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Lecture 18: Log-Structured File System



Administrivia
Thanksgiving break!
- No class
- Assignments
• food, lots of it
• sleep, lots of it
• warm clothes, winter is coming

• Stay safe
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File Systems Examples
BSD Fast File System (FFS)
- What were the problems with the original Unix FS?
- How did FFS solve these problems?

Log-Structured File System (LFS)
- What was the motivation of LFS?
- How did LFS work?
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LFS: Log-structured File System
An influential work designed by Mendel Rosenblum (VMWare co-

founder) and John Ousterhout
- A classic example of system designs driven by technology trends

Motivation
- Faster CPUs: I/O becomes more and more of a bottleneck

- More memory: file cache is effective for reads
- Implication: writes compose most of disk traffic
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Motivation
Problems with previous FS
- Perform many small writes

• Good performance on large, sequential writes, but many writes are still small, random

- Synchronous operation to avoid data loss
- Depends upon knowledge of disk geometry (Fast File System)
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LFS Idea
Insight: treat disk like a tape-drive
- Best performance from disk for sequential access
- What is Fast-File-System’s insight about disk?

File system buffers writes in main memory until “enough” data
- How much is enough? 
- Enough to get good sequential bandwidth from disk (MB)
- Unit called a “segment”
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Write Data to a Sequential Log
Write buffered data to new segment on disk in a sequential log
- Transfer all updates into a series of sequential writes
- Do not overwrite old data on disk

• i.e., old copies left behind

- Write both data and metadata in one operation
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Write in LFS
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buffer:

disk:

File System

Applications writewritewrite

write

Absorb many small writes into one buffer write!



Write in LFS
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Write in LFS
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Write in LFS
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S1

Write in LFS
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Write in LFS

Why do we buffer the write?
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Why Do We Buffer the Writes?
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Why Do We Buffer the Writes?

Why not directly write to the log on disk sequentially?
- Sequential write alone is not enough
- Disk is constantly rotating!
- Must issue a large number of contiguous writes
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Pros And Cons
Pros
- Always large sequential writes à good performance
- No knowledge of disk geometry 

• Assume sequential better than random

Potential problems
- How do you find data to read?
- What happens to metadata during write?
- What happens when you fill up the disk?
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Read in LFS
Same basic structures as Unix
- Directories, inodes, indirect blocks, data blocks
- Reading data block implies finding the file’s inode

• Unix FS: inodes in a fixed region (array) on disk
• LFS: inodes spread around on disk

Solution: inode map (imap) indicates where each inode is stored
- Can keep cached copy in memory
- inode map written to log with everything else
- Periodically written to known checkpoint location on disk for crash recovery
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Data Structures for LFS – Attempt 1

What data structures from FFS can LFS remove?
- allocation structs: data + inode bitmaps (why?)

What type of structure is much more complicated?
- Inodes are no longer at fixed offset!
- Use current offset on disk instead of table index for name
- Note: when update inode, inode number changes! (why?)
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Attempt 1: Data Structures for LFS
Directory Entry

Would this attempt work?
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<‘a.txt’, 5>
<‘foo.c’, 23>
<‘bar.java’, 

43>
…

/mydir

Previously, 
each dir entry is 
<name, inode #>

<‘a.txt’, 3000>
<‘foo.c’, 3200>

<‘bar.java’, 
4000>

…

/mydir

Now, 
each dir entry is 
<name, disk offset>



Attempt 1: Overwrite Data in LFS
Overwrite data in  /file.txt

How to update inode 9 to point to new D’ ?
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Attempt 1: Overwrite Data in LFS
Overwrite data in  /file.txt

Can LFS update inode 9 to point to new D’?
- NO!  This would be a random write..
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Attempt 1: Overwrite Data in LFS
Overwrite data in  /file.txt

Must update all structures in sequential order to log
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I2'Dir’I9'D’I2 Dir I9 D

old new



Attempt 1: Problem w/ Using Offset 

Problem: 
- For every data update, must propagate updates all the way up directory tree to root

Why?
- When we copy & modify the inode, its location (disk offset) changes

Solution:
- Keep inode numbers constant;  don’t base name on disk offset
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Data Structures for LFS (attempt 2)
What data structures from FFS can LFS remove?
- allocation structs: data + inode bitmaps

What type of struct is much more complicated?
- Inodes are no longer at fixed offset
- Use current offset on disk instead of table index for name
- Keep inode number in dir constant
- Use imap structure to map inode number => most recent inode location on 

disk

FFS found inodes with math.  How now?
- imap
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Where to keep imap?

Where can imap be stored? Dilemma:
1. imap too large to keep in memory
2. don’t want to perform random writes for imap

Solution: Write imap in segments
- Keep pointers to pieces of imap in memory
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imap S1S0disk: S3S2

table of millions of
entries (4 bytes each) imap: inode number => inode location on disk

segments



Solution: imap in segments

Solution:
- Write imap in segments
- Keep pointers to pieces of imap in memory
- Keep recently accessed imap cached in memory

11/17/22 CS 318 – Lecture 18 – Log-Structured File System 26

S1S0disk: S3S2

ptrs to imap 
piecesmemory:



Example Write

Solution:
- Write imap in segments
- Keep pointers to pieces of imap in memory
- Keep recently accessed imap cached in memory
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imapinodedata…disk:



Disk Cleaning
When disk runs low on free space
- Run a disk cleaning process
- Compacts live information to contiguous blocks of disk

Problem: long-lived data repeatedly copied over time 
- Solution: partition disk into segments
- Group older files into same segment

LFS reclaims segments (not individual inodes and data blocks)
- Want future overwrites to be to sequential areas
- Tricky, since segments are usually partly valid

11/17/22 CS 318 – Lecture 18 – Log-Structured File System 28



Cleaning: Copy & Compact Segments
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FREEFREEUSEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%



Cleaning: Copy & Compact Segments
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Cleaning: Copy & Compact Segments
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FREEFREEUSEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

compact 2 segments to one

• When move data blocks, copy new inode to point to it
• When move inode, update imap to point to it 



Cleaning: Copy & Compact Segments
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FREEUSEDUSEDFREEdisk segments: FREEUSED

10% 95% 95%

release the two input segments



Next Time…
Chapter 42
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