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Higher-Level Synchronization
We looked at using locks to provide mutual exclusion

Locks work, but they have limited semantics
- Just provide mutual exclusion

Instead, we want synchronization mechanisms that
- Block waiters, leave interrupts enabled in critical sections
- Provide semantics beyond mutual exclusion

Look at two common high-level mechanisms
- Semaphores: binary (mutex) and counting
- Monitors: mutexes and condition variables

Use them to solve common synchronization problems
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Semaphores

An abstract data type to provide mutual exclusion
- Described by Dijkstra in the “THE” system in 1968

Semaphores are “integers” that support two operations:
- Semaphore::P() decrements, blocks until semaphore is open, a.k.a wait()

• after the Dutch word “Proberen” (to try) 

- Semaphore::V() increments, allows another thread to enter, a.k.a signal()
• after the Dutch word “Verhogen” (increment)

- That's it! No other operations – not even just reading its value 

Semaphore safety property: the semaphore value is always greater than 
or equal to 0
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Blocking in Semaphores

Associated with each semaphore is a queue of waiting threads

When P() is called by a thread:
- If semaphore is open, thread continues
- If semaphore is closed, thread blocks on queue

Then V() opens the semaphore:
- If a thread is waiting on the queue, the thread is unblocked
- If no threads are waiting on the queue, the signal is remembered for the next thread

• In other words, V() has “history” (c.f., condition vars later)

• This “history” is a counter
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Semaphore Types

Semaphores come in two types

Mutex semaphore (or binary semaphore)
- Represents single access to a resource
- Guarantees mutual exclusion to a critical section

Counting semaphore (or general semaphore)
- Represents a resource with many units available, or a resource that allows certain kinds 

of unsynchronized concurrent access (e.g., reading)
- Multiple threads can pass the semaphore
- Number of threads determined by the semaphore “count”

• mutex has count = 1, counting has count = N
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Using Semaphores

Use is similar to our locks, but semantics are different
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struct Semaphore {
int value;
Queue q;

} S;
withdraw (account, amount) {

P(S);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
v(S);
return balance;

}

P(S);
balance = get_balance(account);
balance = balance – amount;

P(S);

put_balance(account, balance);
v(S);

P(S);

…
v(S);

…
v(S);

Threads 
block

It is undefined which 
thread runs after a signal

critical 
section



Semaphore Implementation in Pintos

To reference current thread: thread_current()

thread_block() puts the current thread to sleep
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void sema_down(struct semaphore *sema) 
{

enum intr_level old_level;
old_level = intr_disable();
while (sema->value == 0) {

list_push_back(&sema->waiters, 
&thread_current()->elem);

thread_block();
}
sema->value--;
intr_set_level(old_level);

}

void sema_up(struct semaphore *sema) 
{

enum intr_level old_level;
old_level = intr_disable();
if (!list_empty (&sema->waiters)) 

thread_unblock(list_entry(
list_pop_front(&sema->waiters), 

struct thread, elem));
sema->value++;
intr_set_level(old_level);

}



Implementation of thread_block()

thread_block() assumes the interrupts are disabled

This means we will have the thread sleep with interrupts disabled

Isn’t this bad?
- Don’t we want to only disable interrupts when entering/leaving critical sections but keep interrupts enabled 

during critical section?
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/* Puts the current thread to sleep. This function must be called with 
interrupts turned off.*/
void thread_block ()
{
ASSERT (!intr_context ());
ASSERT (intr_get_level () == INTR_OFF);
thread_current ()->status = THREAD_BLOCKED;
schedule ();

}



Interrupts Re-enabled Right After Ctxt Switch
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sema_down() {
Disable interrupts;
while(value == 0) {

add current thread to waiters;
thread_block();

}
value--;
Enable interrupts;

}

thread_yield() {
Disable interrupts;
add current thread to ready_list; 
schedule(); // context switch
Enable interrupts;

}

[sema_down]
Disable interrupts;
while(value == 0) {

add current thread to waiters;
thread_block();

}

[thread_yield]
(Returns from schedule())
Enable interrupts;

[thread_yield]
Disable interrupts;
add current thread to ready_list; 
schedule();

[thread_yield]
(Returns from schedule())
Enable interrupts;

Thread 1

Thread 2

Thread 2

Thread 1



Semaphore Questions
Are there any problems that can be solved with counting semaphores 

that cannot be solved with mutex semaphores?

- If a system only gives you mutex semaphore, can you use it to implement counting 
semaphores?

Does it matter which thread is unblocked by a signal operation?
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Semaphore Summary
Semaphores can be used to solve any of the traditional synchronization 

problems

However, they have some drawbacks
- They are essentially shared global variables

• Can potentially be accessed anywhere in program

- No connection between the semaphore and the data being controlled by the semaphore
- Used both for critical sections (mutual exclusion) and coordination (scheduling)

• Note that I had to use comments in the code to distinguish

- No control or guarantee of proper usage

Sometimes hard to use and prone to bugs
- Another approach: Use programming language support
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Monitors
A monitor is a programming language construct that controls access to shared 

data
- Synchronization code added by compiler, enforced at runtime
- Why is this an advantage?

A monitor is a module that encapsulates
- Shared data structures
- Procedures that operate on the shared data structures
- Synchronization between concurrent threads that invoke the procedures

A monitor protects its data from unstructured access

It guarantees that threads accessing its data through its procedures interact 
only in legitimate ways
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Monitor Semantics

A monitor guarantees mutual exclusion
- Only one thread can execute any monitor procedure at any time

• the thread is “in the monitor”

- If a second thread invokes a monitor procedure when a first thread is already executing 
one, it blocks
• So the monitor has to have a wait queue…

- If a thread within a monitor blocks, another one can enter

What are the implications in terms of parallelism in a monitor?

A monitor invariant is a safety property associated with the monitor
- It’s expressed over the monitored variables. 
- It holds whenever a thread enters or exits the monitor.
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Account Example

Hey, that was easy!

Monitor invariant: balance ≥ 0
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Monitor account {
double balance;

double withdraw(amount) {
balance = balance – amount;
return balance;

}
}

withdraw(amount)
balance = balance – amount;

withdraw(amount)

return balance (and exit)

withdraw(amount)

balance = balance – amount
return balance;

balance = balance – amount;
return balance;

Threads 
block 

waiting 
to get 
into 

monitor

When first thread exits, another can 
enter.  Which one is undefined.



Condition Variables

But what if a thread wants to wait for sth inside the monitor?

- If we busy wait, it’s bad

- Even worse, no one can get in the monitor to make changes now!

A condition variable is associated with a condition needed for a thread 
to make progress once it is in the monitor.
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Monitor M {
... monitored variables
Condition c;

void enterMonitor (...) {
if (extra property not true) wait(c);  waits outside of the monitor's mutex
do what you have to do
if (extra property true) signal(c);   brings in one thread waiting on condition

}



Condition Variables

Condition variables support three operations:
- Wait – release monitor lock, wait for C/V to be signaled

• So condition variables have wait queues, too

- Signal – wakeup one waiting thread
- Broadcast – wakeup all waiting threads

Condition variables are not boolean objects
- if (condition_variable) then … does not make sense
- if (num_resources == 0) then wait(resources_available) does

- An example later will make this more clear
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Condition Vars != Semaphores

Condition variables != semaphores
- Although their operations have the same names, they have entirely different semantics (such is 

life, worse yet to come)
- However, they each can be used to implement the other

Access to the monitor is controlled by a lock
- wait() blocks the calling thread, and gives up the lock

• To call wait, the thread has to be in the monitor (hence has lock)
• Semaphore::wait just blocks the thread on the queue

- signal() causes a waiting thread to wake up
• If there is no waiting thread, the signal is lost
• Semaphore::signal increases the semaphore count, allowing future entry even if no thread is 

waiting
• Condition variables have no history
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Signal Semantics

Two flavors of monitors that differ in the scheduling semantics of signal()

- Hoare monitors (original)
• signal() immediately switches from the caller to a waiting thread

• The condition that the waiter was anticipating is guaranteed to hold when waiter executes

• Signaler must restore monitor invariants before signaling

- Mesa monitors (Mesa, Java)
• signal() places a waiter on the ready queue, but signaler continues inside monitor

• Condition is not necessarily true when waiter runs again
• Returning from wait() is only a hint that something changed
• Must recheck conditional case
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Hoare vs. Mesa Monitors

Hoare
if (!condition)

wait(cond_var);

Mesa
while (!condition)

wait(cond_var);

Tradeoffs
- Mesa monitors easier to use, more efficient

• Fewer context switches, easy to support broadcast

- Hoare monitors leave less to chance
• Easier to reason about the program
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condition might have been changed, if so, wait again

condition definitely holds since we just context switched from signal

condition now holds



More on Condition Variable 
and Monitor
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Condition Vars & Locks

C/Vs are also used without monitors in conjunction with locks
- void cond_init (cond_t *, ...);
- void cond_wait (cond_t *c, mutex_t *m);

• Atomically unlock m and sleep until c signaled

• Then re-acquire m and resume executing

- void cond_signal (cond_t *c); 
- void cond_broadcast (cond_t *c);

• - Wake one/all threads waiting on c
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Condition Vars & Locks

C/Vs are also used without monitors in conjunction with locks

A monitor ≈ a module whose state includes a C/V and a lock
- Difference is syntactic; with monitors, compiler adds the code

It is “just as if” each procedure in the module calls acquire() on entry and 
release() on exit
- But can be done anywhere in procedure, at finer granularity

With condition variables, the module methods may wait and signal on 
independent conditions
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Condition Vars & Locks

Why must cond_wait both release mutex_t & sleep? 
- void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables? 
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while (count == BUFFER_SIZE) {
mutex_unlock(&mutex);
cond_wait(&not_full);
mutex_lock(&mutex);

}



Condition Vars & Locks

Why must cond_wait both release mutex_t & sleep? 
- void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables? 
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while (count == BUFFER_SIZE) {
mutex_unlock(&mutex);

cond_wait(&not_full);
mutex_lock(&mutex);

}

mutex_lock(&mutex); 
... count--;
cond_signal(&not_full);

Consumer

Producer



Using Cond Vars & Locks

Alternation of two threads (ping-pong)

Each executes the following:
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Lock lock;
Condition cond;

void ping_pong () {
acquire(lock);
while (1) {

printf(“ping or pong\n”);
signal(cond);
wait(cond, lock);

}
release(lock);

}

Must acquire lock before you can wait 
(similar to needing interrupts disabled 
to call thread_block in Pintos)

Wait atomically releases lock 
and blocks until signal()

Wait atomically acquires lock 
before it returns



Monitors and Java

A lock and condition variable are in every Java object
- No explicit classes for locks or condition variables

Every object is/has a monitor
- At most one thread can be inside an object’s monitor
- A thread enters an object’s monitor by

• Executing a method declared “synchronized”
• Can mix synchronized/unsynchronized methods in same class

• Executing the body of a “synchronized” statement
• Supports finer-grained locking than an entire procedure
• Identical to the Modula-2 “LOCK (m) DO” construct

- The compiler generates code to acquire the object’s lock at the start of the method and 
release it just before returning
• The lock itself is implicit, programmers do not worry about it
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Monitors and Java

Every object can be treated as a condition variable
- Half of Object’s methods are for synchronization!

Take a look at the Java Object class:
- Object.wait(*) is Condition::wait()
- Object.notify() is Condition::signal()
- Object.notifyAll() is Condition::broadcast()
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Summary
Semaphores
- wait()/signal() implement blocking mutual exclusion
- Also used as atomic counters (counting semaphores)
- Can be inconvenient to use

Monitors
- Synchronizes execution within procedures that manipulate encapsulated data shared 

among procedures
• Only one thread can execute within a monitor at a time

- Relies upon high-level language support

Condition variables
- Used by threads as a synchronization point to wait for events
- Inside monitors, or outside with locks
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Concurrency Bugs Cause Serious Consequences

Race condition in the Therac-25 radiation therapy machine caused 
massive overdose and resulted in patient deaths and serious injuries
- The software consists of several routines running concurrently. 

- The Data Entry and Keyboard Handler routines share a variable, which recorded 
whether the technician had completed entering commands.

- A race condition bug of this shared variable cause the UI to display the wrong mode 
to operators

- Incident report, horrible tragedies.

Exercise extra cautions when dealing with concurrency
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https://www.cs.jhu.edu/~huang/cs318/fall20/readings/therac.pdf


Next Time…

Read Chapter 32
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