
CS 318 Principles of Operating Systems

Lecture 7: Semaphores and Monitors

Prof. Ryan Huang

Fall 2021

Higher-Level Synchronization
We looked at using locks to provide mutual exclusion

Locks work, but they have limited semantics
- Just provide mutual exclusion

Instead, we want synchronization mechanisms that
- Block waiters, leave interrupts enabled in critical sections
- Provide semantics beyond mutual exclusion

Look at two common high-level mechanisms
- Semaphores: binary (mutex) and counting
- Monitors: mutexes and condition variables

Use them to solve common synchronization problems

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 2

Semaphores

An abstract data type to provide mutual exclusion
- Described by Dijkstra in the “THE” system in 1968

Semaphores are “integers” that support two operations:
- Semaphore::P() decrements, blocks until semaphore is open, a.k.a wait()

• after the Dutch word “Proberen” (to try)

- Semaphore::V() increments, allows another thread to enter, a.k.a signal()
• after the Dutch word “Verhogen” (increment)

- That's it! No other operations – not even just reading its value

Semaphore safety property: the semaphore value is always greater than
or equal to 0

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 3

Blocking in Semaphores

Associated with each semaphore is a queue of waiting threads

When P() is called by a thread:
- If semaphore is open, thread continues
- If semaphore is closed, thread blocks on queue

Then V() opens the semaphore:
- If a thread is waiting on the queue, the thread is unblocked
- If no threads are waiting on the queue, the signal is remembered for the next thread

• In other words, V() has “history” (c.f., condition vars later)

• This “history” is a counter

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 4

Semaphore Types

Semaphores come in two types

Mutex semaphore (or binary semaphore)
- Represents single access to a resource
- Guarantees mutual exclusion to a critical section

Counting semaphore (or general semaphore)
- Represents a resource with many units available, or a resource that allows certain kinds

of unsynchronized concurrent access (e.g., reading)
- Multiple threads can pass the semaphore
- Number of threads determined by the semaphore “count”

• mutex has count = 1, counting has count = N

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 5

Using Semaphores

Use is similar to our locks, but semantics are different

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 6

struct Semaphore {
int value;
Queue q;

} S;
withdraw (account, amount) {

P(S);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
v(S);
return balance;

}

P(S);
balance = get_balance(account);
balance = balance – amount;

P(S);

put_balance(account, balance);
v(S);

P(S);

…
v(S);

…
v(S);

Threads
block

It is undefined which
thread runs after a signal

critical
section

Semaphore Implementation in Pintos

To reference current thread: thread_current()

thread_block() puts the current thread to sleep

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 7

void sema_down(struct semaphore *sema)
{

enum intr_level old_level;
old_level = intr_disable();
while (sema->value == 0) {

list_push_back(&sema->waiters,
&thread_current()->elem);

thread_block();
}
sema->value--;
intr_set_level(old_level);

}

void sema_up(struct semaphore *sema)
{

enum intr_level old_level;
old_level = intr_disable();
if (!list_empty (&sema->waiters))

thread_unblock(list_entry(
list_pop_front(&sema->waiters),

struct thread, elem));
sema->value++;
intr_set_level(old_level);

}

Implementation of thread_block()

thread_block() assumes the interrupts are disabled

This means we will have the thread sleep with interrupts disabled

Isn’t this bad?
- Don’t we want to only disable interrupts when entering/leaving critical sections but keep interrupts enabled

during critical section?

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 8

/* Puts the current thread to sleep. This function must be called with
interrupts turned off.*/
void thread_block ()
{
ASSERT (!intr_context ());
ASSERT (intr_get_level () == INTR_OFF);
thread_current ()->status = THREAD_BLOCKED;
schedule ();

}

Interrupts Re-enabled Right After Ctxt Switch

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 9

sema_down() {
Disable interrupts;
while(value == 0) {

add current thread to waiters;
thread_block();

}
value--;
Enable interrupts;

}

thread_yield() {
Disable interrupts;
add current thread to ready_list;
schedule(); // context switch
Enable interrupts;

}

[sema_down]
Disable interrupts;
while(value == 0) {

add current thread to waiters;
thread_block();

}

[thread_yield]
(Returns from schedule())
Enable interrupts;

[thread_yield]
Disable interrupts;
add current thread to ready_list;
schedule();

[thread_yield]
(Returns from schedule())
Enable interrupts;

Thread 1

Thread 2

Thread 2

Thread 1

Semaphore Questions
Are there any problems that can be solved with counting semaphores

that cannot be solved with mutex semaphores?

- If a system only gives you mutex semaphore, can you use it to implement counting
semaphores?

Does it matter which thread is unblocked by a signal operation?

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 10

Semaphore Summary
Semaphores can be used to solve any of the traditional synchronization

problems

However, they have some drawbacks
- They are essentially shared global variables

• Can potentially be accessed anywhere in program

- No connection between the semaphore and the data being controlled by the semaphore
- Used both for critical sections (mutual exclusion) and coordination (scheduling)

• Note that I had to use comments in the code to distinguish

- No control or guarantee of proper usage

Sometimes hard to use and prone to bugs
- Another approach: Use programming language support

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 11

Monitors
A monitor is a programming language construct that controls access to shared

data
- Synchronization code added by compiler, enforced at runtime
- Why is this an advantage?

A monitor is a module that encapsulates
- Shared data structures
- Procedures that operate on the shared data structures
- Synchronization between concurrent threads that invoke the procedures

A monitor protects its data from unstructured access

It guarantees that threads accessing its data through its procedures interact
only in legitimate ways

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 12

Monitor Semantics

A monitor guarantees mutual exclusion
- Only one thread can execute any monitor procedure at any time

• the thread is “in the monitor”

- If a second thread invokes a monitor procedure when a first thread is already executing
one, it blocks
• So the monitor has to have a wait queue…

- If a thread within a monitor blocks, another one can enter

What are the implications in terms of parallelism in a monitor?

A monitor invariant is a safety property associated with the monitor
- It’s expressed over the monitored variables.
- It holds whenever a thread enters or exits the monitor.

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 13

Account Example

Hey, that was easy!

Monitor invariant: balance ≥ 0

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 14

Monitor account {
double balance;

double withdraw(amount) {
balance = balance – amount;
return balance;

}
}

withdraw(amount)
balance = balance – amount;

withdraw(amount)

return balance (and exit)

withdraw(amount)

balance = balance – amount
return balance;

balance = balance – amount;
return balance;

Threads
block

waiting
to get
into

monitor

When first thread exits, another can
enter. Which one is undefined.

Condition Variables

But what if a thread wants to wait for sth inside the monitor?

- If we busy wait, it’s bad

- Even worse, no one can get in the monitor to make changes now!

A condition variable is associated with a condition needed for a thread
to make progress once it is in the monitor.

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 15

Monitor M {
... monitored variables
Condition c;

void enterMonitor (...) {
if (extra property not true) wait(c); waits outside of the monitor's mutex
do what you have to do
if (extra property true) signal(c); brings in one thread waiting on condition

}

Condition Variables

Condition variables support three operations:
- Wait – release monitor lock, wait for C/V to be signaled

• So condition variables have wait queues, too

- Signal – wakeup one waiting thread
- Broadcast – wakeup all waiting threads

Condition variables are not boolean objects
- if (condition_variable) then … does not make sense
- if (num_resources == 0) then wait(resources_available) does

- An example later will make this more clear

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 16

Condition Vars != Semaphores

Condition variables != semaphores
- Although their operations have the same names, they have entirely different semantics (such is

life, worse yet to come)
- However, they each can be used to implement the other

Access to the monitor is controlled by a lock
- wait() blocks the calling thread, and gives up the lock

• To call wait, the thread has to be in the monitor (hence has lock)
• Semaphore::wait just blocks the thread on the queue

- signal() causes a waiting thread to wake up
• If there is no waiting thread, the signal is lost
• Semaphore::signal increases the semaphore count, allowing future entry even if no thread is

waiting
• Condition variables have no history

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 17

Signal Semantics

Two flavors of monitors that differ in the scheduling semantics of signal()

- Hoare monitors (original)
• signal() immediately switches from the caller to a waiting thread

• The condition that the waiter was anticipating is guaranteed to hold when waiter executes

• Signaler must restore monitor invariants before signaling

- Mesa monitors (Mesa, Java)
• signal() places a waiter on the ready queue, but signaler continues inside monitor

• Condition is not necessarily true when waiter runs again
• Returning from wait() is only a hint that something changed
• Must recheck conditional case

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 18

Hoare vs. Mesa Monitors

Hoare
if (!condition)

wait(cond_var);

Mesa
while (!condition)

wait(cond_var);

Tradeoffs
- Mesa monitors easier to use, more efficient

• Fewer context switches, easy to support broadcast

- Hoare monitors leave less to chance
• Easier to reason about the program

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 19

condition might have been changed, if so, wait again

condition definitely holds since we just context switched from signal

condition now holds

More on Condition Variable
and Monitor

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 20

Condition Vars & Locks

C/Vs are also used without monitors in conjunction with locks
- void cond_init (cond_t *, ...);
- void cond_wait (cond_t *c, mutex_t *m);

• Atomically unlock m and sleep until c signaled

• Then re-acquire m and resume executing

- void cond_signal (cond_t *c);
- void cond_broadcast (cond_t *c);

• - Wake one/all threads waiting on c

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 21

Condition Vars & Locks

C/Vs are also used without monitors in conjunction with locks

A monitor ≈ a module whose state includes a C/V and a lock
- Difference is syntactic; with monitors, compiler adds the code

It is “just as if” each procedure in the module calls acquire() on entry and
release() on exit
- But can be done anywhere in procedure, at finer granularity

With condition variables, the module methods may wait and signal on
independent conditions

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 22

Condition Vars & Locks

Why must cond_wait both release mutex_t & sleep?
- void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables?

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 23

while (count == BUFFER_SIZE) {
mutex_unlock(&mutex);
cond_wait(¬_full);
mutex_lock(&mutex);

}

Condition Vars & Locks

Why must cond_wait both release mutex_t & sleep?
- void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables?

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 24

while (count == BUFFER_SIZE) {
mutex_unlock(&mutex);

cond_wait(¬_full);
mutex_lock(&mutex);

}

mutex_lock(&mutex);
... count--;
cond_signal(¬_full);

Consumer

Producer

Using Cond Vars & Locks

Alternation of two threads (ping-pong)

Each executes the following:

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 25

Lock lock;
Condition cond;

void ping_pong () {
acquire(lock);
while (1) {

printf(“ping or pong\n”);
signal(cond);
wait(cond, lock);

}
release(lock);

}

Must acquire lock before you can wait
(similar to needing interrupts disabled
to call thread_block in Pintos)

Wait atomically releases lock
and blocks until signal()

Wait atomically acquires lock
before it returns

Monitors and Java

A lock and condition variable are in every Java object
- No explicit classes for locks or condition variables

Every object is/has a monitor
- At most one thread can be inside an object’s monitor
- A thread enters an object’s monitor by

• Executing a method declared “synchronized”
• Can mix synchronized/unsynchronized methods in same class

• Executing the body of a “synchronized” statement
• Supports finer-grained locking than an entire procedure
• Identical to the Modula-2 “LOCK (m) DO” construct

- The compiler generates code to acquire the object’s lock at the start of the method and
release it just before returning
• The lock itself is implicit, programmers do not worry about it

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 26

Monitors and Java

Every object can be treated as a condition variable
- Half of Object’s methods are for synchronization!

Take a look at the Java Object class:
- Object.wait(*) is Condition::wait()
- Object.notify() is Condition::signal()
- Object.notifyAll() is Condition::broadcast()

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 27

Summary
Semaphores
- wait()/signal() implement blocking mutual exclusion
- Also used as atomic counters (counting semaphores)
- Can be inconvenient to use

Monitors
- Synchronizes execution within procedures that manipulate encapsulated data shared

among procedures
• Only one thread can execute within a monitor at a time

- Relies upon high-level language support

Condition variables
- Used by threads as a synchronization point to wait for events
- Inside monitors, or outside with locks

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 28

Concurrency Bugs Cause Serious Consequences

Race condition in the Therac-25 radiation therapy machine caused
massive overdose and resulted in patient deaths and serious injuries
- The software consists of several routines running concurrently.

- The Data Entry and Keyboard Handler routines share a variable, which recorded
whether the technician had completed entering commands.

- A race condition bug of this shared variable cause the UI to display the wrong mode
to operators

- Incident report, horrible tragedies.

Exercise extra cautions when dealing with concurrency

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 29

https://www.cs.jhu.edu/~huang/cs318/fall20/readings/therac.pdf

Next Time…

Read Chapter 32

9/16/21 CS 318 – Lecture 7 – Semaphores and Monitors 30

