to solve single-
source/single-target (or single-source/multi-target) CFL-reachability problems any faster than
single-source CFL-reachability problems. Experimental results showed that in situations when
only a small number of demands are made, or when most demands are answered yes, a demand
algorithm for IDFS problems (i.e., for the single-source/single-target or single-source/multi-target
L (realizable)-path problems) runs faster than an exhaustive algorithm (i.e., for the single-source

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

L (realizable)-path problem) [14,13].
In the case of partially balanced parenthesis problems, it is possible to use a hybrid scheme; that

is, one in between a pure exhaustive and a pure demand-driven approach. The hybrid approach
takes advantage of the fact that there is a natural way to divide partially balanced parenthesis prob-
lems into two stages. The first stage is carried out in an exhaustive fashion, after which individual
queries are answered on a demand-driven basis. In the description that follows, we explain the
hybrid technique for backward interprocedural slicing [12,26]. A similar technique also applies in
the case of IFDS problems.

The preprocessing step adds summary edges to the SDG. Each summary edge represents a
matched path between an actual-in and an actual-out node (where the two nodes are associated with
the same a call site). Let P be the number of procedures in the program; let E be the maximum
number of control and flow edges in any procedure’s PDG; and let Params be the the maximum
number of actual-in vertices in any procedure’s PDG. There are no more than CallSites Params 2

summary edges, and the task of identifying all summary edges can be performed in time
O ((P × E × Params) + (CallSites × Params 3)) [26]. By the augmented SDG, we mean the SDG
after all appropriate summary edges have been added to it.

The second, demand-driven, stage involves only regular-reachability problems on the aug-
mented SDG. In the second stage, we use the following two linear grammars:

unbalanced-right′ → unbalanced-right′ summary realizable′ → summary realizable′
| unbalanced-right′ e | e realizable′
| unbalanced-right′)i 1≤i≤CallSites | (i realizable′ 1≤i≤CallSites
| ε | ε

Suppose we wish to find the backward slice with respect to SDG node n. First, we solve the
single-target L (realizable′)-path problem for node n, which yields a set of nodes S. Let S ′ be the
subset of actual-out nodes in S. The set of nodes in the slice is S together with the solution to the
multi-target L (unbalanced-right′)-path problem with respect to S ′.

An advantage of this approach is that each regular-reachability problem—and hence each
slice—can be solved in time linear in the number of nodes and edges in the augmented SDG; i.e., in
time O ((P × E) + (CallSites × Params 2)).

This approach is used in the Wisconsin Program-Slicing Tool, a slicing system that supports
essentially the full C language. (The system is available under license from the University of
Wisconsin. It has been successfully applied to slice programs as large as 51,000 lines.)

6. Program Analysis Using More Than Graph Reachability
The graph-reachability approach offers insight into ways that machinery more powerful than the
graph-reachability techniques described above can be brought to bear on program-analysis prob-
lems [27,31].

One way to generalize the CFL-reachability approach stems from the observation that CFL-
reachability problems correspond to a restricted class of Datalog programs, so-called “chain pro-
grams”: Each edge m → n labeled e is represented by a fact “e (m,n).”; each production A → B C
is encoded as a chain rule “a (X,Z) :− b (X,Y), c (Y,Z).” A CFL-reachability problem can be solved
using bottom-up semi-naive evaluation of the chain program [37]. This observation provides a way
for program-analysis tools to take advantage of the methods developed in the logic-programming
and deductive-database communities for the efficient evaluation of recursive queries in deductive
databases, such as tabulation [35] and the Magic-sets transformation [2,4]. For instance, algorithms
for demand versions of program-analysis problems can be obtained from their exhaustive counter-
parts essentially for free by specifying the problem with Horn clauses and then applying the
“Magic-sets” transformation [27]. The fact that CFL-reachability problems are related to chain
programs, together with the fact that chain programs are just a special case of the logic programs to
which tabulation and transformation techniques apply, suggests that more powerful program-
analysis algorithms can be obtained by going outside the class of pure chain programs [27].

A different way to generalize the CFL-reachability approach so as to bring more powerful tech-
niques to bear on interprocedural dataflow analysis was presented in [31]. This method applies to
problems in which the dataflow information at a program point is represented by a finite environ-
ment (i.e., a mapping from a finite set of symbols to a finite-height domain of values), and the effect
of a program operation is captured by a distributive “environment-transformer” function. Two of
the dataflow-analysis problems that this framework handles are (decidable) variants of the
constant-propagation problem: copy-constant propagation and linear-constant propagation. The
former interprets assignment statements of the form x = 7 and y = x. The latter also interprets state-
ments of the form y = −2*x +5.

By means of an “explosion transformation” similar to the one utilized in Section 3.1, an interpro-
cedural distributive-environment-transformer problem can be transformed from a meet-over-all-
realizable-paths problem on a program’s supergraph to a meet-over-all-realizable-paths problem on
a graph that is larger, but in which every edge is labeled with a much simpler edge function (a so-
called “micro-function”) [31]. Each micro-function on an edge d 1 →d 2 captures the effect that the
value of symbol d 1 in the argument environment has on the value of symbol d 2 in the result
environment. Fig. 8 shows the exploded representations of four environment-transformer functions

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

used in constant propagation. Fig. 8(a) shows how the identity function λenv.env is represented.
Figs. 8(b)−(d) show the representations of the functions λenv.env [x ||→ 7], λenv.env [y ||→ env (x)],
and λenv.env [y ||→ −2*env (x)+5], which are the functions for the statements x = 7, y = x, and
y = −2*x +5, respectively. (Λ is used to represent the effects of a function that are independent of
the argument environment. Each graph includes an edge of the form Λ → Λ, labeled with λv.v; as
in Section 3.1, these edges are needed to capture function composition properly.)

Dynamic programming on the exploded supergraph can be used to find the meet-over-all-
realizable-paths solution to the original problem: An exhaustive algorithm can be used to find the
values for all symbols at all program points; a demand algorithm can be used to find the value for
an individual symbol at a particular program point [31]. An experiment was carried out in which
the exhaustive and demand algorithms were used to perform constant propagation on 38 C pro-
grams, which ranged in size from 300 lines to 6,000 lines. The experiment found that
g In contrast to previous results for numeric Fortran programs [11], linear-constant propagation

found more constants than copy-constant propagation in 6 of the 38 programs.
g The demand algorithm, when used to demand values for all uses of scalar integer variables, was

faster than the exhaustive algorithm by a factor ranging from 1.14 to about 6.

Acknowledgements
This paper is based in part on joint work with S. Horwitz, M. Sagiv, G. Rosay, and D. Melski. The
work was supported in part by a David and Lucile Packard Fellowship for Science and Engineer-
ing, by NSF under grants DCR-8552602, CCR-9100424, and CCR-9625667, by DARPA (moni-
tored by ONR under contracts N00014-88-K-0590 and N00014-92-J-1937), and by the Univ. of
Wisconsin through a Vilas Associate Award.

References
1. Babich, W.A. and Jazayeri, M., “The method of attributes for data flow analysis: Part II. Demand analysis,”

Acta Inf. 10(3) pp. 265-272 (Oct. 1978).
2. Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J., “Magic sets and other strange ways to implement logic

programs,” pp. 1-15 in Proc. of the Fifth ACM Symp. on Princ. of Database Syst., (Cambridge, MA, Mar.
1986), (1986).

3. Banning, J.P., “An efficient way to find the side effects of procedure calls and the aliases of variables,” pp.
29-41 in Conf. Rec. of the Sixth ACM Symp. on Princ. of Prog. Lang., (San Antonio, TX, Jan. 29-31, 1979),
ACM, New York, NY (1979).

4. Beeri, C. and Ramakrishnan, R., “On the power of magic,” pp. 269-293 in Proc. of the Sixth ACM Symp. on
Princ. of Database Syst., (San Diego, CA, Mar. 1987), (1987).

5. Callahan, D., “The program summary graph and flow-sensitive interprocedural data flow analysis,” Proc. of
the ACM SIGPLAN 88 Conf. on Prog. Lang. Design and Implementation, (Atlanta, GA, June 22-24, 1988),
SIGPLAN Not. 23(7) pp. 47-56 (July 1988).

6. Cousot, P. and Cousot, R., “Abstract interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints,” pp. 238-252 in Conf. Rec. of the Fourth ACM Symp. on
Princ. of Prog. Lang., (Los Angeles, CA, Jan. 17-19, 1977), ACM, New York, NY (1977).

7. Duesterwald, E., Gupta, R., and Soffa, M.L., “Demand-driven computation of interprocedural data flow,”
pp. 37-48 in Conf. Rec. of the Twenty-Second ACM Symp. on Princ. of Prog. Lang., (San Francisco, CA,
Jan. 23-25, 1995), ACM, New York, NY (1995).

8. Ferrante, J., Ottenstein, K., and Warren, J., “The program dependence graph and its use in optimization,”
ACM Trans. Program. Lang. Syst. 9(3) pp. 319-349 (July 1987).

9. Fischer, C.N. and LeBlanc, R.J., Crafting a Compiler, Benjamin/Cummings Publishing Company, Inc.,
Menlo Park, CA (1988).

10. Giegerich, R., Mo
..
ncke, U., and Wilhelm, R., “Invariance of approximative semantics with respect to pro-

gram transformation,” pp. 1-10 in GI 81: 11th GI Conf., Inf.-Fach. 50, Springer-Verlag, New York, NY
(1981).

11. Grove, D. and Torczon, L., “Interprocedural constant propagation: A study of jump function implementa-
tion,” pp. 90-99 in Proc. of the ACM SIGPLAN 93 Conf. on Prog. Lang. Design and Implementation,
(Albuquerque, NM, June 23-25, 1993), ACM, New York, NY (June 1993).

hh
Λ

Λ

v.vλv.vλv.vλ

x y

x y

Λ

Λ

v.vλ

v.vλλv.7

x y

x y

Λ

Λ

v.vλ v.vλ

x y

x y

v.vλ

Λ

Λ

v.vλ

λv.−2*v+5

v.vλ

x y

x y

(a) λenv.env (b) λenv.env [x ||→ 7] (c) λenv.env [y ||→ env (x)] (d) λenv.env [y ||→ −2*env (x)+5]
hh
Fig. 8. The exploded representations of four environment-transformer functions used in constant
propagation.

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

12. Horwitz, S., Reps, T., and Binkley, D., “Interprocedural slicing using dependence graphs,” ACM Trans.
Program. Lang. Syst. 12(1) pp. 26-60 (Jan. 1990).

13. Horwitz, S., Reps, T., and Sagiv, M., “Demand interprocedural dataflow analysis,” TR-1283, Comp. Sci.
Dept., Univ. of Wisconsin, Madison, WI (Aug. 1995).

14. Horwitz, S., Reps, T., and Sagiv, M., “Demand interprocedural dataflow analysis,” SIGSOFT 95: Proc. of
the Third ACM SIGSOFT Symp. on the Found. of Softw. Eng., (Wash., DC, Oct. 10-13, 1995), ACM SIG-
SOFT Softw. Eng. Notes 20(4) pp. 104-115 (1995).

15. Jones, N.D. and Muchnick, S.S., “Flow analysis and optimization of Lisp-like structures,” pp. 102-131 in
Program Flow Analysis: Theory and Applications, ed. S.S. Muchnick and N.D. Jones,Prentice-Hall,
Englewood Cliffs, NJ (1981).

16. Kildall, G., “A unified approach to global program optimization,” pp. 194-206 in Conf. Rec. of the First
ACM Symp. on Princ. of Prog. Lang., ACM, New York, NY (1973).

17. Knoop, J. and Steffen, B., “The interprocedural coincidence theorem,” pp. 125-140 in Proc. of the Fourth
Int. Conf. on Comp. Construct., (Paderborn, FRG, Oct. 5-7, 1992), Lec. Notes in Comp. Sci., Vol. 641, ed.
U. Kastens and P. Pfahler,Springer-Verlag, New York, NY (1992).

18. Kuck, D.J., Kuhn, R.H., Leasure, B., Padua, D.A., and Wolfe, M., “Dependence graphs and compiler
optimizations,” pp. 207-218 in Conf. Rec. of the Eighth ACM Symp. on Princ. of Prog. Lang., (Willi-
amsburg, VA, Jan. 26-28, 1981), ACM, New York, NY (1981).

19. Landi, W. and Ryder, B.G., “Pointer-induced aliasing: A problem classification,” pp. 93-103 in Conf. Rec.
of the Eighteenth ACM Symp. on Princ. of Prog. Lang., (Orlando, FL, Jan. 1991), ACM, New York, NY
(1991).

20. Masinter, L.M., “Global program analysis in an interactive environment,” Tech. Rep. SSL-80-1, Xerox
Palo Alto Res. Cent., Palo Alto, CA (Jan. 1980).

21. McCarthy, J., “A basis for a mathematical theory of computation,” pp. 33-70 in Computer Programming
and Formal Systems, ed. Braffort and Hershberg,North-Holland, Amsterdam (1963).

22. Melski, D. and Reps, T., “Interconvertibility of set constraints and context-free language reachability,” pp.
74-89 in Proc. of the ACM SIGPLAN Symp. on Part. Eval. and Sem.-Based Prog. Manip. (PEPM 97),
(Amsterdam, The Netherlands, June 12-13, 1997), ACM, New York, NY (1997).

23. Mogensen, T., “Separating binding times in language specifications,” pp. 12-25 in Fourth Int. Conf. on
Func. Prog. and Comp. Arch., (London, UK, Sept. 11-13, 1989), ACM, New York, NY (1989).

24. Ottenstein, K.J. and Ottenstein, L.M., “The program dependence graph in a software development environ-
ment,” Proc. of the ACM SIGSOFT/SIGPLAN Softw. Eng. Symp. on Practical Softw. Develop. Env., (Pitts-
burgh, PA, Apr. 23-25, 1984), SIGPLAN Not. 19(5) pp. 177-184 (May 1984).

25. Reps, T., Sagiv, M., and Horwitz, S., “Interprocedural dataflow analysis via graph reachability,” TR 94-14,
Datalogisk Institut, Univ. of Copenhagen, Copenhagen, Denmark (Apr. 1994).

26. Reps, T., Horwitz, S., Sagiv, M., and Rosay, G., “Speeding up slicing,” SIGSOFT 94: Proc. of the Second
ACM SIGSOFT Symp. on the Found. of Softw. Eng., (New Orleans, LA, Dec. 7-9, 1994), ACM SIGSOFT
Softw. Eng. Notes 19(5) pp. 11-20 (Dec. 1994).

27. Reps, T., “Demand interprocedural program analysis using logic databases,” pp. 163-196 in Applications of
Logic Databases, ed. R. Ramakrishnan,Kluwer Academic Publishers, Boston, MA (1994).

28. Reps, T., Horwitz, S., and Sagiv, M., “Precise interprocedural dataflow analysis via graph reachability,” pp.
49-61 in Conf. Rec. of the Twenty-Second ACM Symp. on Princ. of Prog. Lang., (San Francisco, CA, Jan.
23-25, 1995), ACM, New York, NY (1995).

29. Reps, T., “On the sequential nature of interprocedural program-analysis problems,” Acta Inf. 33 pp.
739-757 (1996).

30. Reynolds, J.C., “Automatic computation of data set definitions,” pp. 456-461 in Information Processing
68: Proc. of the IFIP Congress 68, North-Holland, New York, NY (1968).

31. Sagiv, M., Reps, T., and Horwitz, S., “Precise interprocedural dataflow analysis with applications to con-
stant propagation,” Theor. Comp. Sci. 167 pp. 131-170 (1996).

32. Sharir, M. and Pnueli, A., “Two approaches to interprocedural data flow analysis,” pp. 189-233 in Program
Flow Analysis: Theory and Applications, ed. S.S. Muchnick and N.D. Jones,Prentice-Hall, Englewood
Cliffs, NJ (1981).

33. Tip, F., “A survey of program slicing techniques,” J. Program. Lang. 3 pp. 121-181 (1995).
34. Valiant, L.G., “General context-free recognition in less than cubic time,” J. Comp. Syst. Sci. 10(2) pp.

308-315 (Apr. 1975).
35. Warren, D.S., “Memoing for logic programs,” Commun. ACM 35(3) pp. 93-111 (Mar. 1992).
36. Weiser, M., “Program slicing,” IEEE Trans. on Softw. Eng. SE-10(4) pp. 352-357 (July 1984).
37. Yannakakis, M., “Graph-theoretic methods in database theory,” pp. 230-242 in Proc. of the Ninth ACM

Symp. on Princ. of Database Syst., (1990).
38. Younger, D.H., “Recognition and parsing of context-free languages in time n**3,” Inf. and Cont. 10 pp.

189-208 (1967).
39. Zadeck, F.K., “Incremental data flow analysis in a structured program editor,” Proc. of the SIGPLAN 84

Symp. on Comp. Construct., (Montreal, Can., June 20-22, 1984), SIGPLAN Not. 19(6) pp. 132-143 (June
1984).

Invited paper, 1997 Int. Logic Prog. Symp., (Port Jefferson, NY, Oct. 12-16, 1997)

