
CS 318 Principles of Operating Systems
Fall 2022

Prof. Ryan Huang

Lecture 13: Dynamic Memory Allocation



Administrivia
Lab 3a is out
- Due 11/18 Friday
- Last lab (418/618 needs to complete 3b), hang in there..
- Considered by many students as the most challenging lab

• Design is important, debugging is hard, need to fix Lab 2 bugs

- Suggest coming up with designs first, making an appointment 
with the staff to check the design before coding

Lab 3 overview session today 6-7:30 pm at Malone 228

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 2



Administrivia
Midterm
- Thursday (10/27) 01:30 pm to 2:45 pm at classroom
- Covers material before virtual memory
- Based upon lecture material, homeworks, and project
- Make sure you do the homeworks to practice

One 8.5’’x11” double-sided sheet of notes

Obligatory: do not cheat
- Do not copy from your neighbors
- No one involved will be happy, particularly the teaching staff

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 3



Memory Allocation
Static Allocation (fixed in size)
- want to create data structures that are fixed and don’t need to grow or shrink
- global variables, e.g., char name[16];
- done at compile time

Dynamic Allocation (change in size)
- want to increase or decrease the size of a data structure according to different 

demands
- done at run time

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 4



Dynamic Memory Allocation
Almost every useful program uses it 
- Gives wonderful functionality benefits
- Don’t have to statically specify complex data structures
- Can have data grow as a function of input size
- Allows recursive procedures (stack growth)
- But, can have a huge impact on performance

Two types of dynamic memory allocation
- Stack allocation: restricted, but simple and efficient
- Heap allocation (focus today): general, but difficult to implement.

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 5



Dynamic Memory Allocation

Today: how to implement dynamic heap allocation
- Lecture based on [Wilson] (good survey from 1995)

Some interesting facts:
- Two or three line code change can have huge, non-obvious impact on how well 

allocator works (examples to come)
- Proven: impossible to construct an "always good" allocator
- Surprising result: after 27 years, memory management still poorly understood

• Beyond malloc efficiency to fleet efficiency: a hugepage-aware memory allocator [OSDI ’21]
- Big companies may write their own “malloc”

• Google: TCMalloc
• Facebook: jemalloc

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 6

https://www.cs.jhu.edu/~huang/cs318/fall22/readings/wilson.pdf


Why Is It Hard?
Satisfy arbitrary set of allocation and frees.

Easy without free: set a pointer to the beginning of some big chunk 
of memory (“heap”) and increment on each allocation:

Problem: free creates holes (“fragmentation”) Result? Lots of free 
space but cannot satisfy request!

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 7

heap (free memory)

allocation current free position



More Abstractly
What an allocator must do?
- Track which parts of memory in use, which parts are free
- Ideal: no wasted space, no time overhead

What the allocator cannot do?
- Control order of the number and size of requested blocks
- Know the number, size, & lifetime of future allocations
- Move allocated regions (bad placement decisions permanent), unlike Java allocator

The core fight: minimize fragmentation
- App frees blocks in any order, creating holes in “heap” 
- Holes too small? cannot satisfy future requests

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 8

NULL

freelist

20 10 20 10 20malloc(20)?



What Is Fragmentation Really?
Inability to use memory that is free

Two factors required for fragmentation
1. Different lifetimes—if adjacent objects die at different times, then fragmentation:

• If all objects die at the same time, then no fragmentation:

2. Different sizes: If all requests the same size, then no fragmentation (that’s why no 
external fragmentation with paging):

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 9



Important Decisions
Placement choice: where in free memory to put a requested block?
- Freedom: can select any memory in the heap
- Ideal: put block where it won’t cause fragmentation later (impossible in general: 

requires future knowledge)

Split free blocks to satisfy smaller requests?
- Fights internal fragmentation
- Freedom: can choose any larger block to split
- One way: choose block with smallest remainder (best fit)

Coalescing free blocks to yield larger blocks
- Freedom: when to coalesce (deferring can save work)
- Fights external fragmentation

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 10

20 10 30

30 30



Impossible to “Solve” Fragmentation
If you read allocation papers to find the best allocator
- All discussions revolve around tradeoffs

Theoretical result:
- For any allocation algorithm, there exist streams of allocation and deallocation 

requests that defeat the allocator and force it into severe fragmentation L

How much fragmentation should we tolerate?
- Let 𝑀 = bytes of live data, nmin = smallest allocation, nmax = largest allocation
- Bad allocator: M	·	(nmax/nmin)

• E.g., make all allocations of size nmax regardless of requested size
- Good allocator: ∼ M	·	log(nmax/nmin)

Next: two allocators (best fit, first fit) that, in practice, work pretty well
- “pretty well” = ∼20% fragmentation under many workloads

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 11



Best Fit
Strategy: minimize fragmentation by allocating space from block 

that leaves smallest fragment
- Data structure: heap is a list of free blocks, each has a header holding block size 

and a pointer to the next block

- Code: Search freelist for block closest in size to the request (exact match is ideal)
- During free: return free block, and (usually) coalesce adjacent blocks

Potential problem: Sawdust
- Remainder so small that over time left with “sawdust” everywhere
- Fortunately not a problem in practice

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 14



Best Fit Gone Wrong
Simple bad case: allocate n,	m	(n	<	m)	in alternating orders, free all 

the ns, then try to allocate an n	+	1

Example: start with 99 bytes of memory

- alloc 19, 21, 19, 21, 19

- free 19, 19, 19:

- alloc 20? Fails! (wasted space = 57 bytes)

However, doesn’t seem to happen in practice

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 15

2119 19 21 19

2119 19 21 19



First Fit
Strategy: pick the first block that fits
- Data structure: free list, sorted LIFO, FIFO, or by address
- Code: scan list, take the first one

Suppose memory has free blocks:
- Workload 1: alloc(10), alloc(20)

- Workload 2: alloc(8), alloc(12), alloc(12)

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 16

1520

Best Fit 15 First Fit 1520

Fail!
Best Fit 1520

Fail!

First Fit 15

20

20



First Fit
LIFO: put free object on front of list.
- Simple, but causes higher fragmentation
- Potentially good for cache locality

Address sort: order free blocks by address
- Makes coalescing easy (just check if next block is free)
- Also preserves empty/idle space (locality good when paging)

FIFO: put free object at end of list
- Gives similar fragmentation as address sort, but unclear why

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 17



Some Other Ideas
Worst-fit:
- Strategy: fight against sawdust by splitting blocks to maximize leftover size
- In real life seems to ensure that no large blocks around

Next fit:
- Strategy: use first fit, but remember where we found the last thing and start 

searching from there
- Seems like a good idea, but tends to break down entire list 

Buddy systems:
- Round up allocations to power of 2 to make management faster

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 19



Buddy Allocator Motivation
Allocation requests: frequently 2^n
- E.g., allocation physical pages in Linux
- Generic allocation strategies: overly generic

Fast search (allocate) and merge (free)
- Avoid iterating through free list

Avoid external fragmentation for req of 2^n

Used by Linux, FreeBSD

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 20



Buddy Allocator Implementation
Data structure
- N + 1 free lists of blocks of size 2^0, 2^1, …, 2^N

Allocation restrictions: 2^k, 0<= k <= N

Allocation of 2^k:
- Search free lists (k, k+1, k+2, …) for appropriate size
- Recursively divide larger blocks until reach block of correct size
- Insert “buddy” blocks into free lists

Free
- recursively coalesce block with “buddy” if buddy free

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 21



Buddy Allocation

Recursively divide larger blocks until reach suitable block
- Big enough to fit but if further splitting would be too small

Insert “buddy” blocks into free lists
- The addresses of the buddy pair only differ by one bit!

Upon free, recursively coalesce block with buddy if buddy free

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 22

64 KB

32 KB 32 KB

16 KB 16 KB

8 KB buddy block



Buddy Allocation Example

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 23

freelist[3] = {0}

freelist[0] = {1}, freelist[1] = {2}, freelist[2] = {4}

p1 = alloc(2^0)

p2 = alloc(2^2)

free(p1)

free(p2)

freelist[0] = {1}, freelist[1] = {2}

freelist[2] = {0}

freelist[3] = {0}

Note: 2^3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7



Known Patterns of Real Programs

So far we’ve treated programs as black boxes.

Most real programs exhibit 1 or 2 (or all 3) of the following patterns of 
alloc/dealloc:

- Ramps: accumulate data monotonically over time

- Peaks: allocate many objects, use briefly, then free all 

- Plateaus: allocate many objects, use for a long time

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 24



Pattern 1: ramps

In a practical sense: ramp = no free!
- Implication for fragmentation?
- What happens if you evaluate allocator with ramp programs only?

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 25



Pattern 2: Peaks

Peaks: allocate many objects, use briefly, then free all
- Fragmentation a real danger
- What happens if peak allocated from contiguous memory?
- Interleave peak & ramp? Interleave two different peaks?

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 26



Exploiting Peaks
Peak phases: allocate a lot, then free everything
- Change allocation interface: alloc as before, but only support free of everything 

all at once
- Called “arena allocation”, “obstack” (object stack)

Arena = a linked list of large chunks of memory
- Advantages: alloc is a pointer increment, free is “free” 
- No wasted space for tags or list pointers
- See Pintos threads/malloc.c

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 27



Pattern 3: Plateaus

Plateaus: allocate many objects, use for a long time

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 28



Slab Allocation
Kernel allocates many instances of same structures
- E.g., a 1.7 KB task_struct for every process on system

Often want contiguous physical memory (for DMA)

Slab allocation optimizes for this case:
- A slab is multiple pages of contiguous physical memory
- A cache contains one or more slabs
- Each cache stores only one kind of object (fixed size)

Each slab is full, empty, or partial

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 29



Slab Allocation
E.g., need new task_struct?
- Look in the task_struct cache
- If there is a partial slab, pick free task_struct in that
- Else, use empty, or may need to allocate new slab for cache

Free memory management: bitmap
- Allocate: set bit and return slot, Free: clear bit

Advantages: speed, and no internal fragmentation

Used in FreeBSD and Linux, implemented on top of buddy page 
allocator

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 30



Implementing malloc

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 32



Getting More Space from OS
malloc is a library call, how does malloc gets free space?
- Note in Pintos, malloc is provided as a kernel function (see threads/malloc.c)

On Unix, can use sbrk and brk
- int brk(void *p)

• Move the program break to address p
• Return 0 if successful and -1 otherwise

- void *sbrk(intptr_t n)
• Increment the program break by n bytes
• If n is 0, then return the current location of the program break
• Return 0 if successful and (void*)-1 otherwise

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 33



Implement malloc()

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 34

void *malloc(size_t n)
{ 
char *p = sbrk(0);
if (brk(p + n) == -1)
return NULL;

return p;
}

get current “program break”
set “program break” to be current plus n

void free(void * p)
{ 
}

Problem?
• Two system calls for every malloc!
• Freed blocks are not reused

Solutions
• Allocators request memory pool
• Keep track of free list
• If can’t find free chunk, request from OS



Returning Heap Memory
Allocator can mark blocks as free when free() is called
- These blocks can be reused later by the process
- Problem: they are not returned to the system!

• can cause memory pressure

Allocator can return heap memory with brk(pBrk–n), but…
- p in free(p) is not always at the end of the heap!
- So can’t reduce the heap size with brk(pBrk–n)

Therefore, for large allocations, sbrk() is a bad idea
- Can’t return memory to the system

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 35



Solution: VM Mapping
void *mmap(void *p, size_t n, int prot, int flags, 
int fd, off_t offset);

- Creates a new mapping in the virtual address space of the calling process
- p: the starting address for the new mapping
- n: the length of the mapping
- If p is NULL, the kernel chooses the address at which to create the mapping 
- On success, returns address of the mapped area

int munmap(void *p, size_t n);
- Deletes the mappings for the specified address range

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 36



Implement malloc() with mmap()

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 37

void *malloc(size_t n)
{
size_t *p;
if (n == 0) return NULL;
p = mmap(NULL, n + sizeof(size_t), 

PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);

if (p == (void*)-1) return NULL;
*p = n + sizeof(size_t); // Store size in header
p++; // Move forward from header to payload
return p;

}

void free(void *p)
{
if (p == NULL) return;
p--; // Move backward from 

// payload to header
munmap(p, *p);

}



Next Time…

Chapters 36, 37

10/25/22 CS 318 – Lecture 13 – Dynamic Memory Allocation 38


