A Fast File System for UNIX*

Marshall Kirk McKusick, William N. Joyt,
Samuel JLeffler}, Robert S. Fabry

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkelgy, CA 94720

ABSTRACT

A reimplementation of the UNIX file system is described. The reimplementation
provides substantially higher throughput rates by using more flexible allocation policies
that allav better locality of reference and can be adapted to a wide range of peripheral
and processor characteristic¥he nev file system clusters data that is sequentially
accessed and providesawock sizes to allw fast access to Ige files while not wsting
large amounts of space for small files. File access rates of up to tendsterstiian the
traditional UNIX file system arexperienced. Longeeded enhancements to the pro-
grammers’ interface are discussed. These include a mechanism to place advisory locks
on files, atensions of the name space across file systems, the ability to use long file
names, and provisions for administvatiiontrol of resource usage.

Revised February 18, 1984

CR Categories and Subject Descriptors: DJDBerating Systems] File Systems Management fite
organization, directory structures, access methdalg.2 [Operating Systems] Storage Management —
allocation/deallocation sategies, secondary stage avices D.4.8 [Operating Systems] Performance -
measuements, operational analysid.3.2[Inf ormation Systems] Information Storage file organization

Additional Keywords and Phrases: UNIX, file systenganization, file system performance, file system
design, application program interface.

General Terms: file system, measurement, performance.

* UNIX is a trademark of Bell Laboratories.

T William N. Joy is currently employed by: Sun Microsystems, Inc, 2550 Garoende, Mountain ew, CA
94043

T Samuel J. Leffler is currently employed by: Lucasfilm Ltd., PO Box 2009, San Rafael, CA 94912

This work was done under grants from the National Scieocadation under grant MCS80-05144, and the
Defense Advance Research Projects AggioD) under ARR Order No. 4031 monitored by Ma Elec-
tronic System Command under Contract No. NO0039-82-C-0235.

SMM:05-2 AFast File System fouNix

TABLE OF CONTENTS

1. Introduction
2. Oldfile system

3. Newfile system organization
3.1. Optimizingstorage utilization
3.2. Filesystem parameterization
3.3. Layoutpolicies

4. Performance

5. File system functional enhancements
5.1. Longfile names

5.2. Filelocking

5.3. Symbolidinks

5.4. Rename

5.5. Quotas

Acknowledgements

References

1. Introduction

This paper describes the changes from the original 512 byte UNIX file system towthenae
released with the 4.2 Bezley Software Distritution. Itpresents the mafitions for the changes, the meth-
ods used to &ct these changes, the rationale behind the design decisions, and a description wf the ne
implementation. Thisliscussion is followed by a summary of the results the¢ lmen obtained, direc-
tions for future work, and the additions and changes thaehlzen made to the facilities that ansitable
to programmers.

The original UNIX system that runs on the PDP-111 has simple agehtfde system dcilities.
File system input/output isuffered by the kernel; there are no alignment constraints on data transfers and
all operations are made to appear synchrondlistransfers to the disk are in 512 byte blocks, which can
be placed arbitrarily within the data area of the file syst¥mtually no constraints other thawadable
disk space are placed on file growth [Ritchie74], [Thompson78].*

When used on theAX-11 together with other UNIX enhancements, the original 512 byte UNIX file
system is incapable of providing the data throughput rates that apatications require.For example,
applications such as VLSI design and image processing do a small amount of processingeoqueiri-
ties of data and need toveaa high throughput from the file system. High throughput rates are also needed
by programs that map files from the file system into large virtual address spagieg) data in and out of
the file system is lily to occur frequently [Ferrin82b]. This requires a file system providing higher band-
width than the original 512 byte UNIX one that provides only aboot gercent of the maximum disk
bandwidth or about 20 kilobytes per second per arm [White80], [Smith81b].

Modifications hae been made to the UNIX file system to impedts performance. Since the UNIX
file system intedice is well understood and not inherentlyaslthis development retained the abstraction
and simply changed the underlying implementation to increase its througbpusequentlyusers of the
system hee rot been faced with massi oftware comersion.

Problems with file system performancevéabeen dealt with x@ensvely in the literature; see
[Smith81a] for a sumy. Previous work to impree the UNIX file system performance has been done by
[Ferrin82a]. TheUNIX operating system dve mary of its ideas from Multics, a large, high performance

T DEC, PDRVAX, MASSBUS, and UNIBUS are trademarks of Digital Equipment Corporation.
* In practice, a files 9ze is constrained to be less than about one gigabyte.

A Fast File System fouNix SMM:05-3

operating system [Feiertag71]. Other work includes Hydra [Almes78], Spice [Thompson80], and a file sys-
tem for a LISP environment [Symbolics81A good introduction to the physical latencies of disks is
described in [Pechura83].

2. Old File System

In the file system deloped at Bell Laboratories (thé&raditional” file system), each disk d& is
divided into one or more partitions. Each of these disk partitions may contain one file spstidensys-
tem neer spans multiple partitions.1A file system is described by its sufpdock, which contains the
basic parameters of the file systefirhese include the number of data blocks in the file system, a count of
the maximum number of files, and a pointer toftke list a linked list of all the free blocks in the file sys-
tem.

Within the file system are fileCertain files are distinguished as directories and contain pointers to
files that may themselves be directori€sery file has a descriptor associated with it calleéhade An
inode contains information describing ownership of the file, time stamps marking last modification and
access times for the file, and an array of indices that point to the data blocks for tRerfitee purposes
of this section, we assume that the first 8 blocks of the file are directly referenced by values stored in an
inode itself*. An inode may also contain references to indirect blocks containing further data block indices.
In a file system with a 512 byte block size, a singly indirect block contains 128 further block addresses, a
doubly indirect block contains 128 addresses of further singly indirect blocks, and a triply indirect block
contains 128 addresses of further doubly indirect blocks.

A 150 maabyte traditional UNIX file system consists of 4 gasytes of inodes followed by 146
megabytes of data. This genization sgregates the inode information from the data; thus accessing a file
normally incurs a long seek from the fdghode to its dataFiles in a single directory are not typically
allocated consecuwi dots in the 4 mgabytes of inodes, causing manon-consecutie Hocks of inodes to
be accessed whereeuting operations on the inodes ovaal files in a directory.

The allocation of data blocks to files is also suboptimum. The traditional file systentraasfers
more than 512 bytes per disk transaction and often finds that xheawpiential data block is not on the
same glinder, forcing seeks between 512 byte transf@ise combination of the small block size, limited
read-ahead in the system, and gnsaeks seerely limits file system throughput.

The first work at Berley on the UNIX file system attempted to imme both reliability and
throughput. Theeliability was impreed by faging modifications to critical file system information so
that the could either be completed or repaired cleanly by a program after a crastgki78]. Thefile
system performance was imped by a factor of more than tavby dhanging the basic block size from 512
to 1024 bytes.The increase was because obtfactors: each disk transfer accessed twice as much data,
and most files could be described without need to access indirect blocks since the direct blocks contained
twice as much data. The file system with these changes will henceforth be referred wd§léehsystem.

This performance imprx@ment @vea drong indication that increasing the block sizaswa good
method for improving throughput. Although the throughput had doubled, the old file syagestilwusing
only about four percent of the disk bandwidifhe main problem was that although the free list was ini-
tially ordered for optimal access, it quickly became scrambled as files were created ared.reffventu-
ally the free list became entirely random, causing files t@ tteeir blocks allocated randomlyer the
disk. Thisforced a seek beforerery block access. Although old file systems provided transfer rates of up
to 175 kilobytes per second whenytheere first created, this rate deteriorated to 30 kilobytes per second
after a fev weeks of moderate use because of this randomization of data block placement. There was no
way of restoring the performance of an old file systewept to dump, rebuild, and restore the file system.
Another possibility as siggested by [Maruyama76], would be tovéaa pocess that periodically

T By “partition” here we refer to the subdivision ofysical space on a disk de In the traditional file sys-
tem, as in the nefile system, file systems are really located in logical disk partitions that vedgm This
overlapping is madeailable, for example, to all® programs to copentire disk drves containing multiple file
systems.

* The actual number may vary from system to system, but is usually in the range 5-13.

SMM:05-4 AFast File System fouNix

reoganized the data on the disk to restore locality.

3. Newfile system organization

In the nev file system aganization (as in the old file systemganization), each disk dré mntains
one or more file system® file system is described by its super-block, located at the beginning of the file
system$ dsk partition. Because the super-block contains critical data, it is replicated to pragctt ag
catastrophic lossThis is done when the file system is created; since the super-block data does not change,
the copies need not be referenced unless a head crash or other hard disk error causes the délaak super
to be unusable.

To insure that it is possible to create files agdaas 2 bytes with only tw levds of indirection, the
minimum size of a file system block is 4096 bytes. The size of file system blocks candosvanof two
greater than or equal to 4096. The block size of a file system is recorded in the filessygienislock so
it is possible for file systems with tBfent block sizes to be simultaneously accessible on the same system.
The block size must be decided at the time that the file system is created; it cannot be subsequently changed
without rebuilding the file system.

The nev file system aganization divides a disk partition into one or more areas caididder
groups A cylinder group is comprised of one or more consgeutyinders on a disk. Associated with
each cylinder group is some boealdping information that includes a redundantycopthe supebblock,
space for inodes, a bit map describingilable blocks in the cylinder group, and summary information
describing the usage of data blocks within thiender group. The bit map ofvailable blocks in theyin-
der group replaces the traditional file systefree list. For each cylinder group a static number of inodes
is allocated at file system creation time. The default padi¢o dlocate one inode for each 2048 bytes of
space in the cylinder group, expecting this to be far more thanvailbe reeded.

All the cylinder group bookéeping information could be placed at the beginning of eglahder
group. Havever if this approach were used, all the redundant information would be on the top #atter
single hardware failure that destroyed the top platter could cause the loss of all redundant copies of the
superblock. Thusthe cylinder group bookkeeping information begins at a varying offset from ¢fie- be
ning of the glinder group. The offset for each successiylinder group is calculated to be about one track
further from the beginning of the cylinder group than the preceding cylinder group. In this way the redun-
dant information spirals down into the pack so thgtsmgle track, glinder, or platter can be lost without
losing all copies of the supbtock. Excepfor the first cylinder group, the space between tlggnoéng of
the cylinder group and the beginning of the cylinder group information is used for data blocks.t

3.1. Optimizing storage utilization

Data is laid out so that larger blocks can be transferred in a single disk transaction, greatly increasing
file system throughput. As axa@mnple, consider a file in thewdile system composed of 4096 byte data
blocks. Inthe old file system this file @uld be composed of 1024 byte blocks. By increasing the block
size, disk accesses in theanile system may transfer up to four times as much information per disk trans-
action. Inlarge files, seeral 4096 byte blocks may be allocated from the same cylinder sovtmalaeger
data transfers are possible before requiring a seek.

The main problem with lger blocks is that most UNIX file systems are composed o/ reaall
files. Auniformly large block size wastes spadable 1 shows the effect of file system block size on the
amount of wasted space in the file systérhe files measured to obtain these figures reside on one of our

T While it appears that the first cylinder group could be laid out with its dpek at the ‘known” | ocation,

this would not verk for file systems with blocks sizes of 16 kilobytes or gredfars is because of a require-
ment that the first 8 kilobytes of the disk be resdrior a bootstrap program and a separate requirement that the
cylinder group information begin on a file system block bound@oygart the cylinder group on a file system
block boundaryfile systems with block sizes larger than 8 kilobytes woulek Ha leave an empty space
between the end of the boot block and the beginning of the cylinder gvditiout knaving the size of the file
system blocks, the system would not wnehat roundup function to use to find theglming of the first glin-

der group.

A Fast File System fouNix SMM:05-5

time sharing systems that has roughly 1.2 gigabytes of on-line stofrhganeasurements are based on the
active wser file systems containing about 92(yaytes of formatted space.

Space used | % waste | Oganization
775.2 Mb 0.0 Dateonly, no £paration between files
807.8 Mb 4.2 Dateonly, each file starts on 512 byte boundary
828.7 Mb 6.9 Datat inodes, 512 byte block UNIX file system
866.5 Mb 11.8 Datat inodes, 1024 byte block UNIX file system
948.5 Mb 22.4 Datat inodes, 2048 byte block UNIX file system
1128.3 Mb 45.6 Datat inodes, 4096 byte block UNIX file system

Table 1 — Amount of wasted space as a function of block size.

The space wasted is calculated to be the percentage of space on the disk not containing dsethdata.
block size on the disk increases, the waste rises quickin htolerable 45.6% waste with 4096 byte file
system blocks.

To be able to use large blocks without unduaste, small files must be stored in a more efficieyt w
The nav file system accomplishes this goal by ailoy the division of a single file system block into one
or morefragments The file system fragment size is specified at the time that the file system is created;
each file system block can optionally be broken into 2, 4, or 8 fragments, each of which is addr€esable.
lower bound on the size of these fragments is constrained by the disk sector size, typically 5IPhiaytes.
block map associated with each cylinder group records the spailable in a cylinder group at the frag-
ment level; to determine if a block isvailable, aligned fragments areganined. Figurel shows a piece of
a map from a 4096/1024 file system.

Bits in map XXXX XXOO O0OOXX 0000
Fragment numbers 0-3 4-7 8-11 12-15
Block numbers 0 1 2 3

Figure 1 — Example layout of blocks and fragments in a 4096/1024 file system.

Each bit in the map records the status of a fragmentXarshows that the fragment is in use, while@™

shaws that the fragment isvalable for allocation.In this example, fragments 0-5, 10, and 11 are in use,
while fragments 6-9, and 12-15 are free. Fragments of adjoining blocks cannot be used as a full block,
evan if they are large enoughln this example, fragments 6—9 cannot be allocated as a full block; only frag-
ments 12-15 can be coalesced into a full block.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is repre-
sented by zero or more 4096 byte blocks of data, and possibly a single fragmentedfladddk. system
block must be fragmented to obtain space for a small amount of data, the remaining fragments of the block
are made \&ilable for allocation to other filesAs an example consider an 11000 byte file stored on a
4096/1024 byte file system. This file would uses fwll size blocks and one three fragment portion of
another block. If no block with three aligned fragments@élable at the time the file is created, a full size
block is split yielding the necessary fragments and a single unused fragrhentemaining fragment can
be allocated to another file as needed.

Space is allocated to a file when a program dogsta system call. Each time data is written to a
file, the system checks to see if the size of the file has increased*. If the file needs to be expanded to hold
the nev data, one of three conditions exists:

1) Thereis enough space left in an already allocated block or fragment to holdvirgatee Thenew
data is written into thevailable space.

2) Thefile contains no fragmented blocks (and the last block in the file contains insufficient space to
hold the nes data). Ifspace exists in a block already allocated, the space is filled witldlata. If
the remainder of the medata contains more than a full block of data, a full block is allocated and the

* A program may beerwriting data in the middle of an existing file in which case space would already ha
been allocated.

SMM:05-6 AFast File System fouNix

first full block of nev data is written there. This process is repeated until less than a full block of
new data remains. If the remainingwelata to be written will fit in less than a full block, a block
with the necessary fragments is located, otherwise a full block is located. The remamiteianes
written into the located space.

3) Thefile contains one or more fragments (and the fragments contain insufficient space to hold the ne
data). Ifthe size of the e data plus the size of the data already in the fragments exceeds the size of
a full block, a nev block is allocated.The contents of the fragments are copied to the beginning of
the block and the remainder of the block is filled wittvidata. Theprocess then continues as in (2)
abore. Otherwise, if the n& data to be written will fit in less than a full block, a block with the nec-
essary fragments is located, otherwise a full block is located. The contents of the existing fragments
appended with the medata are written into the allocated space.

The problem with xpanding a file one fragment at a a time is that data may be copigdimes as
a fragmented blockx@ands to a full block. Fragment reallocation can be minimized if the user program
writes a full block at a time xeept for a partial block at the end of the file. Since file systems wigr-dif
ent block sizes may reside on the same system, the file system interface has been extervitdel apmro
cation programs the optimal size for a read or writer. files the optimal size is the block size of the file
system on which the file is being accessEd. other objects, such as pipes and stskthe optimal size is
the underlying bffer size. This feature is used by the Standard Input/Output Ljtagmckage used by
most user programs. This feature is also used by certain system utilities suchvassaaoli loaders that
do their own input and output management and need the highest possible file system bandwidth.

The amount of wsted space in the 4096/1024 bytevrfde system ayanization is empirically
obsened to be about the same as in the 1024 byte old file systamization. Afile system with 4096
byte blocks and 512 byte fragments has about the same amouasteldvepace as the 512 byte block
UNIX file system. The n& file system uses less space than the 512 byte or 1024 byte file systems for
indexing information for lage files and the same amount of space for small files. These savingsetre of
by the need to use more space for keeping trackaifble free blocks. The net result is about the same
disk utilization when a nefile systems fragment size equals an old file systehhock size.

In order for the layout policies to befetdtive, a fle system cannot be kept completely fiior each
file system there is a parametirmed the free space reserthat gies the minimum acceptable percent-
age of file system blocks that should be free. If the number of free blocks dropstiusltevel only the
system administrator can continue to allocate blodkse value of this parameter may be changed wt an
time, even when the file system is mounted and\&tiThe transfer rates that appear in section 4 were
measured on file systems kept less than 90% full (a ees€dd%). If the number of free blocks falls to
zero, the file system throughput tends to be cut in half, because of the inability of the file system to localize
blocks in a file. If a file system’performance degrades because wériling, it may be restored by
removing files until the amount of free space once again reaches the minimum accepthblédeess
rates for files created during periods of little free space may be restoredvimg riteeir data once enough
space is @ilable. Thefree space resesurust be added to the percentage of waste when comparing the
organizations g¥en in Table 1. Thus, the percentage of waste in an old 1024 byte UNIX file system is
roughly comparable to a wed096/512 byte file system with the free space resest/at 5%. (Compare
11.8% wasted with the old file system to 6.9% waste + 5% reserved space iv the sgstem.)

3.2. Filesystem parameterization

Except for the initial creation of the free list, the old file system ignores the parameters of the under
lying hardware. Ithas no information about either the physical characteristics of the mass staiage de
or the hardware that interacts with A goal of the nw file system is to parameterize the processor capa-
bilities and mass storage characteristics so that blocks can be allocated in an optimum configuration-depen-
dent way. Parameters used include the speed of the procelednardware support for mass storage trans-
fers, and the characteristics of the mass storageede Disktechnology is constantly improving and a
given installation can hae ®veal different disk technologies running on a single procedsach file sys-
tem is parameterized so that it can be adapted to the characteristics of the disk on which it is placed.

For mass storage devices such as disks, thefiie system tries to allocatewélocks on the same
cylinder as the previous block in the same fi@ptimally, these ne blocks will also be rotationally well

A Fast File System fouNix SMM:05-7

positioned. Thedistance betweerrotationally optimal’ blocks varies greatly; it can be a conseguiti

block or a rotationally delayed block depending on system characteristics. On a processor with an
input/output channel that does not require/ gnocessor intemntion between mass storage transfer
requests, tew consecutre dsk blocks can often be accessed without suffering lost time because of an inter
vening disk reolution. For processors without input/output channels, the main processor must field an
interrupt and prepare for awalisk transfer The expected time to service this interrupt and schedule a
new disk transfer depends on the speed of the main processor.

The physical characteristics of each disk include the number of blocks per track and the rate at which
the disk spins.The allocation routines use this information to calculate the number of milliseconds
required to skip wer a Hock. Thecharacteristics of the processor include the expected time to service an
interrupt and schedule awaealisk transfer Given a Hock allocated to a file, the allocation routines calcu-
late the number of blocks to skipep so hat the next block in the file will come into position under the
disk head in the expected amount of time that it takes to staw disletransfer operationFor programs
that sequentially access large amounts of data, this strategy minimizes the amount of timeaigpgribmw
the disk to position itself.

To ease the calculation of finding rotationally optimal blocks, the cylinder group summary informa-
tion includes a count of thevalable blocks in a cylinder group at flifent rotational positions. Eight rota-
tional positions are distinguished, so the resolution of the summary information is 2 milliseconds for a typi-
cal 3600 regolution per minute dvie. The super-block contains a vector of lists callettional layout
tables The vector is indeed by rotational position. Each component of the vector lists thexinute the
block map for eery data block contained in its rotational position. When looking for an allocatable block,
the system first looks through the summary counts for a rotational position with a non-zero blocktcount.
then uses the indeof the rotational position to find the appropriate list to use taxittd@ugh only the rel-
evant parts of the block map to find a free block.

The parameter that defines the minimum number of milliseconds between the completion of a data
transfer and the initiation of another data transfer on the same cylinder can be changedue, anen
when the file system is mounted and\atilf a file system is parameterized to lay out blocks with a rota-
tional separation of 2 milliseconds, and the disk pack is thesdro asystem that has a processor requir
ing 4 milliseconds to schedule a disk operation, the throughput will drop precipitously because of lost disk
revolutions on nearly wery block. If the eentual target machine is knm, the file system can be parame-
terized for it en though it is initially created on a ééfent processorEven if the mave is ot known in
adwance, the rotational layout delay can be reconfigured after the diskéd swhat all further allocation
is done based on the characteristics of the hmest.

3.3. Layout policies

The file system layout policies are divided int@teistinct parts. At the top leel are global policies
that use file system wide summary information to enddcisions rgarding the placement of meinodes
and data blocks. These routines are responsible for deciding the placement difectories and files.
They aso calculate rotationally optimal block layouts, and decide when to force a long seekutoydime
der group because there are ifisignt blocks left in the current cylinder group to do reasonable layouts.
Below the global polig routines are the local allocation routines that use a locally optimal scheme to lay
out data blocks.

Two methods for impraing file system performance are to increase the locality of reference to mini-
mize seek laterycas cescribed by [fivedi80], and to impree the layout of data to maklarger transfers
possible as described by [i#ainen77]. Theglobal layout policies try to impue performance by cluster
ing related information.They cannot attempt to localize all data references, but must also try to spread
unrelated data among different cylinder groups. If too much localization is attempted, theyliockr c
group may run out of space forcing the data to be scattered to non-local cylinder grakgrsto an
extreme, total localization can result in a single huge cluster of data resembling the old file System.
global policies try to balance thedwonflicting goals of localizing data that is concurrently accessed while
spreading out unrelated data.

One allocatable resource is inodes. Inodes are used to describe both files and dirémboléssof
files in the same directory are frequently accessed togeffberexample, the “list directoriycommand

SMM:05-8 AFast File System fouNix

often accesses the inode for each file in a direcfbing layout polig tries to place all the inodes of files in

a drectory in the same cylinder groufio ensure that files are distrited throughout the disk, a fifent

policy is used for directory allocationA new drectory is placed in a cylinder group that has a greater than
aveage number of free inodes, and the smallest number of directories already in it. The intent of this pol-
icy is to dlow the inode clustering poljcto succeed most of the timerhe allocation of inodes within a
cylinder group is done using a next free sggteAlthough this allocates the inodes randomly within a
cylinder group, all the inodes for a particulatieder group can be read with 8 to 16 disk transféss.

most 16 disk transfers are required because a cylinder group maychmore than 2048 inodes.Jhis

puts a small and constant upper bound on the number of disk transfers required to access the inodes for all
the files in a directoryln contrast, the old file system typically requires one disk transfer to fetch the inode
for each file in a directory.

The other major resource is data blocksnce data blocks for a file are typically accessed together
the poligy routines try to place all data blocks for a file in the same cylinder group, preferably at rotationally
optimal positions in the samglmder. The problem with allocating all the data blocks in the saytinder
group is that large files will quickly use upadable space in the cylinder group, forcing a spileroto
other areas.Further using all the space in a cylinder group causes future allocations ydilarin the
cylinder group to also spill to other areas. Ideally none of the cylinder groups sheultbeome com-
pletely full. The heuristic solution chosen is to redirect block allocation tdexetit cylinder group when
a file exceeds 48 kilobytes, and ateey megabyte thereaftet The newly chosen cylinder group is selected
from those glinder groups that he a geater than\aerage number of free blocks left. Although big files
tend to be spread ouv@ the disk, a mgabyte of data is typically accessible before a long seek must be
performed, and the cost of one long seek peyange is small.

The global polig routines call local allocation routines with requests for specific blocks. The local
allocation routines will aays allocate the requested block if it is free, otherwise it allocates a free block of
the requested size that is rotationally closest to the requested block. If the global layout policies had com-
plete information, the could alvays request unused blocks and the allocation routimegdwbe reduced to
simple bookkeping. Havever, maintaining complete information is costly; thus the implementation of the
global layout polig uses heuristics that empglonly partial information.

If a requested block is novalable, the local allocator uses a fouvdkallocation strategy:

1) Usethe next gailable block rotationally closest to the requested block on the sgiinelar. It is
assumed here that head switching time is zémw.disk controllers where this is not the case, it may
be possible to incorporate the time required to switch between disk platters when constructing the
rotational layout tables. This, howee, has not yet been tried.

2) If there are no blockssalable on the same cylindarse a block within the same cylinder group.

3) If that cylinder group is entirely full, quadratically hash the cylinder group number to choose another
cylinder group to look for a free block.

4) Finallyif the hash fails, apply an exhawstisarch to all cylinder groups.

Quadratic hash is used because of its speed in finding unused slots in nearly full hash tables
[Knuth75]. Filesystems that are parameterized to maintain at least 10% free space rarely use gyis strate
File systems that are run without maintaining &ee space typically ka few free blocks that almost
ary alocation is random; the most important characteristic of the strategy used under such conditions is
that the strategy be fast.

* The first spill @er point at 48 kilobytes is the point at which a file on a 4096 byte block file system first
requires a single indirect block. This appears to be a natural first point at which to redirect block allocation.
The other spiller points are chosen with the intent of forcing block allocation to be redirected when a file has
used about 25% of the data blocks in a cylinder group. In observinguhgl@system in day to day use, the
heuristics appear to work well in minimizing the number of completely filled cylinder groups.

A Fast File System fouNix

4. Performance

SMM:05-9

Ultimately, the proof of the déctiveness of the algorithms described in the previous section is the
long term performance of thewdile system.

Our empirical studies ka $hown that the inode layout polichas been éctive. When running the
“list directory’ command on a large directory that itself contains yrdirectories (to force the system to
access inodes in multiple cylinder groups), the number of disk accesses for inodes is cut by a faxtor of tw
The impravements are ven more dramatic for laye directories containing only files, disk accesses for
inodes being cut by @aétor of eight. This is most encouraging for programs such as spooling daemons that
access mansmall files, since these programs tend to flood the disk request queue on the old file system.

Table 2 summarizes the measured throughput of thefite system. Several comments need to be
made about the conditions under which these tests were run. The test programs measure the rate at which
user programs can transfer data to or from a file without performingranessing on it. These programs
must read and write enough data to insure thfiebng in the operating system does not affect the results.
They are also run at least three times in succession; the first to get the system intnastate and the
second tw to insure that thexperiment has stabilized and is repeatable. The tests used and their results
are discussed in detail in [Kridle83]t. The systems were running multi-user but were otherwise quiescent.
There was no contention for either the CPU or the disk dime. only difference between the UNIBUS and
MASSBUS tests s the controller All tests used an AMPEX Capricorn 330 gdeyte Winchester disk.
As Table 2 shows, all file system test runs were on a VAX 11/750. All file systems had been in production
use for at least a month before being measured. The same number of system calls were performed in all
tests; the basic system callechead was a negligible portion of the total running time of the tests.

Type of Processor and Read
File System Bus Measured Speed Bandwidth % CPU
old 1024 750/UNIRJS 29Kbytes/sec 29/983% 11%
new 4096/1024 750/UNIBUS 22Kbytes/sec 221/9832% 43%
new 8192/1024 750/UNIBUS 23Rbytes/sec 233/9834% 29%
new 4096/1024 750/MASSBUS 466 Kbytes/sec 466/48306 73%
new 8192/1024 750/MASSBUS 466 Kbytes/sec 466/4836 54%
Table 2a — Reading rates of the old and/éNIX file systems.
Type of Processor and Write
File System Bus Measured Speed Bandwidth % CPU
old 1024 750/UNIRJS 48Kbytes/sec 48/983% 29%
new 4096/1024 750/UNIBUS 14Rbytes/sec 142/98B4% 43%
new 8192/1024 750/UNIBUS 21Bbytes/sec 215/9822% 46%
new 4096/1024 750/MASSBUS 323 Kbytes/sec 323/98%0 94%
new 8192/1024 750/MASSBUS 466 Kbytes/sec 466/883%0 95%

Table 2b — Writing rates of the old andm&NIX file systems.

Unlike the old file system, the transfer rates for the ffiee system do not appear to changero
time. Thethroughput rate is tied much more strongly to the amount of free space that is maintéieed.
measurements in Table 2 were based on a file system with a 10% free spaee Rgethetiovork loads
suggest that throughput deteriorates to about half the rasigiTable 2 when the file systems are full.

The percentage of bandwidthven in Table 2 is a measure of thdegftive uilization of the disk by
the file system.An upper bound on the transfer rate from the disk is calculated by multiplying the number
of bytes on a track by the number o¥alaitions of the disk per secondhe bandwidth is calculated by
comparing the data rates the file system is able to\acksea gercentage of this rate. Using this metric,
the old file system is only able to use about 3-5% of the disk bandwidth, whilenttidengystem uses up

to 47% of the bandwidth.

T A UNIX command that is similar to the reading test that we used is “cp fiéniae’, where ‘file’’ is eight

megabytes long.

SMM:05-10 AFast File System fouNix

Both reads and writes are faster in the/ isgstem than in the old system. The biggestdr in this
speedup is because of thegkar block size used by thewndile system. Thewerhead of allocating blocks
in the n&v system is greater than theehead of allocating blocks in the old systemwieer fewer blocks
need to be allocated in thewneystem because theare bigger The net effect is that the cost per byte allo-
cated is about the same for both systems.

In the nev file system, the reading rate isvays at least asabt as the writing rate. This is to be
expected since thegknel must do more work when allocating blocks than when simply reading Nhete.
that the write rates are about the same as the read rates in the 8192 byte block file system; the write rates
are slover than the read rates in the 4096 byte block file system. The slower write rates occur because the
kernel has to do twice as maudisk allocations per second, making the processor unableei kp with
the disk transfer rate.

In contrast the old file system is about 50% faster at writing files than reading them. This is because
the write system call is asynchronous and thendéd can generate disk transfer requests much faster than
they can be serviced, hence disk transfers queue up in the sk bache. Because the diskffier cache
is sorted by minimum seek distance, therage seek between the scheduled disk writes is much less than
it would be if the data blocks were written out in the random disk order in whiglarthngeneratedHow-
eve when the file is read, the read system call is processed synchronously so the disk blocks must be
retrieved from the disk in the non-optimal seek order in whictythee requested. This forces the disk
scheduler to do long seeks resulting in a lower throughput rate.

In the nev system the blocks of a file are more optimally ordered on the dig&n though reads are
still synchronous, the requests are presented to the disk in a much betteEeedehough the writes are
still asynchronous, tlyeare already presented to the disk in minimum seek order so there is no gain to be
had by reordering them. Hence the disk seek latencies that limited the old file systelttidaeffect in
the nev file system. The cost of allocation is tleetbr in the n& system that causes writes to bevso
than reads.

The performance of the wefile system is currently limited by memory to memoryycoperations
required to mee data from disk bffers in the systers’aldress space to dataffers in the uses aldress
space. Theseopy operations account for about 40% of the time spent performing an input/output opera-
tion. If the luffers in both address spaces were properly aligned, this transfer could be performed without
copying by using the XX virtual memory management hardwe. Thiswould be especially desirable
when transferring large amounts of datdle dd not implement this because ibuld change the user inter
face to the file system in twmajor ways: user programs would be required to allocatels on page
boundaries, and data would disappear from buffers after being written.

Greater disk throughput could be acte by rewriting the disk diwvers to chain togethereknel
buffers. Thiswould allon contiguous disk blocks to be read in a single disk transachtarny disks used
with UNIX systems contain either 32 or 48 512 byte sectors per tiaakh track holds exactly twor
three 8192 byte file system blocks, or four or six 4096 byte file system blocks. The inability to use contigu-
ous disk blocks é&ctively limits the performance on these disks to less than 50% ofviilakde band-
width. If the next block for a file cannot be laid out contiguguslgn the minimum spacing to thexhe
allocatable block on grplatter is between a sixth and a half gotetion. Theimplication of this is that the
best possible layout without contiguous blocks uses only half of the bandwidth gif’am track. If each
track contains an odd number of sectors, then it is possible toedselkotational delay to gmumber of
sectors by finding a block thatdies at the desired rotational position on another track. The reason that
block chaining has not been implemented is because it would require rewriting all the \disk idrthe
system, and the current throughput rates are already limited by the speedveildbéegrocessors.

Currently only one block is allocated to a file at a timetechnique used by the DEMOS file system
when it finds that a file is growing rapidig to preallocate seeral blocks at once, releasing them when the
file is closed if thg remain unused. By batching up allocations, the system can reducestheaa of allo-
cating at each write, and it can cutaagoon the number of disk writes needed to keep the block pointers on
the disk synchronized with the block allocationjeti79]. Thistechnique was not included because block
allocation currently accounts for less than 10% of the time spent in a write system call andaondbeg
current throughput rates are already limited by the speed ofaltebée processors.

A Fast File System fouNix SMM:05-11

5. File system functional enhancements

The performance enhancements to the UNIX file system did not requichamges to the semantics
or data structures visible to application prografiswever, ssvaal changes had been generally desired for
some time bt had not been introduced because theuld require users to dump and restore all their file
systems. Sinc¢he nev file system already required all existing file systems to be dumped and restored,
these functional enhancements were introduced at this time.

5.1. Longfile names

File names can mobe of rearly arbitrary length. Only programs that read directories are affected by
this change.To promote portability to UNIX systems that are not running the fiee system, a set of
directory access routinesveabeen introduced to provide a consistent irstegf to directories on both old
and nev systems.

Directories are allocated in 512 byte units called churikss size is chosen so that each allocation
can be transferred to disk in a single operatiGhunks are broken up into variable length records termed
directory entries.A directory entry contains the information necessary to map the name of a file to its asso-
ciated inode. No directory entry is alled to span multiple chunks. The first three fields of a directory
entry are fixed length and contain: an inode numbersize of the entnand the length of the file name
contained in the entryThe remainder of an entry is variable length and contains a null terminated file
name, padded to a 4 byte boundafjie maximum length of a file name in a directory is currently 255
characters.

Available space in a directory is recorded byihg one or more entries accumulate the free space in
their entry size fieldsThis results in directory entries that are larger than required to hold the entry name
plus fixed length fields. Space allocated to a directory showtsilbe completely accounted for by total-
ing up the sizes of its entrie§Vhen an entry is deleted from a directdty space is returned to a yims
entry in the same directory chunk by increasing the size of tiwiopseentry by the size of the deleted
entry If the first entry of a directory chunk is free, then the emindde number is set to zero to indicate
that it is unallocated.

5.2. Filelocking

The old file system had no provision for locking files. Processes that needed to synchronize the
updates of a file had to use a separtiek’ file. A process would try to create ‘Bck’” file. If the cre-
ation succeeded, then the process could proceed with its update; if the craigthnttien the process
would wait and try agin. Thismechanism had three @vbacks. Processe®mnsumed CPU time by loop-
ing over attempts to create lockd.ocks left lying around because of system crashes had to be manually
removed (normally in a system startup command scriftinally, processes running as system administra-
tor are alvays permitted to create files, so were forced to use a different mechanism. While it is possible to
get around all these problems, the solutions are not straight forward, so a mechanism for locking files has
been added.

The most general schemes allmultiple processes to concurrently update a fikeveral of these
techniques are discussed in [Peterson@3$impler technique is to serialize access to a file with lodks.
attain reasonable fefiency, certain applications require the ability to lock pieces of a file. Locking down to
the byte lgel has been implemented in the Onyx file system by [Basd8ajvever, for the standard sys-
tem applications, a mechanism that locks at the granularity of a file is sufficient.

Locking schemes fall into twdasses, those using hard locks and those using advisory [bbks.
primary diference between advisory locks and hard locks is the extent of enforcefnbiatd lock is
always enforced when a program tries to access a file; an advisory lock is only applied when it is requested
by a program. Thus advisory locks are onlieetive when all programs accessing a file use the locking
scheme. Wh hard locks there must be someemide polioy implemented in thedenel. Wth advisory
locks the polig is left to the user programs. In the UNIX system, programs with system administrator pri
ilege are allwed override ary protection scheme. Because masf the programs that need to use locks
must also run as the system administrat@r chose to implement advisory locks rather than create an addi-
tional protection scheme that was inconsistent with the UNIX philgsopliould not be used by system

SMM:05-12 AFast File System fouNix

administration programs.

The file locking facilities allev cooperating programs to apply advisatyaredor exclusivelocks on
files. Onlyone process may @ an exclusive lock on a file while multiple shared locks may be present.
Both shared andxelusive locks cannot be present on a file at the same tifreey lock is requested when
another process holds axckisive lock, or an gclusive lock is requested when another process holgs an
lock, the lock request will block until the lock can be obtainBdcause shared andctusive locks are
advisory onlyeven if a process has obtained a lock on a file, another process may access the file.

Locks are applied or reraed only on open files. This means that locks can be manipulated without
needing to close and reopen a file. This is useful, famg@le, when a process wishes to apply a shared
lock, read some information and determine whether an update is required, then applysaredock and
update the file.

A request for a lock will cause a process to block if the lock can not be immediately obtained. In cer
tain instances this is unsatisfory For example, a process that wants only to check if a lock is present
would require a separate mechanism to find out this informa@amsequentlya process may specify that
its locking request should return with an error if a lock can not be immediately obtained. Being able to
conditionally request a lock is useful tddemon’ processes that wish to service a spooling aibthe
first instance of the daemon locks the directory where spoolieg takce, later daemon processes can eas-
ily check to see if an ag® daemon gists. Sincdocks exist only while the locking processes exist, lock
files can neer be left active dter the processes exit or if the system crashes.

Almost no deadlock detection is attemptéddhe only deadlock detection done by the system is that
the file to which a lock is applied must not alreadyeha bck of the same type (i.e. the second af tuc-
cessve alls to apply a lock of the same type will fail).

5.3. Symboliclinks

The traditional UNIX file system alles multiple directory entries in the same file system to refer
ence a single fileEach directory entrylinks’’ a file’'s nrame to an inode and its contents. The link concept
is fundamental; inodes do not reside in directories, but exist separately and are referenced Whiamks.
all the links to an inode are remeal, the inode is deallocatedhis style of referencing an inode does not
allow references across ysical file systems, nor does it support inter-machine linkdgeavoid these
limitationssymbolic linkssimilar to the scheme used by Multics [Feiertag7 VeHaen added.

A symbolic link is implemented as a file that contains a pathname. When the system encounters a
symbolic link while interpreting a component of a pathname, the contents of the symbolic link is prepended
to the rest of the pathname, and this name is interpreted to yield the resulting pathmaingX, path-
names are specified relait the root of the file system hieraxctor relative o a pocesss aurrent work-
ing directory Pathnames specified rebai o the root are called absolute pathnameghnames specified
relatve © the current working directory are termed refatpathnames. Ifa gymbolic link contains an
absolute pathname, the absolute pathname is used, otherwise the contents of the symbohelliakeid e
relative o the location of the link in the file hierargch

Normally programs do not want to bevate that there is a symbolic link in a pathname that éhe
using. Havever certain system utilities must be able to detect and manipulate symbolic links. Ttwee ne
system calls prade the ability to detect, read, and write symbolic linksesesystem utilities required
changes to use these calls.

In future Berleley software distributions it may be possible to reference file systems located on
remote machines using pathnames. When this occurs, it will be possible to create symbolic links that span
machines.

5.4. Rename

Programs that create amegersion of an ssting file typically create the meversion as a temporary
file and then rename the temporary file with the name of thettéile. In the old UNIX file system renam-
ing required three calls to the system. If a program were interrupted or the system crashed between these
calls, the target file could be left with only its temporary naffe.diminate this possibility theename
system call has been addethe rename call does the rename operation in a fashion that guarantees the

A Fast File System fouNix SMM:05-13

existence of the target name.

Rename works both on data files and directori®hen renaming directories, the system must do
special validation checks to insure that the directory tree structure is not corrupted by the creation of loops
or inaccessible directories. Such corruption would occur if a parent directory weed mtw one of its
descendants. Thelidation check requires tracing the descendents of the target directory to insure that it
does not include the directory beingved.

5.5. Quotas

The UNIX system has traditionally attempted to share\ailable resources to the greatestemt
possible. Thusry single user can allocate all theadable space in the file system. In certaivieon-
ments this is unacceptabl€onsequentlya quota mechanism has been added for restricting the amount of
file system resources that a user can obtaéire quota mechanism sets limits on both the number of inodes
and the number of disk blocks that a user may allocateeparate quota can be set for each user on each
file system. Resources arevgi both a hard and a soft limit. When a program exceeds a soft limérra w
ing is printed on the users terminal; théeatling program is not terminated unless it exceeds its hard limit.
The idea is that users should stay tetbeir soft limit between login sessions, butytheay use more
resources while tlyeare actvely working. To encourage this beki#or, users are warned when logging in if
they are over any o their soft limits. If usersdils to correct the problem for too nyalogin sessions, tlye
are &entually reprimanded by having their soft limit enforced as their hard limit.

Acknowledgements

We thank Robert Elz for his ongoing interest in thevride system, and for adding disk quotas in a
rational and efficient mannekVe dso acknowledge Dennis Ritchie for his suggestions on the appropriate
modifications to the user intade. V¢ gpreciate Michael Reell's explanations on he the DEMOS file
system worked; may of his ideas were used in this implementation. Special commendation goes to Peter
Kessler and Robert Henry for actingdikeal users during the early dejging stage when file systems were
less stable than thieshould hae teen. Thecriticisms and suggestions by theissvs contributed signifi-
cantly to the coherence of the papEinally we thank our sponsors, the National Science Foundation under
grant MCS80-05144, and the Defense Advance Research ProjectsyADe) under ARR Order No.

4031 monitored by Nal Electronic System Command under Contract No. NO0O039-82-C-0235.

References

[Almes78] AlmesG., and Robertson, G'An Extensible File System for Hydra" Proceedings
of the Third International Conference on Software Engineering, IEEE, May 1978.

[Bass81] Bass]. "Implementatiobescription for File Locking", Onyx Systems Inc, 73 E.
Trimble Rd, San Jose, CA 95131 Jan 1981.

[Feiertag71] Feiertadk. J. and Qganick, E. I., "The Multics Input-Output System", Proceed-
ings of the Third Symposium on Operating Systems Principl€s4,A0ct 1971.
pp 35-41

[Ferrin82a] Ferrin,T.E., "Performance and Rostness Impnements in Version 7 UNIX",
Computer Graphics Laboratory Technical Report 2, School of Phgridaiver-
sity of California, San Francisco, January 19&2esented at the 1982iwier
Usenix Conference, Santa Monica, California.

[Ferrin82b] Ferrin,T.E., "Performance Issuses of VMUNIX Revisited", ;login: (The Usenix
Association Newsletter), Vol 7, #5, Member 1982. pp 3-6

[Kridle83] Kridle, R., and McKusick, M., "Performance Effects of Disk Subsystem Choices

for VAX Systems Running 4.2BSD UNIX", Computer Systems Research Group,

SMM:05-14

[Kowdski78]
[Knuth75]
[Maruyama76]
[Nevalainen77]
[Pechura83]
[Peterson83]
[Powell79]
[Ritchie74]
[Smith81a]
[Smith81b]
[Symbolics81]
[Thompson78]
[Thompson80]
[Trivedi80]

[White80]

AFast File System fouNix

Dept of EECS, Berkele CA 94720, Technical Report #8.

Kowdski, T. "FSCK - The UNIX System Check Program", Bell Laboratéyr-
ray Hill, NJ 07974. March 1978

Kunth, D. "The Art of Computer Programming"”, Volume 3 - Sorting and Search-
ing, Addison-Weslg Publishing Compay Inc, Reading, Mass, 1975. pp 506-549
Maruyama., and Smith, S. "Optimal reganization of Distributed Space Disk
Files", CACM, 19, 11. N© 1976. pp 634-642

Neaainen, O., Vesterinen, M. "Determining Blockingdtors for Sequential
Files by Heuristic Methods", The Computer Journal, 20, 3. Aug 1977. pp 245-247

Pechurd)., and Schodfer, J "Estimating File Access Time of Flop®isks",
CACM, 26, 10. Oct 1983. pp 754-763

Petersog. "ConcurrentReading While Writing", ACM Transactions on Pro-
gramming Languages and Systems, ACM, 5, 1. Jan 1983. pp 46-55

Pavell, M. "The DEMOS File System", Proceedings of the Sixth Symposium on
Operating Systems Principles, ACM, WtOQ77. pp 33-42

Ritchie,D. M. and Thompson, K., "The UNIX Time-Sharing System", CACM 17,
7. July 1974. pp 365-375

SmithA. "Input/OutputOptimization and Disk Architectures: A Ses!/, Perfor
mance and Evaluation 1. Jan 1981. pp 104-117

Smith,A. "Bibliography on Fle and I/O System Optimization and RelateapT
ics", Operating Systems Rewigl5, 4. Oct 1981. pp 39-54

"SymbolicsFile System", Symbolics Inc, 9600 DeSotweA Chatsworth, CA
91311 Aug 1981.

ThompsorkK. "UNIX Implementation”, Bell Systeme€thnical Journal, 57, 6,
part 2. pp 1931-1946 July-August 1978.

ThompsorM. "SpiceFile System”, Carnegie-Mellon Urrsity, Department of
Computer Science, Pittsburgh P5213 #CMU-CS-80, Sept 1980.

Trivedi, K. "Optimal Selection of CPU Speed, Device Capabilities, and File
Assignments"”, Journal of the ACM, 27, 3. July 1980. pp 457-473

White, R. M. "Disk Storage Technology", Scientific American, 243(2), August
1980.

