CS 318 Principles of Operating Systems

Fall 2022

Lecture 19: File System Crash Consistency

Prof. Ryan Huang
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Administrivia

Lab 3b

- Due Thursday (12/01) 11:59 pm
- Required for 418/618 section students, optional for 318 section students
- If you design lab 3a well, 3b is relatively easy

Midterm 2

- Next Thursday (12/08) in class
- Same format as midterm 1

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

More on Midterm 2

Covers material in the second half of the class

- Most questions about lecture 10 to lecture 16
- A few basic questions for lecture 17 to lecture 20

Closed book, one and half double-sided 8.5"x11" pages of notes
Can use a calculator but no other electronic devices

Based upon lecture (textbook), homework, and project

- Do the homework to practice for the exam

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

Review: File I/O Path (Reads)

File system uses buffer cache

to speed up I/O BLOCK IN CACHE u 1
. []
read() from file
MAIN MEM Y
- Check if block is in cache (BUFFER CAchE)
- If so, return block to user []
[1in figure]
- If not, read from disk, insert into BLOCK NOT IN CACHE 2

cache, return to user [2]

11/29/22 CS 318 - Lecture 19 — File System Crash Consistency

LEAVE COPY IN CACHE

Review: File I/O Path (Writes)

write() to file

- Write is buffered in memory

(“write behind”) [1]

- Sometime later, OS decides
to write to disk [2]

- Periodic flush or fsync call

BUFFER IN MEMORY ‘ |'l

MAIN MEMQRY
(BUFFER CAEHE)

Why delay writes? LATER WRITE TO DISK 2

- Implications for performance
- Implications for reliability

11/29/22 CS 318 - Lecture 19 — File System Crash Consistency

The Consistent Update Problem
Goal:

- Atomically update file system from one consistent state to another
- What do we mean by consistent state?

Challenge:

- An update may require modifying several sectors, despite that the disk only
provides atomic write of one sector at a time

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

Example: File Creation of /a.txt

Initial state

MEMORY

DIsSK 01000 | 01000 /

inode block

inode array data blocks
map map

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

Example: File Creation of /a.txt

Read to in-memory Cache

01000 /

MEMORY

DIsSK 01000 | 01000 /

inode block

inode array data blocks
map map

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

Example: File Creation of /a.txt

Modify metadata and blocks

<'' #2>
<. #2>
<'a.txt’, #4>
01010 /
M N/v
EMORY Dirty blocks, memory state and disk state are inconsistent: must write to disk
DisK 01000 | 01000 /

inode block

inode array data blocks
map map

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

Crash?

Disk: atomically write one sector

- Atomic: if crash, a sector is either completely written, or none of this sector is
written

An FS operation may modify multiple sectors

Crash =» FS partially updated

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

10

Possible Crash Scenarios

File creation dirties three blocks

- inode bitmap (B)
- inode for new file (I)
- parent directory data block (D)

Old and new contents of the blocks

- B=01000 B’=01010
- [= free I' = allocated, initialized
-D={ D’ = {<'a.txt’, 4>}

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

11

Possible Crash Scenarios

Crash scenarios: any subset can be written

11/29/22

- B
- B
- B
- B
- B
- B
- B
- B

I D
I D
I'D
[D’
I'D
[D’
' D’
' D’

CS 318 - Lecture 19 - File System Crash Consistency

12

The General Problem

Writes: Have to update disk with N writes

- Disk does only a single write atomically

Crashes: System may crash at arbitrary point

- Bad case: In the middle of an update sequence

Desire: To update on-disk structures atomically

- Either all should happen or none

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

13

Example: Bitmap First

Write Ordering: Bitmap (B), Inode (l), Data (D)
- But CRASH after B has reached disk, before | or D

Result?

MEMORY |01010

DISK 01010 /

B | D

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

14

Example: Inode First

Write Ordering: Inode (l), Bitmap (B), Data (D)
- But CRASH after | has reached disk, before B or D

Result?

MEMORY |01010

DISK 01000 /

B | D

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

15

Example: Inode First

Write Ordering: Inode (l), Bitmap (B), Data (D)
- But CRASH after | AND B have reached disk, before D

Result?

MEMORY |01010

DISK 01010 /

B | D

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

16

Example: Inode First

Write Ordering: Inode (l), Bitmap (B), Data (D)
- But CRASH after | AND B have reached disk, before D

Result?

- What if data block is a new block for the new file (i.e., create file with data)

MEMORY |01010

l l

DISK 01010 /

B | D

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

Example: Data First

Write Ordering: Data (D) , Bitmap (B), Inode (l)
- CRASH after D has reached disk, before | or B

Result? < H2>
<'.! #2>
<'a.txt’, #4>

MEMORY |01010

DISK 01000 /

B | D

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

Write Ordering: Data (D) , Bitmap (B), Inode (l)

Example: Data First

- CRASH after D has reached disk, before | or B

Result?

- What if data block is a new block for the new file (i.e., create file with data)

| 'Hello, 318’ ’
MEMORY | 01010
DISK 01000 /
B 1 D

11/29/22

CS 318 - Lecture 19 - File System Crash Consistency

19

Traditional Solution: FSCK

FSCK: “file system checker”

When system boots:

- Make multiple passes over file system, looking for inconsistencies
* e.g., inode pointers and bitmaps, directory entries and inode reference counts

- Try to fix automatically

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

20

11/29/22

FSCK Example 1

inode block
link_count = 1 (number 123)

data bitmap
|

0011001100

for block 123

CS 318 — Lecture 19 - File System Crash Consistency

21

11/29/22

FSCK Example 2

Dir Entry

inode >

link count = I
Dir Entry

CS 318 — Lecture 19 - File System Crash Consistency

22

11/29/22

Dir Entry

ls -1 /
total 150
drwxr—=xr—x

drwxr—xr—x.
drwxr—xr—x.
dr—-xr—xr—x.
dr—-xr—xr—x.

FSCK Example 3

inode

link count = 1

??7?? How to fix?

401 18432 Dec 31 1969 afs/
2 4096 Nov 3 09:42 bin/
5 4096 Aug 1 14:21 boot/
13 4096 Nov 3 09:41 lib/
10 12288 Nov 3 09:41 1ib64/
2 16384 Aug 1 10:57 lost+found/

CS 318 — Lecture 19 - File System Crash Consistency

/-

23

11/29/22

FSCK Example 4

inode
link_count =3 Block

(number 123)

inode 2277 How to fix?
link count =1

CS 318 — Lecture 19 - File System Crash Consistency

24

11/29/22

FSCK Example 4.a

N inode
vali .
link count = 1 Block
(number 123)
o inode 2722 How to fix?
invalid

link count =1

CS 318 — Lecture 19 - File System Crash Consistency

25

11/29/22

FSCK Example 4.b

inode
valid .
link_count = 1 Block |}
(number 123) W)
Copy
inode
valid

Block
link count = 1 \

CS 318 — Lecture 19 - File System Crash Consistency

26

Traditional Solution: FSCK

FSCK: “file system checker”

When system boots:

- Make multiple passes over file system, looking for inconsistencies
- Try to fix automatically

 Example:B'I D, BI'D
- Or punt to admin

* Check lost+found, manually put the missing-link files to the correct place

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

27

Traditional Solution:

Problem:

11/29/22

- Cannot fix all crash scenarios
e Can B’ I D’ be fixed?
- Performance

« Sometimes takes hours to run
« Checking a 600GB disk takes ~70 minutes

* Does fsck have to run upon every reboot?
- Not well-defined consistency

CS 318 - Lecture 19 - File System Crash Consistency

FSCK

28

Another Solution: Journaling

ldea: Write “intent” down to disk before updating file system

- Called the "Write Ahead Logging” or “journal”
- Originated from database community

When crash occurs, look through log to see what was going on

- Use contents of log to fix file system structures

 Crash before “intent” is written =» no-op
 Crash after “intent” is written = redo op

- The process is called “recovery”

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

29

Case Study: Linux Ext3

Write real block contents of the update to log

- Four totally ordered steps:

Commit dirty blocks to journal as one transaction (TxBegin, |, B, D blocks)
Write commit record (TxEnd)

Copy dirty blocks to real file system (checkpointing)

Reclaim the journal space for the transaction

= wnh =

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

30

Step 1: Write Blocks to Journal

MEMORY 01010

<" #2>
<'.' #2>
<'a.txt’, #4>

DISK 01000

01000

JOURNAL

11/29/22

TxB
id=1

01010

CS 318 - Lecture 19 - File System Crash Consistency

31

Step 2: Write Commit Record

MEMORY 01010

<" #2>
<'.' #2>
<'a.txt’, #4>

DIsSK 01000 | 01000
JOURNAL T§B1 01010 LXE1
id= id=
a a
11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

32

Step 3: Copy Dirty Blocks to Real FS

MEMORY 01010

<" #2>
<'.' #2>
<'a.txt’, #4>

DIsSK 01000 | 01000
JOURNAL TSB 01010 LXE1
id= id=
3 A
11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

33

Step 4: Reclaim Journal Space

MEMORY 01010

<" #2>
<'.' #2>
<'a.txt’, #4>

DISK 01000

01000

JOURNAL

11/29/22

CS 318 - Lecture 19 - File System Crash Consistency

34

What If There Is A Crash?

Recovery: Go through log and “redo” operations that have been
successfully committed to log

What if ...

- TxBegin but not TxEnd in log?
- TxBegin through TxEnd are in log, but D has not reached the journal?

—

JOURNAL T 1[va]

* How could this happen?
« Why don't we merge step 2 and step 17

- Txin log, |, B, D have been checkpointed, but Tx is not freed from log?

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

Summary of Journaling Write Orders

Journal writes < FS writes

- Otherwise, crash =» FS broken, but no record in journal to patch it up

FS writes < Journal clear

- Otherwise, crash = FS broken, but record in journal is already cleared

Journal writes < commit record write < FS writes

- Otherwise, crash = record appears committed, but contains garbage

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency 36

Ext3 Journaling Modes

Journaling has cost

- one write = two disk writes, two seeks

Several journaling modes balance consistency and performance

Data journaling: journal all writes, including file data
- Problem: expensive to journal data

Metadata journaling: journal only metadata

- Used by most FS (IBM JFS, SGI XFS, NTFS)
- Problem: file may contain garbage data

Ordered mode: write file data to real FS first, then journal metadata
- Default mode for ext3
- Problem: old file may contain new data

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

37

Summary

The consistent update problem

- Example of file creation and different crash scenarios

Two approaches to crash consistency

- FSCK: slow, not well-defined consistency
- Journaling: well-defined consistency, different modes

Other approach
- Soft updates (advanced OS topics)

11/29/22 CS 318 - Lecture 19 - File System Crash Consistency

38

Read Appendix B

11/29/22

Next Time...

CS 318 - Lecture 19 - File System Crash Consistency

39

