
CS 318 Principles of Operating Systems
Fall 2022

Prof. Ryan Huang

Lecture 15: File Systems

File System Fun
File systems: a challenging OS design topic
- More papers on FSes than any other single topic

Main tasks of file system:
- Don’t go away (ever)
- Associate bytes with name (files)
- Associate names with each other (directories)
- Can implement file systems on disk, over network, in memory, in non-volatile

ram (NVRAM), on tape, w/ paper.
- We’ll focus on disk and generalize later

Today: files, directories

11/3/22 CS 318 – Lecture 15 – File Systems 4

Files
File: named bytes on disk
- data with some properties
- contents, size, owner, last read/write time, protection, etc.

How is a file’s data managed by the file system?
- Next lecture’s topic
- Basic idea (in Unix): a struct called an index node or inode

• describe where on the disk the blocks for a file are placed
• Disk stores an array of inodes, inode # is the index in this array

11/3/22 CS 318 – Lecture 15 – File Systems 5

File Types
A file can also have a type
- Understood by the file system

• Block, character, device, portal, link, etc.

- Understood by other parts of the OS or runtime libraries
• Executable, dll, source, object, text, etc.

A file’s type can be encoded in its name or contents
- Windows encodes type in name (.com, .exe, .bat, .dll, .jpg, etc.)
- Unix encodes type in contents (magic numbers, initial characters, e.g., #! for

shell scripts)

11/3/22 CS 318 – Lecture 15 – File Systems 6

Basic File Operations
Unix

creat(name)

open(name, how)

read(fd, buf, len)

write(fd, buf, len)

sync(fd)

seek(fd, pos)

close(fd)

unlink(name)

Windows

CreateFile(name, CREATE)

CreateFile(name, OPEN)

ReadFile(handle, …)

WriteFile(handle, …)

FlushFileBuffers(handle, …)

SetFilePointer(handle, …)

CloseHandle(handle, …)

DeleteFile(name)

CopyFile(name)

MoveFile(name)

11/3/22 CS 318 – Lecture 15 – File Systems 7

File Access Methods
FS usually provides different file access methods:
- Sequential access

• read bytes one at a time, in order
• by far the most common mode

- Random access
• random access given block/byte number

- Record access
• file is array of fixed- or variable-length records
• read/written sequentially or randomly by record #

- Indexed access
• file system contains an index to a particular field of each record in a file
• reads specify a value for that field and the system finds the record via the index

What file access method does Unix, Windows provide?

11/3/22 CS 318 – Lecture 15 – File Systems 8

Directories
Problem: referencing files

Users remember where on disk their files are (disk sector no.)?…
- E.g., like remembering your social security or bank account #

…People want human digestible names

Directories serve two purposes
- For users, they provide a structured way to organize files
- For FS, they provide a convenient naming interface that allows the separation

of logical file organization from physical file placement on the disk

11/3/22 CS 318 – Lecture 15 – File Systems 9

A Short History of Directories
Approach 1: Single directory for entire system
- Put directory at known disk location. If one user uses a name, no one else can
- Many ancient personal computers work this way

Approach 2: Single directory for each user
- Still clumsy, and running `ls` on 10,000 files is a real pain

Approach 3: Hierarchical name spaces
- Allow directory to map names to files or other dirs
- File system forms a tree (or graph, if links allowed)

11/3/22 CS 318 – Lecture 15 – File Systems 10

Hierarchical Directory
Used since CTSS (1960s)
- Unix picked up and used really nicely

Large name spaces tend to be hierarchical
- ip addresses, domain names, scoping in programming languages, etc.

11/3/22 CS 318 – Lecture 15 – File Systems 11

afs cdrombin dev sbin tmp

awk chmod chown

/

Directory Internals

Directories stored on disk just like regular files
- File type set to directory
- User’s can read just like any other file
- Only special syscalls can write (why?)
- File pointed to by the location may be another dir
- Makes FS into hierarchical tree

Simple, plus speeding up file ops speeds up dir ops!
11/3/22 CS 318 – Lecture 15 – File Systems 12

afs cdrombin dev sbin tmp

awk chmod chown

/ File content for ‘/’

A directory is a list of entries
- <name, location> tuple, location is typically the inode # (more next lecture)
- An inode describes where on the disk the blocks for a file are placed

<afs,1021>
<tmp,1020>
<bin,1022>
<cdrom,4123>
<dev,1001>
<sbin,1011>
…

Path Name Translation
Let’s say you want to open “/one/two/three”

What does the file system do?
- Directory entries map file names to location (inode #)
- Open directory “/”: Where? Root directory is always inode #2
- Search for the entry “one”, get location of “one” (in dir entry)
- Open directory “one”, search for “two”, get location of “two”
- Open directory “two”, search for “three”, get location of “three”
- Open file “three”

11/3/22 CS 318 – Lecture 15 – File Systems 13

Naming Magic
Bootstrapping: Where do you start looking?
- Root directory always inode #2 (0 and 1 historically reserved)

Special names:
- Root directory: “/”
- Current directory: “.”
- Parent directory: “..”

Some special names are provided by shell, not FS:
- User’s home directory: “∼”
- Globbing: “foo.*” expands to all files starting “foo.”

Using the given names, only need two operations to navigate the entire name space:
- cd name: move into (change context to) directory name
- ls: enumerate all names in current directory (context)

11/3/22 CS 318 – Lecture 15 – File Systems 14

Basic Directory Operations

Unix

Directories implemented in files
- Use file ops to create dirs

C library provides a higher-level abstraction
for reading directories
- opendir(name)
- readdir(DIR)

- seekdir(DIR)

- closedir(DIR)

Windows

Explicit directory operations
- CreateDirectory(name)

- RemoveDirectory(name)

Very different method for reading directory
entries
- FindFirstFile(pattern)

- FindNextFile()

11/3/22 CS 318 – Lecture 15 – File Systems 15

Default Context: Working Directory
Cumbersome to constantly specify full path names
- In Unix, each process has a “current working directory” (cwd)
- File names not beginning with “/” are assumed to be relative to cwd;

otherwise translation happens as before

Shells track a default list of active contexts
- A “search path” for programs you run
- Given a search path A:B:C, the shell will check in A, then B, then C
- Can escape using explicit paths: “./foo”

Example of locality

11/3/22 CS 318 – Lecture 15 – File Systems 16

Hard Links

More than one dir entry can refer to a given file
- Hard link creates a synonym for file
- Unix stores count of pointers (“hard links”) to inode

- If one of the links is removed (e.g., rm), the data are still
accessible through any other link that remains

- If all links are removed, the space occupied by the data is freed.

11/3/22 CS 318 – Lecture 15 – File Systems 17

inode #31279
refcount = 2

foo bar
ln foo bar

existing file link to create

Soft Links

Soft/symbolic links = synonyms for names
- Point to a file/dir name, but object can be deleted from

underneath it (or never exist).

- Unix implements like directories: inode has special
“symlink” bit set and contains name of link target

- When the file system encounters a soft link it
automatically translates it (if possible).

11/3/22 CS 318 – Lecture 15 – File Systems 18

inode #31279
refcount = 2

foo bar

ln –s bar barz

“bar”
refcount = 1barz

ln foo bar

File Sharing
File sharing has been around since timesharing
- Easy to do on a single machine
- PCs, workstations, and networks get us there (mostly)

File sharing is important for getting work done
- Basis for communication and synchronization

Two key issues when sharing files
- Semantics of concurrent access

• What happens when one process reads while another writes?
• What happens when two processes open a file for writing?
• What are we going to use to coordinate?

- Protection

11/3/22 CS 318 – Lecture 15 – File Systems 19

Protection
File systems implement a protection system
- Who can access a file
- How they can access it

More generally…
- Objects are “what”, subjects are “who”, actions are “how”

A protection system dictates whether a given action performed by
a given subject on a given object should be allowed
- You can read and/or write your files, but others cannot
- You can read “/etc/motd”, but you cannot write it

11/3/22 CS 318 – Lecture 15 – File Systems 20

Representing Protection

Access Control Lists (ACL)

For each object, maintain a list
of subjects and their
permitted actions

Capabilities

For each subject, maintain a list
of objects and their permitted
actions

11/3/22 CS 318 – Lecture 15 – File Systems 21

/one /two /three
Alice rw - rw
Bob w - r
Charlie w r rw

Subjects

Objects

ACL

Capability

ACLs and Capabilities
Approaches differ only in how the table is represented

Capabilities are easier to transfer
- They are like keys, can handoff, does not depend on subject

In practice, ACLs are easier to manage
- Object-centric, easy to grant, revoke
- To revoke capabilities, have to keep track of all subjects that have the

capability – a challenging problem

ACLs have a problem when objects are heavily shared
- The ACLs become very large
- Use groups (e.g., Unix)

11/3/22 CS 318 – Lecture 15 – File Systems 22

Unix File Protection
What approach does Unix use in the FS?
- Answer: both

ACL: Unix file permissions

Capability: file descriptors

How are they used together?
- Conversion through open() system call

11/3/22 CS 318 – Lecture 15 – File Systems 23

int fd = open("file.txt", O_WRONLY);
if (fd == -1)
exit(-1);

for (int i = 0; i < 100; i++)
write(fd, buf + i * 4, 4);

ACL check, expensive

Use capability from then on

Converted to
capability

Summary
Files
- Operations, access methods

Directories
- Operations, using directories to do path searches

Sharing

Protection
- ACLs vs. capabilities

11/3/22 CS 318 – Lecture 15 – File Systems 24

Next Time…
Read Chapter 41, 42

11/3/22 CS 318 – Lecture 15 – File Systems 25

