Spring 2021

CS 424/624 Reliable Software Systems

Lecture 2: Empirical Study

= Prof. Ryan Huang
4
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Administrivia

 Sign up paper presentations
- Look for course project teammates

- Join “#paper-discussion” channel on Slack
- Can use Anonymous bot

1/28/21 CS 624 — Lecture 2 2

Importance of Studying System Failures

We often learn more about reliability design from systems that
failed than systems that succeeded

- Many surprises...

Study > number game

A good study on system failures yields deep insights that inspire
solutions

- Which problems are important but overlooked, what the common patterns are,
etc.

- E.g., the concept of margin of safety

1/28/21 CS 624 — Lecture 2 3

A Standard Practice in Industry

Google Cloud Networking Incident #17002

- Regular meetings to review and

Incident began at 2017-08-29 13:56 and ended at 2017-08-30 20:18 (all times are US/Pacific).

analyze all major incidents
Summary of the Amazon Kinesis Event in the Northern Virginia (US-EAST-1) Region

November, { ..l- slack Status

- A written report to summarize what ...

. Amézon Kir ® Out
We nt W ro n g y h OW th e I SS u e Was :::n.f.:::. Cus:o?;cl’:rs may have trouble connecting to or using Slack
Streams ar

unit and fe
Issue summary:

resolved, what to improve, etc. O e
the backt Starting around 6:00 a.m. PST on January 4, 2021, some customers started

DynamoD experiencing occasional errors and increased latency while using Slack. Around
f the ott o .
ortheo 7:00 a.m. PST there was a rapid increase in errors and Slack wasn’t usable for all

- Typically called Root Cause Analysis :::

. At5:15 £
(RCA) or Postmortem Analysis | et oo orovsoning son
capacity Around 8:13 a.m. PST, we addressed an issue with our provisioning service and

. ::;Zg began provisioning healthy servers once again to address traffic requests. From

—_ Re po rtS Of Ve ry Se rl O u S O u tag eS a re process there, at 8:45 a.m. PST, some customers began to see improvements, but others
servers who were trying to launch their Slack clients were unable to do so. By around 9:15

- ::::: a.m. PST most customers were able to use Slack again. We continued to
u S u al Iy posted p u b I ICIy lookeg experience elevated errors until 10:40 a.m. PST, after which all customers were
fo:: able to use Slack again.

We also discovered some customers were stuck on a webpage in the Slack
desktop app. This is a separate bug that’s being investigated, but was heightened
during the outage. Troubleshooting steps, such as restarting, forcing quitting
Slack from Activity Monitor or Task Manager, or clearing cache, allowed affected

customers to access the app once again.

CS 624 — Lectul

1/28/21

Appears in 4th Usenix p on Internet Technologies and Systems (USITS ‘03), 2003.

Learning from Mistakes — A Comprehensive Study on Real
World Concurrency Bug Characteristics

Common Researc
Topic In Academia

Why do Internet services fail, and what can be done about it?

David Oppenhei Archana Ganapathi, and David A. Patterson
University of California at Berkeley, EECS Computer Science Division
387 Soda Hall #1776, Berkeley, CA, 94720-1776, USA
{davidopp,archanag, patterson}@cs.berkeley.edu

Shan Lu, Soyeon Park, Eunsoo Seo and Yuanyuan Zhou

Department of Computer Science,
University of Illinois at Urbana Champaign, Urbana, IL 61801

{shanlu,soyeon eseo2,yyzhou} @uiuc.edu

Abstract failures from three large-scale Internet services. In this
paper we
In 1986 Jim Gray published his landmark study of the « identify which service components are most fail-
causes of failures of Tandem sy:lerfu and the techniques ure-prone and hachlhc highest Time to Repair Abstract 1. Introduction
Tandem used to prevent such failures [6]. Seventeen (TTR), so that service operators and researchers))
years later; Internet services have replaced fault-toler- can know what areas most need improvement; The reality of multi-core hardware has made p ; 11
ant_servers_as_the new kid on_the 24x7-availability " i atail . il pervasive. Unfortunately, writing correct concurrent programs is

Numerous papers that
study failures on different
kinds of systems

Why Does a Cloud-Scale Service Fail Despite Fault-Tolerance?
Simple Testing Can Prevent Most Critical Failures
An Analysis of Production Failures in Distributed Data-intensive Systems
Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,
Yongle Zhang, Pranay U. Jain, Michael Stumm
University of Toronto

Peng Huang, Xinxin Jin, William J. Bolosky', Yuanyuan Zhou

University of California, San Diego Microsoft Research’ Microsoft*

Abstract

Some focus on a sub-type of

The sheer scale and complexity of the cloud mean that
even decades of research into fault-tolerance and software
engineering for reliability, billions of dollars of invest-

tion [27, 45,46, 51], path-redundant and failover network-
ing [14, 39, 50], and app-specific fault handling logic [31]
to detect, tolerate and recover from various faults in dif-
ferent layers of the systems. Additionally, careful soft-
ware engineering, extensive testing and gradual roll-out

Abstract
Large, production quality distributed systems still fail pe-
riodically, and do so sometimes catastrophically, where
most or all users experience an outage or data loss. We

raises the questions of why these systems still experi-
ence failures and what can be done to increase their re-
siliency. To help answer these questions, we studied 198
randomly sampled, user-reported failures of five data-
intensive distributed systems that were designed to tol-

failures

present the result of a comprehensive study investigat- N A N
ing 198 randomly selected. . rted failures that oc- erate component failures and are widely used in produc-

Understanding, Detecting and Localizing Partial Failures
in Large System Software

Why Does the Cloud Stop Computing?

1/28/21

Lessons from Hundreds of Service Outages Chang Lou Peng Huang Scott Smith
Johns Hopkins University Johns Hopkins University Johns Hopkins University
Haryadi S. Gunawi, Mingzhe Hao, Agung Laksono, Anang D. Satria,
and Riza O. Suminto Jeffry Adityatama, and Kurnia J. Eliazar
University of Chi Surya U i
niversity of Chicago urya University Abstract rebalancer thread within this process can no longer distribute

Abstract

‘We conducted a cloud outage study (COS) of 32 popular In-
ternet services. We analyzed 1247 headline news and public
post-mortem reports that detail 597 outages that

Not only do outages hurt customers, they also cause fi-
nancial and reputation damages. Minutes of service down-
times can create hundreds of thousands of dollar, if not
multi-million, of loss in revenue [29, 36, 89]. Company’s

Partial failures occur frequently in cloud systems and can

cause serious damage including inconsistency and data loss.

Unfortunately, these failures are not well understood. Nor
can they be effectively detected. In this paper, we first study
100 real-world partial failures from five mature systems to

CS 624 — Lecture 2

unbalanced blocks to other remote data node processes, even
though this process is still alive. Or, a block receiver daemon
in this data node process silently exits, so the blocks are no
longer persisted to disk. These partial failures are not a latent
problem that operators can ignore; they can cause serious

Today: Two Early Empirical Studies

* One is a classic work that basically
started this line of research in
systems community

- The second is one of first systematic
studies on OS bugs

1/28/21 CS 624 — Lecture 2

#{TANDEMCOMPUTERS

Why Do Computers Stop
and What Can Be Done

About It?

Jim Gray

Technical Report 85.7
June 1985
PN87614

An Empirical Study of Operating Systems Errors

Andy Chou, Junfeng Yang, Benjamin Chelf. Seth Hallem, and Dawson Engler

x Systems
Stanford Uni

Laboratory
rsity

Stanford, CA 94305
{ace, junfeng, behelf, shallem, engler}@es stanford.edu

Abstract
Wepresent & study of pcraing st crors found Ly

of the kernel source to estimate how long exrors remain

We found that dosico drivers have error rates up
t0 thice t seven times higher than the rest of the ker-
" o largest quartle of functions

Wo found that the nowest quartie of fles

 twice that of the oldest quartile,

 code "hardens” ave time.

emain in the Linus kernel
an average of 1.8 years before bring fixed

1 Introduction
“This paper examines features of aperating systom er-

BpeansD s
found inprvious wik, wiich e compiler extensions

in kernel cade [8]. These bugs fllinto several categories
Incuding; nok rasing accirod ock, culn blacking
operatons With tarapis b, i fred e
. desefesencing potestislly aul pai
Bing our anslyss o0 compier-fosnd erors has
o nice properties. First, tho compiler applies 4 given

extension unifortly across the entire kernel. This even.
e o s llows v o do & mosily “pple
Apples” comparisan across diffrent parts of the kernel

bugsare mostly straightforward source-level errors, We
do ot ditectly teack problesss with performance, bigh.
ogtoms o ot el of &

conclusions will

is au open question.

e s reveive arownd v comtral avesions:

1. Where are the errors? Section 3 compaes the dif-
foront. subsections of the kernel and shows that
driver code has ersor rates thee to seven times
higher for certain types of errors than cods in the
rest of the kerne

2. How are bugs dieributed? Section 4 shows that
the error distibution i readily matched o a loga-
Fithmic series distribution whose propertics could
vield some insight into how bugs are generated

3. How long do bugs live? Section 5 calculates i
formation about bug lifetimes across all 21 Lernel

ows tha erage bug lfotimo

5. How do operating system Les
tion 7 shows that Open]
than Tinus o

o compare them. OpenBSDs eror rtes ronge
from 1.2 ta six times higher

pape s 1aid ont as follows, Secton 2 desrbes
e ettt check and e e doa ot
Secton 3 examines where bugs are. Sec s
the distribution o exzor counts and matche

e dtsion. Secion 5 addree bow long bags

Why Do Computers Stop
and What Can Be Done
About It?

- Jim Gray

- A pioneer computer scientist
- Received the Turing Award in 1998

= for seminal contributions to database and
transaction processing research and technical
leadership in system implementation

- “ACID”, granular database locking, “five-
minute rule” in caching, ...

- Disappeared with his sailboat in the waters
in San Francisco in Jan 2007

1/28/21 CS 624 — Lecture 2 8

Background: MTBF, MTTR, MTTF

time to repair time to repair
€ > |

time to failure

€ >
failure operation time to repair failure operation
occurs resumes occurs resumes

repairable
system

Mean Time Between Failure (MTBF)
Mean Time To Recovery (MTTR) }

time to failure

Mean Time To Failure (MTTF) | "onreparebe

system

operation
1/28/21 CS 624 — Lecture 2 starts

failure
occurs

Background: Reliability vs. Availability

- Reliability: systems not doing wrong things
- proportional to MTBF

 Availability: systems doing right things on time
- related to MTBF and MTTR

4 Definition 1 A [Definition 2 b

E[uptime] - MTBF
Avalability = .
VAPt = E [uptime] + E[downtime] Avalability MTBF + MTTR

- / - J

1/28/21 CS 624 — Lecture 2 10

1/28/21

CS 624 - Lecture 2

11

An Empirical Study of
Operating Systems Errors

1/28/21

CS 624 - Lecture 2

13

How Complex Systems Fail

1/28/21

CS 624 - Lecture 2

15

