
CS 318 Principles of Operating Systems
Fall 2022

Prof. Ryan Huang

Lecture 5: Scheduling



Administrivia
Project group
- Fill out the group information form
- If you don’t have a group, let us know ASAP

Lab 1
- Overview session today 7-9 pm at Malone 228

Attend office hours to get help
- Don’t wait until the lab deadline to ask questions
- You can check your design with TAs/instructor before implementation
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Recap: Processes, Threads
Process is the OS abstraction for execution
- own view of machine

Process components
- address space, program counter, registers, open files, etc.
- kernel data structure: Process Control Block (PCB)

Process vs. thread

Process/thread states and APIs
- state graph and queues
- process creation, deletion, waiting

Multiple processes/threads 
- overlapping I/O and CPU activities
- context switch
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Scheduling Overview

The scheduling problem:
- Have 𝐾 jobs ready to run
- Have 𝑁 ≥ 1 CPUs

Policy: which jobs should we assign to which CPU(s), for how long? 
- we’ll refer to schedulable entities as jobs – could be processes, threads, people, etc.

Mechanism: context switch, process state queues
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Scheduling Overview
1. Goals of scheduling

2. Textbook scheduling

3. Priority scheduling 

4. Advanced scheduling topics (not required)
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Scheduling Goals
Scheduling works at two levels in an operating system
- To determine the multiprogramming level – # of jobs loaded into memory

• Moving jobs to/from memory is often called swapping

- To decide what job to run next to guarantee “good service”
• Good service could be one of many different criteria

Known as long-term and short-term scheduling decisions
- Long-term scheduling happens relatively infrequently

• Significant overhead in swapping a process out to disk

- Short-term scheduling happens relatively frequently
• Want to minimize the overhead of scheduling

• Fast context switches, fast queue manipulation
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Scheduling “Non-goal”: Starvation

Starvation is when a process is prevented from making progress 
because some other process has the resource it requires
- Resource could be the CPU, or a lock (recall readers/writers)

Starvation usually a side effect of the sched. algorithm
- A high priority process always prevents a low priority process from running
- One thread always beats another when acquiring a lock

Starvation can be a side effect of synchronization
- Constant supply of readers always blocks out writers
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Scheduling Criteria
Why do we care?
- How do we measure the effectiveness of a scheduling algorithm?
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Scheduling Criteria
Throughput – # of processes that complete per unit time
- # 𝑗𝑜𝑏𝑠/𝑡𝑖𝑚𝑒
- Higher is better

Turnaround time – time for each process to complete
- 𝑇𝑓𝑖𝑛𝑖𝑠ℎ – 𝑇𝑠𝑡𝑎𝑟𝑡
- Lower is better

Response time – time from request to first response
- 𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 – 𝑇𝑟𝑒𝑞𝑢𝑒𝑠𝑡 i.e., , time between waiting→ ready transition and ready→ running

• e.g., key press to echo, not launch to exit

- Lower is better

Above criteria are affected by secondary criteria
- CPU utilization – %𝐶𝑃𝑈 fraction of time CPU doing productive work
- Waiting time – 𝐴𝑣𝑔(𝑇𝑤𝑎𝑖𝑡) time each process waits in the ready queue
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What Criterial Should We Use?
Batch systems
- Strive for job throughput, turnaround time (supercomputers)

Interactive systems
- Strive to minimize response time for interactive jobs (PC)

• Utilization and throughput are often traded off for better response time

Usually optimize average measure
- Sometimes also optimize for min/max or variance

• e.g., minimize the maximum response time
• e.g., users prefer predictable response time over faster but highly variable response time
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When Do We Schedule CPU? 

Scheduling decisions may take place when a process:
Switches from running to waiting state
Switches from running to ready state
Switches from new/waiting to ready
Exits

Non-preemptive schedules use     &     only

Preemptive schedulers run at all four points
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Scheduling Overview
1. Goals of scheduling

2. Textbook scheduling

3. Priority scheduling 

4. Advanced scheduling topics (not required)
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Example: FCFS Scheduling
Run jobs in order that they arrive
- Called “First-come first-served” (FCFS)
- E.g., Say P1 needs 24 sec, while P2 and P3 need 3.
- Say P2, P3 arrived immediately after P1, get:

Throughput:

Turnaround Time:
- Average TT: (24 + 27 + 30) / 3 = 27

Waiting Time:
- Average WT: (0 + 24 + 27) / 3 = 17

Can we do better?

9/15/22 CS 318 – Lecture 5 – Scheduling 13

P1 P2 P3

0 24 27 30

3 jobs / 30 sec = 0.1 jobs/sec

P1 : 24, P2 : 27, P3 : 30

P1 : 0, P2 : 24, P3 : 27



FCFS Continued
Suppose we scheduled P2, P3, then P1
- Would get:

Throughput:

Turnaround Time:
- Average TT: (30 + 3 + 6) / 3 = 13 – much less than 27

Lesson: scheduling algorithm can reduce TT
- Minimizing waiting time can improve RT and TT

Can a scheduling algorithm improve throughput?
- Yes, if jobs require both computation and I/O
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Scheduling Jobs with Computation & I/O (1)

Can a scheduling algorithm improve throughput?
- Yes, if jobs require both computation and I/O

CPU is one of several devices needed by users’ jobs
- CPU runs compute jobs, Disk drive runs disk jobs, etc.
- With network, part of job may run on remote CPU

Scheduling 1-CPU system with n	I/O devices like scheduling 
asymmetric (n	+	1)-CPU multiprocessor
- Result: all I/O devices + CPU busy è (n	+	1)-fold throughput gain!
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Scheduling Jobs with Computation & I/O (2)

Example: disk-bound grep + CPU-bound matrix_multiply
- Overlap them just right, throughput will be almost doubled
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FCFS Limitations
FCFS algorithm is non-preemptive in nature
- Once CPU time has been allocated to a process, other processes can get CPU 

time only after the current process has finished or gets blocked. 

This property of FCFS scheduling is called Convoy Effect
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Shortest Job First (SJF)
Shortest Job First (SJF)
- Choose the job with the smallest expected CPU burst

• Person with smallest # of items in shopping cart checks out first

Example
- Three jobs available, CPU bursts are P1 8 sec, P2 4 sec, P3 2 sec

9/15/22 CS 318 – Lecture 5 – Scheduling 18
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0 2 6 14
Average Waiting Time: (0 + 2 + 6) / 3 = 2.67



SJF Has Optimal Average Waiting Time
SJF has provably optimal minimum average waiting time (AWT)

Previous example: P1 8 sec, P2 4 sec, P3 2 sec
- How many possible schedules?
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P1 P2 P3schedule 1

P1 P2P3schedule 2

P1P2 P3schedule 3

P1P2 P3schedule 4

P1 P2P3schedule 5

P1P2P3SJF

AWT = (0+8+12)/3 = 6.67

AWT = (0+4+6)/3 = 3.33

AWT = (0+2+10)/3 = 4

AWT = (0+2+6)/3 = 2.67

AWT = (0+4+12)/3 = 5.33

AWT = (0+8+10)/3 = 6



Shortest Job First (SJF)
Two schemes
- Non-preemptive – once CPU given to the process it cannot be preempted until 

completes its CPU burst
- Preemptive – if a new process arrives with CPU burst length less than remaining 

time of current executing process, preempt current process
• Known as the Shortest-Remaining-Time-First or SRTF
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Examples

Non-preemptive 

Preemptive
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SJF Limitations

Can potentially lead to unfairness or starvation

Impossible to know size of CPU burst ahead of time
- Like choosing person in line without looking inside cart 

How can you make a reasonable guess?
- Estimate CPU burst length based on past
- E.g., exponentially weighted average

• 𝑡! actual length of process’s 𝑛"# CPU burst
• 𝜏!$% estimated length of proc’s (𝑛 + 1)&" CPU burst
• Choose parameter 𝛼 where 0 < 𝛼 ≤ 1 , e.g., 𝛼 = 0.5
• Let 𝜏!$% = 𝛼𝑡! + (1 − 𝛼)𝜏!
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Exp. Weighted Average Example
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Round Robin (RR)

Solution to fairness and starvation
- Each job is given a time slice called a quantum
- Preempt job after duration of quantum
- When preempted, move to back of FIFO queue

Advantages:
- Fair allocation of CPU across jobs
- Low average waiting time when job lengths vary
- Good for responsiveness if small number of jobs

Disadvantages?
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RR Disadvantages
Context switches are frequent and need to be very fast

Varying sized jobs are good ...what about same-sized jobs?

Assume 2 jobs of time=100 each:

Even if context switches were free...
- What would average turnaround time be with RR?
- How does that compare to FCFS?
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Time Quantum 

How to pick quantum?
- Want much larger than context switch cost
- Majority of bursts should be less than quantum
- But not so large system reverts to FCFS

Typical values: 1–100 msec
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Scheduling Overview
1. Goals of scheduling

2. Textbook scheduling

3. Priority scheduling 

4. Advanced scheduling topics (not required)
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Priority Scheduling
Priority Scheduling
- Associate a numeric priority with each process

• E.g., smaller number means higher priority (Unix/BSD)
• Or smaller number means lower priority (Pintos)

- Give CPU to the process with highest priority
• Airline check-in for first class passengers
• Can be done preemptively or non-preemptively

- Can implement SJF, priority = 1/(expected CPU burst)

Problem: starvation – low priority jobs can wait indefinitely

Solution? “Age” processes
- Increase priority as a function of waiting time
- Decrease priority as a function of CPU consumption
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Priority Inversion (1)
Caveat using Priority Scheduling w/ Synch Primitives
- Priority scheduling Rule

1) Always pick highest-priority thread 
2) …unless a lower-priority thread is holding a resource the highest-priority thread wants to 

get

- Potential Priority Inversion Problem

Two tasks: H at high priority, L at low priority
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Priority Inversion (2)
Two tasks: H at high priority, L at low priority
- L acquires lock k for exclusive use of a shared resource R
- If H tries to acquire k, blocked until L release resource R
- M enters system at medium priority, preempts L

• L unable to release R in time, H unable to run, despite having higher priority than M

Not just a hypothetical issue, it happened in real-world software!
- The root cause for a famous Mars PathFinder failure in 1997
- low-priority data gathering task and a medium-priority communications task 

prevented the critical bus management task from running
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Solution: Priority Donation

“Donate” our priority if we get blocked
- Whenever a high-priority task has to wait for some shared resource that 

currently held by an executing low priority task,
- the low-priority task is temporarily assigned the priority of the highest waiting 

priority task for the duration of its use of the shared resource

Why this helps?
- Since the low-priority task gets temporarily boosted priority, it keeps medium 

priority tasks from pre-empting the (originally) low priority task
- Once resource released, low-priority task continues at its original priority
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Priority Donation Example
Say higher number = higher priority (like Pintos)

Example 1: L (prio 2), M (prio 4), H (prio 8)
- L holds lock k
- M waits on k, L’s priority raised to L1 = max(M; L) = 4
- Then H waits on k, L’s priority raised to max(H; L1) = 8

Example 2: Same L, M , H as above
- L holds lock k, M holds lock k2
- M waits on k, L’s priority now L1 = 4 (as before)
- Then H waits on k2

• M’ s priority goes to M1 = max(H; M) = 8, and L’s priority raised to max(M1; L1) = 8

Pintos Lab 1 Exercise 2.2
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Combining Algorithms
Different types of jobs have different preferences
- Interactive, CPU-bound, batch, system, etc.
- Hard to use one size to fit all

Combining scheduling algorithms to optimize for multiple 

objectives
- Have multiple queues
- Use a different algorithm for each queue
- Move processes among queues

Example: Multiple-level feedback queues (MLFQ)
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Multiple-level feedback queues (MLFQ)
Developed by Fernando J. Corbató in 1962
- Corbató received the 1990 Turing Award for this work and other work in Multics

Widely used in mainstream OSes: Unix, BSD, Windows, MacOS

You’ll get hands-on experience with it in Lab 1 J

Idea:
- Multiple queues representing different job types
- Queues w/ priorities: jobs in higher-priority queue preempt jobs lower-priority queue
- Jobs on same queue use the same scheduling algorithm, typically RR
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Multilevel Queue Scheduling
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MLFQ

Goal #1: Optimize job turnaround time for “batch” jobs

Goal #2: Minimize response time for “interactive” jobs

Challenge:
- No a priori knowledge of what type a job is, what the next burst is, etc.
- Let a job tells us its “niceness” (priority)?

Idea:
- Change a process’s priority based on how it behaves in the past (history “feedback”)
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MLFQ: How to Change Priority Over Time?

Attempt
- Rule A: Processes start at top priority
- Rule B: If job uses whole slice, demote process

• i.e., longer time slices at lower priorities

- Example 1: A long-running “batch” job

9/15/22 CS 318 – Lecture 5 – Scheduling 37

0 5 10 15 20

Q3
Q2

Q1
Q0



120 140 160 180 200

Q3
Q2

Q1

Q0

MLFQ: How to Change Priority Over Time?

Attempt
- Rule A: Processes start at top priority
- Rule B: If job uses whole slice, demote process

• i.e., longer time slices at lower priorities

- Example 1: A long-running “batch” job
- Example 2: An “interactive” job comes along
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MLFQ: How to Change Priority Over Time?
Attempt
- Rule A: Processes start at top priority
- Rule B: If job uses whole slice, demote process

Problems:
- unforgiving + starvation
- gaming the system

• E.g., performing I/O right before time-slice ends
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MLFQ: How to Change Priority Over Time?
Attempt
- Rule A: Processes start at top priority
- Rule B: If job uses whole slice, demote process

Problems:
- unforgiving + starvation
- gaming the system

Fixing the problems:
- Periodically boost priority for jobs that haven’t been scheduled
- Account for job’s total run time at priority level (instead of just this time slice)
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MLFQ in BSD

Every runnable process on one of 32 run queues
- Kernel runs process on highest-priority non-empty queue
- Round-robins among processes on same queue

Process priorities dynamically computed
- Processes moved between queues to reflect priority changes

Favor interactive jobs that use less CPU
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Process Priority Calculation in BSD

p_estcpu – per-process estimated CPU usage

p_nice – user-settable weighting factor, value range [-20, 20]

Process priority p_usrpri
-

- Calculated every 4 ticks, values are bounded to [50, 127]

How to calculate p_estcpu ?
- Incremented whenever timer interrupt found process running
- Decayed every second while process runnable

- Load is sampled average of length of run queue plus short-term sleep queue over last minute
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𝑝_𝑒𝑠𝑡𝑐𝑝𝑢 ←
2 ∗ 𝑙𝑜𝑎𝑑

2 ∗ 𝑙𝑜𝑎𝑑 + 1
∗ 𝑝_𝑒𝑠𝑡𝑐𝑝𝑢 + 𝑝_𝑛𝑖𝑐𝑒

𝑝_𝑢𝑠𝑟𝑝𝑟𝑖 ← 50 +
𝑝_𝑒𝑠𝑡𝑐𝑝𝑢

4 + 2 ∗ 𝑝_𝑛𝑖𝑐𝑒
Rationale: decrease priority 
linearly based on recent CPU 



Pintos Notes
Same basic idea for second half of Lab 1
- But 64 priorities, not 128
- Higher numbers mean higher priority (in BSD, higher num means lower prio)
- Okay to have only one run queue if you prefer (less efficient, but we won’t 

deduct points for it)

Have to negate priority equation:
- Formula in BSD

- Formula in Pintos
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Scheduling Overview
1. Goals of scheduling

2. Textbook scheduling

3. Priority scheduling 

4. Advanced scheduling topics
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Multiprocessor Scheduling Issues

Must decide on more than which processes to run
- Must decide on which CPU to run which process

Moving between CPUs has costs
- More cache misses, depending on arch. more TLB misses too

Affinity scheduling—try to keep process/thread on same CPU

- But also prevent load imbalances
- Do cost-benefit analysis when deciding to migrate...affinity can also be harmful, particularly when tail latency is critical
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Multiprocessor Scheduling (cont)
Want related processes/threads scheduled together
- Good if threads access same resources (e.g., cached files)
- Even more important if threads communicate often, otherwise must context 

switch to communicate

Gang scheduling—schedule all CPUs synchronously
- With synchronized quanta, easier to schedule related processes/threads 

together
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Real-time Scheduling 
Two categories:
- Soft real time—miss deadline and CD will sound funny
- Hard real time—miss deadline and plane will crash

System must handle periodic and aperiodic events
- E.g., processes A, B, C must be scheduled every 100, 200, 500 msec, require 

50, 30, 100 msec respectively

- Schedulable if ∑ !"#
"$%&'(

≤ 1

Variety of scheduling strategies
- E.g., first deadline first (works if schedulable, otherwise fails spectacularly)
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Scheduling Summary

Scheduling algorithm determines which process runs, quantum, priority…

Many potential goals of scheduling algorithms
- Utilization, throughput, wait time, response time, etc.

Various algorithms to meet these goals
- FCFS/FIFO, SJF, RR, Priority

Can combine algorithms
- Multiple-Level Feedback Queues (MLFQ)

Advanced topics
- affinity scheduling, gang scheduling, real-time scheduling

9/15/22 CS 318 – Lecture 5 – Scheduling 49



Next Time
Read Chapter 26, 27
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