
CS 318 Principles of Operating Systems

Lecture 8: Synchronization Exercises

Prof. Ryan Huang

Fall 2021

Administrivia

In-class Quiz next Tuesday (09/28)
- For Lecture 3 and 4
- Similar format as Quiz 1, bring a computer

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 2

Using Semaphores

We’ve looked at a simple example for using synchronization
- Mutual exclusion while accessing a bank account

Now let’s use semaphores to look at more interesting examples
- Readers/Writers
- Bounded Buffers
- Building H2O

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 3

Readers/Writers Problem
Readers/Writers Problem:
- An object is shared among several threads
- Some threads only read the object, others only write it
- We can allow multiple readers but only one writer

• Let #𝑟 be the number of readers, #𝑤 be the number of writers
• Safety:

How can we use semaphores to implement this protocol?

Use three variables
- int readcount – number of threads reading object
- Semaphore mutex – control access to readcount
- Semaphore w_or_r – exclusive writing or reading

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 4

∧ ((#𝑟 > 0) ⇒ (#𝑤 = 0))(#𝑟 ≥ 0) ∧ (0 ≤ #𝑤 ≤ 1)

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex(1);
// exclusive writer or reader
Semaphore w_or_r(1);

writer() {
wait(&w_or_r); // lock out readers
Write;
signal(&w_or_r);// up for grabs

}

Readers/Writers

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 5

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)

wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex(1);
// exclusive writer or reader
Semaphore w_or_r(1);

writer() {
wait(&w_or_r); // lock out readers
Write;
signal(&w_or_r);// up for grabs

}

Readers/Writers

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 6

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)

wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

Readers/Writers Notes
w_or_r provides mutex between readers and writers
- writer wait/signal, reader wait/signal when readcount goes from 0 to 1 or from 1 to 0.

If a writer is writing, where will readers be waiting?

Once a writer exits, all readers can fall through
- Which reader gets to go first?
- Is it guaranteed that all readers will fall through?

If readers and writers are waiting, and a writer exits, who goes first?

Why do readers use mutex?

Why don't writers use mutex?

What if the signal is above “if (readcount == 1)”?

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 7

Semaphores in Pintos

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 8

void sema_down(struct semaphore *sema)
{

enum intr_level old_level;
old_level = intr_disable();
while (sema->value == 0) {

list_push_back(&sema->waiters,
&thread_current()->elem);

thread_block();
}
sema->value--;
intr_set_level(old_level);

}

void sema_up(struct semaphore *sema)
{

enum intr_level old_level;
old_level = intr_disable();
if (!list_empty (&sema->waiters))

thread_unblock(list_entry(
list_pop_front(&sema->waiters),…));

sema->value++;
intr_set_level(old_level);

}

reader() {
wait(&mutex); // sema_down
…
signal(&mutex); // sema_up
Read;
wait(&mutex);
…
signal(&mutex);

}

Bounded Buffer

Problem: a set of buffers shared by producer and consumer threads
- Producer inserts resources into the buffer set

• Output, disk blocks, memory pages, processes, etc.
- Consumer removes resources from the buffer set
- Whatever is generated by the producer

Producer and consumer execute at different rates
- No serialization of one behind the other
- Tasks are independent (easier to think about)
- The buffer set allows each to run without explicit handoff

Safety:
- Sequence of consumed values is prefix of sequence of produced values
- If 𝑛𝑐 is number consumed, 𝑛𝑝 number produced, and 𝑁 the size of the buffer, then
0 £ 𝑛𝑝 - 𝑛𝑐 £ 𝑁

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 9

Bounded Buffer (2)

0 £ 𝑛𝑝 - 𝑛𝑐 £𝑁 ⟺ 0 £ (𝑛𝑐 - 𝑛𝑝) +𝑁 £𝑁

Use three semaphores:
- empty – number of empty buffers

• Counting semaphore

• empty = (nc - np) + N

- full – number of full buffers
• Counting semaphore

• full = np - nc

- mutex – mutual exclusion to shared set of buffers
• Binary semaphore

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 10

producer() {
while (1) {

Produce new resource;
wait(&empty); // wait for empty buffer
wait(&mutex); // lock buffer list
Add resource to an empty buffer;
signal(&mutex); // unlock buffer list
signal(&full); // note a full buffer

}
}

Bounded Buffer (3)

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 11

consumer() {
while (1) {

wait(&full); // wait for a full buffer
wait(&mutex); // lock buffer list
Remove resource from a full buffer;
signal(&mutex); // unlock buffer list
signal(&empty); // note an empty buffer
Consume resource;

}
}

Semaphore mutex(1); // mutual exclusion to shared set of buffers
Semaphore empty(N); // count of empty buffers (all empty to start)
Semaphore full(0); // count of full buffers (none full to start)

Bounded Buffer (4)

Why need the mutex at all?

Where are the critical sections?

What has to hold for deadlock to occur?
- 𝑒𝑚𝑝𝑡𝑦 = 0 and 𝑓𝑢𝑙𝑙 = 0
- (𝑛𝑐 - 𝑛𝑝) + 𝑁 = 0 and 𝑛𝑝 − 𝑛𝑐 = 0
- 𝑁 = 0

What happens if operations on mutex and full/empty are switched around?
- The pattern of signal/wait on full/empty is a common construct often called an interlock

Readers/Writers and Bounded Buffer are classic sync. problems

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 12

Monitor Readers and Writers

Using Mesa monitor semantics.

Will have four methods: StartRead, StartWrite, EndRead and EndWrite

Monitored data: nr (# of readers) and nw (# of writers) with monitor invariant

(𝑛𝑟 ≥ 0) ∧ (0 ≤ 𝑛𝑤 ≤ 1) ∧ ((𝑛𝑟 > 0) ⇒ (𝑛𝑤 = 0))

Two conditions:
- canRead: 𝑛𝑤 = 0
- canWrite: (𝑛𝑟 = 0) ∧ (𝑛𝑤 = 0)

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 13

Monitor Readers and Writers

Write with just wait()
- Will be safe, maybe not live – why?

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 14

Monitor RW {
int nr = 0, nw = 0;
Condition canRead, canWrite;

void StartRead () {
while (nw != 0) wait(canRead);
nr++;

}

void EndRead () {
nr--;

}

void StartWrite {
while (nr != 0 || nw != 0) wait(canWrite);
nw++;

}

void EndWrite () {
nw--;

}
} // end monitor

Monitor Readers and Writers

add signal() and broadcast()

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 15

Monitor RW {
int nr = 0, nw = 0;
Condition canRead, canWrite;

void StartRead () {
while (nw != 0) wait(canRead);
nr++;

}

void EndRead () {
nr--;
if (nr == 0) signal(canWrite);

}

void StartWrite () {
while (nr != 0 || nw != 0) wait(canWrite);
nw++;

}

void EndWrite () {
nw--;
broadcast(canRead);
signal(canWrite);

}
} // end monitor

can we put a signal here?

can we put a signal here?

Monitor Readers and Writers

Is there any priority between readers and writers?

What if you wanted to ensure that a waiting writer would have priority
over new readers?

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 16

Monitor Bounded Buffer

- What happens if no threads are waiting when signal is called?

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 17

Monitor bounded_buffer {
Resource buffer[N];
// Variables for indexing buffer
// monitor invariant involves these vars
Condition not_full; // space in buffer
Condition not_empty; // value in buffer

void put_resource (Resource R) {
while (buffer array is full)

wait(not_full);
Add R to buffer array;
signal(not_empty);

}

Resource get_resource() {
while (buffer array is empty)

wait(not_empty);
Get resource R from buffer array;
signal(not_full);
return R;

}
} // end monitor

Monitor Queues

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 18

Monitor bounded_buffer {

Condition not_full;
…other variables…
Condition not_empty;

void put_resource() {
…wait(not_full)…
…signal(not_empty)…

}
Resource get_resource() {
…

}
}

Waiting to enter

Waiting on condition variables

Executing inside the monitor

The H2O Problem
Setup:
- You have been hired by a company to do climate modelling of oceans.
- The program matches atoms of different types as they form molecules.
- In an excessive reliance on threads, each atom is represented by a thread.

Requirements
- Write code to form water out of two hydrogen threads and one oxygen thread (H2O)
- Two procedures: HArrives()and OArrives()

• A water molecule forms when two H threads are present and one O thread.

• Otherwise, the atoms must wait.
• Once all three are present, one of the threads calls MakeWater() and only then, all three depart.

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 19

Description from “Operating Systems: Principles and Practice”

Define Variables

Data Structure

Key Variables
- int numH – number of hydrogen threads waiting
- int numO – number of oxygen threads waiting
- Semaphore mutex – control access to numH and numO

- List<Status *> waitingH – hydrogen threads waiting queue
- List<Status *> waitingO – oxygen threads waiting queue

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 20

Status {
bool ready;
Condition cv;

};

Building H2O

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 21

HArrives() {
wait(&mutex);
numH++;
if (numH == 2 && numO >= 1) {

h = waitingH.remove();
o = waitingO.remove();
h->ready = true;
o->ready = true;
cond_signal(&h->cv);
cond_signal(&o->cv);
numH -= 2;
numO -= 1;
MakeWater();

}

else {
h = new Status;
waitingH.add(h);
while (!h->ready)

cond_wait(&h->cv, &mutex);
delete h;

}
signal(&mutex);

}

int numH = 0; // number of hydrogen threads waiting
int numO = 0; // number of oxygen threads waiting
Semaphore mutex(1); // mutual exclusion
List<Status *> waitingH; // hydrogen threads waiting queue
List<Status *> waitingO; // oxygen threads waiting queue

Building H2O

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 22

OArrives() {
wait(&mutex);
numO++;
if (numH >= 2) {

h1 = waitingH.remove();
h2 = waitingH.remove();
h1->ready = true;
h2->ready = true;
cond_signal(&h1->cv);
cond_signal(&h2->cv);
numH -= 2;
numO -= 1;
MakeWater();

}

else {
o = new Status;
waitingO.add(o);
while (!o->ready)

cond_wait(&o->cv, &mutex);
delete o;

}
signal(&mutex);

}

int numH = 0; // number of hydrogen threads waiting
int numO = 0; // number of oxygen threads waiting
Semaphore mutex(1); // mutual exclusion
List<Status *> waitingH; // hydrogen threads waiting queue
List<Status *> waitingO; // oxygen threads waiting queue

Next Time…

Read Chapter 32

9/27/21 CS 318 – Lecture 8 – Synchronization Exercises 23

