
CS 318 Principles of Operating Systems
Fall 2022

Prof. Ryan Huang

Lecture 10: Virtual Memory

Administrivia
Lab 2 is out
- Due Friday 10/21 11:59 pm
- Start early!

Lab 2 overview session
- Today 7pm at Malone 228

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 2

Memory Management
Next few lectures are going to cover memory management

Goals of memory management

Mechanisms
- Physical and virtual addressing (1)
- Techniques: partitioning, paging, segmentation (1)
- Page table management, TLBs, VM tricks (2)

Policies
- Page replacement algorithms (3)

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 3

Lecture Overview
Virtual memory warm-up

Survey techniques for implementing virtual memory
- Fixed and variable partitioning
- Paging
- Segmentation

Focus on hardware support and lookup procedure

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 4

Virtual Memory
The abstraction that the OS provides for managing memory
- VM enables a program to execute with less physical memory than it “needs”

How?
- Many programs do not need all of their code and data at once (or ever)
- OS will adjust memory allocation to a process based upon its behavior
- VM requires hardware support and OS management algorithms to pull it off

Let’s go back to the beginning…

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 5

In the beginning…
Rewind to the days of “second-generation” computers
- Programs use physical addresses directly
- OS loads job, runs it, unloads it

Multiprogramming changes all of this
- Want multiple processes in memory at once

Consider multiprogramming on physical memory
- What happens if pintos needs to expand?
- If vim needs more memory than is on the machine?
- If pintos has an error and writes to address 0x7100?
- When does gcc have to know it will run at 0x4000?
- What if vim isn’t using its memory?

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 6

firefox

vim

gcc

pintos

0x0000

0x3000

0x4000

0x7000

0x9000

Issues in Sharing Physical Memory
Protection
- A bug in one process can corrupt memory in another
- Must somehow prevent process A from trashing B’s memory
- Also prevent A from even observing B’s memory (ssh-agent)

Transparency
- A process shouldn’t require particular physical memory bits
- Yet processes often require large amounts of contiguous memory (for stack, large data

structures, etc.)

Resource exhaustion
- Programmers typically assume machine has “enough” memory
- Sum of sizes of all processes often greater than physical memory

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 7

Virtual Memory Goals

Give each program its own virtual address space
- At runtime, Memory-Management Unit (MMU) relocates each load/store
- Application doesn’t see physical memory addresses

Enforce protection
- Prevent one app from messing with another’s memory

And allow programs to see more memory than exists
- Somehow relocate some memory accesses to disk

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 8

kernel

load MMU
memory

Virtual address
0x30408

Yes: phy. addr
0x92408

Is address
legal?

Virtual Memory Goals

Give each program its own virtual address space
- At runtime, Memory-Management Unit (MMU) relocates each load/store
- Application doesn’t see physical memory addresses

Enforce protection
- Prevent one app from messing with another’s memory

And allow programs to see more memory than exists
- Somehow relocate some memory accesses to disk

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 9

kernel

load MMU
memory

Virtual address
0x30408

Is address
legal?

No: to fault handler

Definitions
Programs load/store to virtual addresses

Actual memory uses physical addresses

VM Hardware is Memory Management Unit (MMU)

- Usually part of CPU
• Configured through privileged instructions

- Translates from virtual to physical addresses
- Gives per-process view of memory called address space

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 10

MMU memoryCPU

virtual
address

physical
address

Virtual Memory Advantages
Can re-locate program while running
- Run partially in memory, partially on disk

Most of a process’s memory may be idle (80/20 rule)
- Write idle parts to disk until needed
- Let other processes use memory of idle part
- Like CPU virtualization: when process not using CPU, switch (Not using a

memory region? switch it to another process)

Challenge: VM = extra layer, could be slow

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 11

Idea 1: Load-time Linking

Linker patches long jump addresses (e.g., call printf)

Idea: link when process executed, not at compile time
- Determine where process will reside in memory
- Adjust all references within program (using addition)

Problems?

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 12

kernel

call 0x5200

…
…

call 0x2200

…
…

static a.out

0x1000

0x3000

0x4000

0x6000

Idea 1: Load-time Linking

Linker patches long jump addresses (e.g., call printf)

Idea: link when process executed, not at compile time

Problems?
- Patching required for each run, time-consuming
- How to move once already in memory?
- What if no contiguous free region fits program?

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 13

kernel

call 0x5200

…
…

call 0x2200

…
…

static a.out

0x1000

0x3000

0x4000

0x6000

Idea 2: Base + Bound Register

Two special privileged registers: base and bound

On each load/store/jump:
- Physical address = virtual address + base
- Check 0 ≤ virtual address < bound, else trap to kernel

How to move process in memory?

What happens on context switch?

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 14

kernel

call 0x5200

…
…

call 0x2200

…
…

static a.out

0x1000

0x3000

0x4000

0x6000

Idea 2: Base + Bound Register

Two special privileged registers: base and bound

On each load/store/jump:

How to move process in memory?
- Change base register

What happens on context switch?
- OS must re-load base and bound register

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 15

kernel

call 0x5200

…
…

call 0x2200

…
…

static a.out

0x1000

0x3000

0x4000

0x6000

Base + Bound Trade-offs
Advantages
- Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel
- Examples: Cray-1 used this scheme

Disadvantages

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 16

Base + Bound Trade-offs
Advantages
- Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel
- Examples: Cray-1 used this scheme

Disadvantages
- Growing a process is expensive or impossible
- No way to share code or data (E.g., two copies of bochs,

both running pintos)

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 17

free space

pintos1

gcc

pintos2

Idea 3: Segmentation

Let processes have many base/bound regs
- Address space built from many segments
- Can share/protect memory at segment granularity

Must specify segment as part of virtual address

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 18

text r/o

stack

data

gcc

Segmentation Mechanics

Each process has a segment table

Each virtual address indicates a segment and offset:
- Top bits of addr select segment, low bits select offset
- x86 stores segment #s in registers (CS, DS, SS, ES, FS, GS)

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 19

Virtual Address
3 128

offset base len flag

0x1000 512 r

seg#

<

no

+ mem

0x1000
128

0x1080

Segmentation Example

Segment Base Bound RW
0 0x4000 0x6ff 10

1 0x0000 0x4ff 11

2 0x3000 0xfff 11

3 00

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 20

Virtual Addr

0x4000

0x3000

0x2000

0x1500

0x1000

0x0700

0x0000

Phys Addr

0x4700

0x4000

0x3000

0x0500

0x0000

• 2-bit segment number (1st digit), 12 bit offset (last 3)
- Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?

segment table

Segmentation Trade-offs
Advantages
- Multiple segments per process
- Can easily share memory! (how?)
- Don’t need entire process in memory

Disadvantages
- Requires translation hardware, which could limit performance
- Segments not completely transparent to program

• e.g., default segment faster or uses shorter instruction

- n byte segment needs n contiguous bytes of physical memory
- Makes fragmentation a real problem.

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 21

Fragmentation
Fragmentation ⇒ Inability to use free memory

Over time:
- many small holes (external fragmentation)
- no external holes, but force internal waste (internal fragmentation)

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 22

allocated

unused (internal fragmentation)

external fragmentation
Pintos

?? gcc

vim

doom
stack

Idea 4: Paging
Divide memory up into fixed-size pages
- Eliminates external fragmentation

Map virtual pages to physical pages
- Each process has separate mapping

Allow OS to gain control on certain operations
- Read-only pages trap to OS on write
- Invalid pages trap to OS on read or write
- OS can change mapping and resume application

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 23

Virtual Memory

Page 0

Page 1

Page 2

Page N-1

Physical Memory

Paging Trade-offs

Eliminates external fragmentation

Simplifies allocation, free, and backing storage (swap)

Average internal fragmentation of .5 pages per “segment”

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 24

internal frag

Pages, typical
size: 4K-8K gcc

vim

Simplified Allocation

Allocate any physical page to any process

Can store idle virtual pages on disk
10/3/22 CS 318 – Lecture 10 – Virtual Memory I 25

gcc vim

physical
memory

disk

Paging Data Structures
Pages are fixed size, e.g., 4K
- Virtual address has two parts: virtual page number and offset
- Least significant 12 (𝑙𝑜𝑔!4𝑘) bits of address are page offset
- Most significant bits are page number

Page tables
- Map virtual page number (VPN) to physical page number (PPN)

• VPN is the index into the table that determines PPN

• PPN also called page frame number

- Also includes bits for protection, validity, etc.
- One page table entry (PTE) per page in virtual address space

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 26

Page Table Entries (PTEs)

Page table entries control mapping
- The Physical page number (PPN) determines physical page
- The Modify bit says whether or not the page has been written

• It is set when a write to the page occurs

- The Reference bit says whether the page has been accessed
• It is set when a read or write to the page occurs

- The Valid bit says whether or not the PTE can be used
• It is checked each time the virtual address is used

- The Protection bits say what operations are allowed on page
• Read, write, execute

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 27

MPhysical Page Number R V Prot

Why the PTEs do not store
Virtual Page Number (VPN)?

Physical Memory

Physical Address
Page Table

Page Lookups

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 28

Page frame

Virtual Address

Page frame Offset

Page number Offset

Paging Example
32-bit machines, pages are 4KB-sized

Virtual address is 0x7468

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 29

Virtual Address

VPN Offset
What is the maximum number of VPNs?

0x7468
Page Table

VPN Prot …

0x2 r

Physical Address

Paging Advantages
Easy to allocate memory
- Memory comes from a free list of fixed size chunks
- Allocating a page is just removing it from the list
- External fragmentation not a problem

Easy to swap out chunks of a program
- All chunks are the same size
- Use valid bit to detect references to swapped pages
- Pages are a convenient multiple of the disk block size

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 30

Paging Limitations
Can still have internal fragmentation
- Process may not use memory in multiples of a page

Memory reference overhead
- 2 or more references per address lookup (page table, then memory)
- Solution – use a hardware cache of lookups (more later)

Memory required to hold page table can be significant
- Need one PTE per page
- 32 bit address space w/ 4KB pages = 220 PTEs
- 4 bytes/PTE = 4MB/page table
- 25 processes = 100MB just for page tables!
- Solution – multi-level page tables (more later)

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 31

x86 Paging
Paging enabled by bits in a control register (%cr0)
- Only privileged OS code can manipulate control registers

Normally 4KB pages

%cr3: points to 4KB page directory
- See pagedir_activate() in Pintos userprog/pagedir.c

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 32

https://github.com/jhu-cs318/pintos/blob/master/src/userprog/pagedir.c

x86 Paging and Segmentation
x86 architecture supports both paging and segmentation
- Segment register base + pointer val = linear address
- Page translation happens on linear addresses

Two levels of protection and translation check
- Segmentation model has four privilege levels (CPL 0–3)
- Paging only two, so 0–2 = kernel, 3 = user

Why do you want both paging and segmentation?

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 33

Why Want Both Paging and Segmentation?
Short answer: You don’t – just adds overhead
- Most OSes use “flat mode” – set base = 0, bounds = 0xffffffff in all

segment registers, then forget about it
- x86-64 architecture removes much segmentation support

Long answer: Has some fringe/incidental uses
- Use segments for logically related units + pages to partition segments into

fixed size chunks
• Tend to be complex

- VMware runs guest OS in CPL 1 to trap stack faults

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 34

Where Does the OS Live in Memory?

In its own address space?
- Can’t do this on most hardware (e.g., syscall instruction won’t switch address spaces)
- Also would make it harder to parse syscall arguments passed as pointers

So in the same address space as process
- Use protection bits to prohibit user code from writing kernel
- Recent Spectre and Meltdown CPU attacks force OSes to reconsider this [1]

Typically all kernel text, most data at same virtual address in every address space
- On x86, must manually set up page tables for this

Questions to ponder
- Does the kernel have to use VAs during its execution as well?
- If so, how can OS setup page tables for processes?

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 35

[1]: https://lwn.net/Articles/743265/

https://lwn.net/Articles/743265/

Summary
Virtual memory
- Processes use virtual addresses
- OS + hardware translates virtual address into physical addresses

Various techniques
- Load-time Linking – requires patching for each run
- Base + Bounds – cheap, but difficult to grow and cannot share
- Segmentation – manage in chunks from user’s perspective
- Paging – use small, fixed size chunks, efficient for OS
- Combine paging and segmentation

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 36

Next time…
Chapters 19, 20

10/3/22 CS 318 – Lecture 10 – Virtual Memory I 37

