
CS 318 Principles of Operating Systems
Fall 2022

Prof. Ryan Huang

Lecture 3: Processes

Administrivia
Lab 0
- Due this Thursday
- Done individually (cannot share with or copy from your to-be-teammates)

Find your project group member soon
- So you can get started with Lab 1 without delay
- Fill out Google form of group info

9/6/22 CS 318 – Lecture 3 – Processes 2

Recap: Architecture Support for OS
Manipulating privileged machine state
- CPU protection: dual-mode operation, protected instructions
- Memory protection: MMU, virtual address

Generating and handling “events”
- Interrupt, syscall, trap
- Interrupt controller, IVT
- Fix fault vs. notify proceed

Mechanisms to handle concurrency
- Interrupts, atomic instructions

9/6/22 CS 318 – Lecture 3 – Processes 3

Unexpected Deliberate
Exceptions (sync) fault syscall trap
Interrupts (async) interrupt software interrupt

Overview

Today’s topics are processes and process management
- What are the units of execution?
- How are those units of execution represented in the OS?
- How is work scheduled in the CPU?
- What are the possible execution states of a process?
- How does a process move from one state to another?

9/6/22 CS 318 – Lecture 3 – Processes 4

OS abstraction?

Process Abstraction
The process is the OS abstraction for CPU (execution)
- It is the unit of execution
- It is the unit of scheduling
- It is the dynamic execution context of a program
- Sometimes also called a job or a task

A process is a program in execution
- It defines the sequential, instruction-at-a-time execution of a program
- Programs are static entities with the potential for execution

9/6/22 CS 318 – Lecture 3 – Processes 5

How Should the OS Manage Processes?

9/6/22 CS 318 – Lecture 3 – Processes 6

CPU

OS

vim

Chrome iTunes

GCC

Pick me!Pick me!

Pick me!Pick me!

???

Simple Process Management: One-at-a-time

Uniprogramming: a process runs from start to full completion
- What the early batch operating system does
- Load a job from disk (tape) into memory, execute it, unload the job
- Problem: low utilization of hardware

• an I/O-intensive process would spend most of its time waiting for punched cards to be read
• CPU is wasted
• computers were very expensive back then

9/6/22 CS 318 – Lecture 3 – Processes 7

circa 1960s

Simple Process Management: One-at-a-time

Uniprogramming: a process runs from start to full completion
- What the early batch operating system does
- Load a job from disk (tape) into memory, execute it, unload the job
- Problem: low utilization of hardware

• an I/O-intensive process would spend most of its time waiting for punched cards to be read
• CPU is wasted
• computers were very expensive back then

9/6/22 CS 318 – Lecture 3 – Processes 8

circa 1960s

Multiple Processes
Modern OSes run multiple processes simultaneously

9/6/22 CS 318 – Lecture 3 – Processes 9

Multiple Processes
Modern OSes run multiple processes simultaneously

Examples (can all run simultaneously):
- gcc file_A.c – compiler running on file A
- gcc file_B.c – compiler running on file B
- vim – text editor
- firefox – web browser

Non-examples (implemented as one process):
- Multiple firefox or tmux windows (still one process)

9/6/22 CS 318 – Lecture 3 – Processes 10

Multiprogramming (Multitasking)
Multiprogramming: run more than one process at a time
- Multiple processes loaded in memory and available to run
- If a process is blocked in I/O, select another process to run on CPU
- Different hardware components utilized by different tasks at the same time

Why multiple processes (multiprogramming)?
- Advantages: increase utilization & speed

• higher throughput
• lower latency

9/6/22 CS 318 – Lecture 3 – Processes 11

Increased Utilization & Speed
Multiple processes can increase CPU utilization
- Overlap one process’s computation with another’s wait

Multiple processes can reduce latency
- Running A then B requires 100 sec for B to complete

- Running A and B concurrently makes B finish faster

- A is slower than if it had whole machine to itself, but still < 100 sec unless both A and
B completely CPU-bound

9/6/22 CS 318 – Lecture 3 – Processes 12

vim

gcc

wait for input wait for input

A B
80s 20s

A
B

Kernel’s View of Processes

9/6/22 CS 318 – Lecture 3 – Processes 13

Process Components
A process contains all state for a program in execution
- An address space
- The code for the executing program
- The data for the executing program
- An execution stack encapsulating the state of procedure calls
- The program counter (PC) indicating the next instruction
- A set of general-purpose registers with current values
- A set of operating system resources

• Open files, network connections, etc.

9/6/22 CS 318 – Lecture 3 – Processes 14

Process Address Space

9/6/22 CS 318 – Lecture 3 – Processes 15

Stack

0x00000000

0xFFFFFFFF

Code
(Text Segment)

Static Data
(Data Segment)

Heap
(Dynamic Memory Alloc)

Address
Space

SP

PC

A Process’s View of the World
Each process has own view of machine
- Its own address space
- Its own virtual CPU
- Its own open files

*(char *)0xc000 means different thing in P1 & P2

Simplifies programming model
- gcc does not care that firefox is running

9/6/22 CS 318 – Lecture 3 – Processes 16

Naming A Process
A process is named using its process ID (PID)

9/6/22 CS 318 – Lecture 3 – Processes 17

Inter-Process Communication (IPC)
Sometimes want interaction between processes
- Simplest is through files: vim edits file, gcc compiles it
- More complicated: Shell/command, Window manager/app.

How can processes interact in real time?

9/6/22 CS 318 – Lecture 3 – Processes 18

Inter-Process Communication (IPC)

How can processes interact in real time?
- (a) By passing messages through the kernel
- (b) By sharing a region of physical memory
- (c) Through asynchronous signals or alerts

9/6/22 CS 318 – Lecture 3 – Processes 19

Implementing Process
A data structure for each process: Process Control Block

(PCB)
- Contains all the info about a process

Tracks state of the process
- Running, ready (runnable), waiting, etc.

PCB includes information necessary for execution
- Registers, virtual memory mappings, open files, etc.
- PCB is also maintained when the process is not running (why?)

Various other data about the process
- Credentials (user/group ID), signal mask, priority, accounting, etc.

Process is a heavyweight abstraction!
9/6/22 CS 318 – Lecture 3 – Processes 20

struct proc (Solaris)
/*
* One structure allocated per active process. It contains all
* data needed about the process while the process may be swapped
* out. Other per-process data (user.h) is also inside the proc structure.
* Lightweight-process data (lwp.h) and the kernel stack may be swapped out.
*/
typedef struct proc {

/*
* Fields requiring no explicit locking
*/
struct vnode *p_exec; /* pointer to a.out vnode */
struct as *p_as; /* process address space pointer */
struct plock *p_lockp; /* ptr to proc struct's mutex lock */
kmutex_t p_crlock; /* lock for p_cred */
struct cred *p_cred; /* process credentials */
/*
* Fields protected by pidlock
*/
int p_swapcnt; /* number of swapped out lwps */
char p_stat; /* status of process */
char p_wcode; /* current wait code */
ushort_t p_pidflag; /* flags protected only by pidlock */
int p_wdata; /* current wait return value */
pid_t p_ppid; /* process id of parent */
struct proc *p_link; /* forward link */
struct proc *p_parent; /* ptr to parent process */
struct proc *p_child; /* ptr to first child process */
struct proc *p_sibling; /* ptr to next sibling proc on chain */
struct proc *p_psibling; /* ptr to prev sibling proc on chain */
struct proc *p_sibling_ns; /* prt to siblings with new state */
struct proc *p_child_ns; /* prt to children with new state */
struct proc *p_next; /* active chain link next */
struct proc *p_prev; /* active chain link prev */
struct proc *p_nextofkin; /* gets accounting info at exit */
struct proc *p_orphan;
struct proc *p_nextorph;

9/6/22 CS 318 – Lecture 3 – Processes 21

p_pglink; / process group hash chain link next */
struct proc *p_ppglink; /* process group hash chain link prev */
struct sess *p_sessp; /* session information */
struct pid *p_pidp; /* process ID info */
struct pid *p_pgidp; /* process group ID info */
/*
* Fields protected by p_lock
*/
kcondvar_t p_cv; /* proc struct's condition variable */
kcondvar_t p_flag_cv;
kcondvar_t p_lwpexit; /* waiting for some lwp to exit */
kcondvar_t p_holdlwps; /* process is waiting for its lwps */

/* to to be held. */
ushort_t p_pad1; /* unused */
uint_t p_flag; /* protected while set. */

/* flags defined below */
clock_t p_utime; /* user time, this process */

clock_t p_stime; /* system time, this process */
clock_t p_cutime; /* sum of children's user time */

clock_t p_cstime; /* sum of children's system time */
caddr_t *p_segacct; /* segment accounting info */

caddr_t p_brkbase; /* base address of heap */
size_t p_brksize; /* heap size in bytes */

/*
* Per process signal stuff.

*/
k_sigset_t p_sig; /* signals pending to this process */

k_sigset_t p_ignore; /* ignore when generated */

k_sigset_t p_siginfo; /* gets signal info with signal */
struct sigqueue *p_sigqueue; /* queued siginfo structures */

struct sigqhdr *p_sigqhdr; /* hdr to sigqueue structure pool */
struct sigqhdr *p_signhdr; /* hdr to signotify structure pool */

uchar_t p_stopsig; /* jobcontrol stop signal */

struct proc (Solaris) (2)

9/6/22 CS 318 – Lecture 3 – Processes 22

/*

* Microstate accounting, resource usage, and real-time profiling
*/

hrtime_t p_mstart; /* hi-res process start time */
hrtime_t p_mterm; /* hi-res process termination time */

hrtime_t p_mlreal; /* elapsed time sum over defunct lwps */
hrtime_t p_acct[NMSTATES]; /* microstate sum over defunct lwps */

struct lrusage p_ru; /* lrusage sum over defunct lwps */
struct itimerval p_rprof_timer; /* ITIMER_REALPROF interval timer */

uintptr_t p_rprof_cyclic; /* ITIMER_REALPROF cyclic */
uint_t p_defunct; /* number of defunct lwps */

/*
* profiling. A lock is used in the event of multiple lwp's

* using the same profiling base/size.

*/
kmutex_t p_pflock; /* protects user profile arguments */

struct prof p_prof; /* profile arguments */

/*
* The user structure

*/
struct user p_user; /* (see sys/user.h) */

/*

* Doors.
*/

kthread_t *p_server_threads;
struct door_node *p_door_list; /* active doors */

struct door_node *p_unref_list;
kcondvar_t p_server_cv;

char p_unref_thread; /* unref thread created */

/*

* Special per-process flag when set will fix misaligned memory
* references.

*/
char p_fixalignment;

/*

* Per process lwp and kernel thread stuff
*/

id_t p_lwpid; /* most recently allocated lwpid */
int p_lwpcnt; /* number of lwps in this process */

int p_lwprcnt; /* number of not stopped lwps */
int p_lwpwait; /* number of lwps in lwp_wait() */

int p_zombcnt; /* number of zombie lwps */

int p_zomb_max; /* number of entries in p_zomb_tid */
id_t *p_zomb_tid; /* array of zombie lwpids */

kthread_t *p_tlist; /* circular list of threads */
/*

* /proc (process filesystem) debugger interface stuff.
*/

k_sigset_t p_sigmask; /* mask of traced signals (/proc) */
k_fltset_t p_fltmask; /* mask of traced faults (/proc) */

struct vnode *p_trace; /* pointer to primary /proc vnode */
struct vnode *p_plist; /* list of /proc vnodes for process */

kthread_t *p_agenttp; /* thread ptr for /proc agent lwp */
struct watched_area *p_warea; /* list of watched areas */

ulong_t p_nwarea; /* number of watched areas */
struct watched_page *p_wpage; /* remembered watched pages (vfork) */

int p_nwpage; /* number of watched pages (vfork) */
int p_mapcnt; /* number of active pr_mappage()s */

struct proc *p_rlink; /* linked list for server */
kcondvar_t p_srwchan_cv;

size_t p_stksize; /* process stack size in bytes */

struct proc (Solaris) (3)

9/6/22 CS 318 – Lecture 3 – Processes 23

/*

* protects unmapping and initilization of robust locks.
*/

kmutex_t p_lcp_mutexinitlock;
utrap_handler_t *p_utraps; /* pointer to user trap handlers */

refstr_t *p_corefile; /* pattern for core file */

#if defined(__ia64)
caddr_t p_upstack; /* base of the upward-growing stack */

size_t p_upstksize; /* size of that stack, in bytes */
uchar_t p_isa; /* which instruction set is utilized */

#endif
void *p_rce; /* resource control extension data */

struct task *p_task; /* our containing task */

struct proc *p_taskprev; /* ptr to previous process in task */
struct proc *p_tasknext; /* ptr to next process in task */

int p_lwpdaemon; /* number of TP_DAEMON lwps */
int p_lwpdwait; /* number of daemons in lwp_wait() */

kthread_t **p_tidhash; /* tid (lwpid) lookup hash table */
struct sc_data *p_schedctl; /* available schedctl structures */

} proc_t;

/*
* Kernel probes

*/
uchar_t p_tnf_flags;

/*

* C2 Security (C2_AUDIT)
*/

caddr_t p_audit_data; /* per process audit structure */
kthread_t *p_aslwptp; /* thread ptr representing "aslwp" */

#if defined(i386) || defined(__i386) || defined(__ia64)
/*

* LDT support.

*/
kmutex_t p_ldtlock; /* protects the following fields */

struct seg_desc *p_ldt; /* Pointer to private LDT */
struct seg_desc p_ldt_desc; /* segment descriptor for private LDT */

int p_ldtlimit; /* highest selector used */
#endif

size_t p_swrss; /* resident set size before last swap */
struct aio *p_aio; /* pointer to async I/O struct */

struct itimer **p_itimer; /* interval timers */
k_sigset_t p_notifsigs; /* signals in notification set */

kcondvar_t p_notifcv; /* notif cv to synchronize with aslwp */
timeout_id_t p_alarmid; /* alarm's timeout id */

uint_t p_sc_unblocked; /* number of unblocked threads */
struct vnode *p_sc_door; /* scheduler activations door */

caddr_t p_usrstack; /* top of the process stack */
uint_t p_stkprot; /* stack memory protection */

model_t p_model; /* data model determined at exec time */
struct lwpchan_data *p_lcp; /* lwpchan cache */

Process State
A process has an execution state to indicate what it is doing

Running: Executing instructions on the CPU
- It is the process that has control of the CPU
- How many processes can be in the running state simultaneously?

Ready (runnable): Waiting to be assigned to the CPU
- Ready to execute, but another process is executing on the CPU

Waiting: Waiting for an event, e.g., I/O completion
- It cannot make progress until event is signaled (disk completes)

9/6/22 CS 318 – Lecture 3 – Processes 24

Transition of Process State
As a process executes, it moves from state to state
- Unix ps: STAT column indicates execution state
- What state do you think a process is in most of the time?
- How many processes can a system support?

9/6/22 CS 318 – Lecture 3 – Processes 25

Process State Graph

9/6/22 CS 318 – Lecture 3 – Processes 26

New Ready

Running

Waiting

Terminated

Create
Process

Process
Exit

I/O wait,
etc.

I/O Done

Schedule
ProcessInterrupt

State Queues
How does the OS keep track of processes?

Naïve approach: process list
- How to find out processes in the ready state?

• Iterate through the list

- Problem: slow!

Improvement: partition list based on states
- OS maintains a collection of queues that represent the state of all processes
- Typically, one queue for each state: ready, waiting, etc.
- Each PCB is queued on a state queue according to its current state
- As a process changes state, its PCB is moved from one queue into another

9/6/22 CS 318 – Lecture 3 – Processes 27

State Queues

9/6/22 CS 318 – Lecture 3 – Processes 28

Firefox PCB X Server PCB Idle PCB

Vim PCB

Ready Queue

Disk I/O Queue

Console Queue

Sleep Queue
.

.

.

ls PCB

There may be many wait queues, one for each
type of wait (disk, console, timer, network, etc.)

Questions?

9/6/22 CS 318 – Lecture 3 – Processes 29

Scheduling
Which process should kernel run?
- if 0 runnable, run idle loop (or halt CPU), if 1 runnable, run it
- if >1 runnable, must make scheduling decision

Scan process table for first runnable?
- Expensive. Unfairness (small pids do better)

FIFO?
- Put tasks on back of list, pull them from front:
- Pintos does this—see ready_list in thread.c

Priority?

Discuss in later lecture in detail
9/6/22 CS 318 – Lecture 3 – Processes 30

Preemption
When to trigger a process scheduling decision?
- Yield control of CPU

• voluntarily, e.g., sched_yield
• system call, page fault, illegal instruction, etc.

- Preemption

Periodic timer interrupt
- If running process used up quantum, schedule another

Device interrupt
- Disk request completed, or packet arrived on network
- Previously waiting process becomes runnable

9/6/22 CS 318 – Lecture 3 – Processes 31

Preemption à Context Switch
Changing running process is called a context switch
- CPU hardware state is changed from one to another
- This can happen 100 or 1000 times a second!

9/6/22 CS 318 – Lecture 3 – Processes 32

Context Switch

9/6/22 CS 318 – Lecture 3 – Processes 33

Context Switch Details
Very machine dependent. Typical things include:
- Save program counter and integer registers (always)
- Save floating point or other special registers
- Save condition codes
- Change virtual address translations

Non-negligible cost
- Save/restore floating point registers expensive

• Optimization: only save if process used floating point

- May require flushing TLB (memory translation hardware)

Usually causes more cache misses (switch working sets)

9/6/22 CS 318 – Lecture 3 – Processes 34

Questions?

9/6/22 CS 318 – Lecture 3 – Processes 35

User’s (Programmer’s) View of
Processes

9/6/22 CS 318 – Lecture 3 – Processes 36

Process-Related System Calls
Allow a program to create a child process

9/6/22 CS 318 – Lecture 3 – Processes 37

Creating a Process
A process is created by another process
- Parent is creator, child is created (Unix: ps “PPID” field)
- What creates the first process (Unix: init (PID 0 or 1))?

Parent defines resources and privileges for its children
- Unix: Process User ID is inherited – children of your shell execute with your

privileges

After creating a child
- the parent may either wait for it to finish its task or continue in parallel

9/6/22 CS 318 – Lecture 3 – Processes 38

Process Creation: Windows
The system call on Windows for creating a process is called,

surprisingly enough, CreateProcess:

BOOL CreateProcess(char *prog, char *args) (simplified)

CreateProcess
1. Creates and initializes a new PCB
2. Creates and initializes a new address space
3. Loads the program specified by “prog” into the address space
4. Copies “args” into memory allocated in address space
5. Initializes the saved hardware context to start execution at main (or as

specified)
6. Places the PCB on the ready queue

9/6/22 CS 318 – Lecture 3 – Processes 39

9/6/22 CS 318 – Lecture 3 – Processes 40

Process Creation: Unix
In Unix, processes are created using fork()

int fork()

fork()
1. Creates and initializes a new PCB
2. Creates a new address space
3. Initializes the address space with a copy of the address space of the parent
4. Initializes the kernel resources to point to the parent’s resources (e.g., open

files)
5. Places the PCB on the ready queue

Fork returns twice
- Huh?
- Returns the child’s PID to the parent, “0” to the child

9/6/22 CS 318 – Lecture 3 – Processes 41

9/6/22 CS 318 – Lecture 3 – Processes 42

fork()

9/6/22 CS 318 – Lecture 3 – Processes 43

What does this program print?

#include <stdio.h>
#include <unistd.h>
int main(int argc, char *argv[])
{
char *name = argv[0];
int child_pid = fork();
if (child_pid == 0) {
printf("Child of %s is %d\n", name, getpid());
return 0;

} else {
printf("My child is %d\n", child_pid);
return 0;

}
}

Example Output
$ gcc -o fork fork.c

$./fork

My child is 486

Child of ./fork is 486

9/6/22 CS 318 – Lecture 3 – Processes 44

Duplicating Address Spaces

9/6/22 CS 318 – Lecture 3 – Processes 45

child_pid = fork();

if (child_pid == 0) {

printf("child");

} else {

printf("parent");

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

printf("child");

} else {

printf("parent");

}

PC

child_pid = 486 child_pid = 0

PC

The hardware contexts stored in the PCBs of the two processes will be
identical, meaning the EIP register will point to the same instruction

Divergence

9/6/22 CS 318 – Lecture 3 – Processes 46

child_pid = fork();

if (child_pid == 0) {

printf("child");

} else {

printf("parent");

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

printf("child");

} else {

printf("parent");

}

PC

child_pid = 486 child_pid = 0

PC

Example Continued
$ gcc -o fork fork.c

$./fork

My child is 486

Child of ./fork is 486

$./fork

Child of ./fork is 498

My child is 498

Why is the output in a different order?

9/6/22 CS 318 – Lecture 3 – Processes 47

Process Creation: Unix (2)
Wait a second. How do we actually start a new program?

int execv(char *prog, char *argv[])
int execve(const char *filename, char *const argv[], char *const envp[])

execv()
1. Stops the current process
2. Loads the program “prog” into the process’ address space
3. Initializes hardware context and args for the new program
4. Places the PCB onto the ready queue
- Note: It does not create a new process

What does it mean for exec to return?

Warning: Pintos exec more like combined fork/exec

9/6/22 CS 318 – Lecture 3 – Processes 48

Why fork()?
Most calls to fork followed by exec
- could also combine into one spawn system call

Very useful when the child…
- Is cooperating with the parent
- Relies upon the parent’s data to accomplish its task

Example: web server

9/6/22 CS 318 – Lecture 3 – Processes 49

while (1) {
int sock = accept();
if ((child_pid = fork()) == 0) {
// Handle client request

} else {
// Close socket

}
}

Why fork()?
Most calls to fork followed by exec
- could also combine into one spawn system call

Very useful when the child…
- Is cooperating with the parent
- Relies upon the parent’s data to accomplish its task

Example: web server

Example: shell

9/6/22 CS 318 – Lecture 3 – Processes 50

minish.c (simplified)

9/6/22 CS 318 – Lecture 3 – Processes 51

pid_t pid; char **av;
void doexec () {
execvp (av[0], av);
perror (av[0]);
exit (1);

}
/* ... main loop: */
for (;;) {
parse_next_line_of_input (&av, stdin);
switch (pid = fork ()) {
case -1:
perror ("fork"); break;

case 0:
doexec ();

default:
waitpid (pid, NULL, 0); break;

}
}

https://www.cs.jhu.edu/~huang/cs318/fall22/code/minish.c

~/318 $ gcc -o minish minish.c
~/318 $./minish
$ date
Wed Aug 26 08:39:26 EDT 2021
$ /usr/bin/vim --version
VIM - Vi IMproved 8.1 (2018 May
18, compiled Jun 5 2020 21:30:37)
macOS version
…

https://www.cs.jhu.edu/~huang/cs318/fall22/code/minish.c

Why fork()?
Most calls to fork followed by exec
- could also combine into one spawn system call

Very useful when the child…
- Is cooperating with the parent
- Relies upon the parent’s data to accomplish its task

Real win is simplicity of interface
- Tons of things you might want to do to child:

• manipulate file descriptors, set environment variables, reduce privileges, ...

- Yet fork requires no arguments at all

9/6/22 CS 318 – Lecture 3 – Processes 52

redirsh.c

9/6/22 CS 318 – Lecture 3 – Processes 53

void doexec (void) {
int fd;
if (infile) {/* non-NULL for "command < infile" */
if ((fd = open (infile, O_RDONLY)) < 0) {
perror (infile);
exit (1);

}
if (fd != 0) {
dup2 (fd, 0);
close (fd);

}
}
/*...do same for outfile→fd 1, errfile→fd 2...*/
execvp (av[0], av);
perror (av[0]);
exit (1);

}

Shell command redirection: command < input > output 2> errlog

https://www.cs.jhu.edu/~huang/cs318/fall22/code/redirsh.c

~/318 $ gcc -o redirsh redirsh.c
~/318 $./redirsh
$ ls > list.txt
$ sort < list.txt > sorted_list.txt
$ cat sorted_list.txt
a.c
b.c
cs318.txt
…

https://www.cs.jhu.edu/~huang/cs318/fall22/code/redirsh.c

Spawning a Process Without fork

Without fork, needs tons of different options for new process
- Example: Windows CreateProcess system call

• Also CreateProcessAsUser, CreateProcessWithLogonW,
CreateProcessWithTokenW, ...

9/6/22 CS 318 – Lecture 3 – Processes 54

BOOL WINAPI CreateProcess(
_In_opt_ LPCTSTR lpApplicationName,
_Inout_opt_ LPTSTR lpCommandLine,
_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
In BOOL bInheritHandles,
In DWORD dwCreationFlags,
_In_opt_ LPVOID lpEnvironment,
_In_opt_ LPCTSTR lpCurrentDirectory,
In LPSTARTUPINFO lpStartupInfo,
Out LPPROCESS_INFORMATION lpProcessInformation

);

Process Creation: Unix (3)

Why Windows use CreateProcess while Unix uses fork/exec?
- different OS design philosophy

What happens if you run “exec csh” in your shell?

What happens if you run “exec ls” in your shell? Try it.

fork() can return an error. Why might this happen?

9/6/22 CS 318 – Lecture 3 – Processes 55

Process Termination
All good processes must come to an end. But how?
- Unix: exit(int status), Windows: ExitProcess(int status)

Essentially, free resources and terminate
1. Terminate all threads (next lecture)
2. Close open files, network connections
3. Allocated memory (and VM pages out on disk)
4. Remove PCB from kernel data structures, delete

Note that a process does not need to clean up itself
- Why does the OS have to do it?

9/6/22 CS 318 – Lecture 3 – Processes 56

wait() a second…
Often it is convenient to pause until a child process has finished
- Think of executing commands in a shell

Unix wait(int *wstatus) (Windows: WaitForSingleObject)
- Suspends the current process until any child process ends
- waitpid() suspends until the specified child process ends

wait() has a return value…what is it?

Unix: Every process must be “reaped” by a parent
- What happens if a parent process exits before a child?
- What do you think a “zombie” process is?

9/6/22 CS 318 – Lecture 3 – Processes 57

Process Summary
What are the units of execution?
- Processes

How are those units of execution represented?
- Process Control Blocks (PCBs)

How is work scheduled in the CPU?
- Process states, process queues, context switches

What are the possible execution states of a process?
- Running, ready, waiting

How does a process move from one state to another?
- Scheduling, I/O, creation, termination

How are processes created?
- CreateProcess (NT), fork/exec (Unix)

9/6/22 CS 318 – Lecture 3 – Processes 58

Next time…
Read Chapters 26, 27

Lab 0 due

Lab 1 starts

9/6/22 CS 318 – Lecture 3 – Processes 59

