CS 318 Principles of Operating Systems Fall 2021

Lecture 7: Semaphores and Monitors

Prof. Ryan Huang

Higher-Level Synchronization

We looked at using locks to provide mutual exclusion

Locks work, but they have limited semantics

- Just provide mutual exclusion

Instead, we want synchronization mechanisms that

- Block waiters, leave interrupts enabled in critical sections
- Provide semantics beyond mutual exclusion

Look at two common high-level mechanisms

- Semaphores: binary (mutex) and counting
- Monitors: mutexes and condition variables

Use them to solve common synchronization problems

Semaphores

An abstract data type to provide mutual exclusion

- Described by Dijkstra in the "THE" system in 1968

Semaphores are "integers" that support two operations:

- Semaphore:: P() decrements, blocks until semaphore is open, a.k.a wait()
 - after the Dutch word "Proberen" (to try)
- Semaphore::V() increments, allows another thread to enter, a.k.a signal()
 - after the Dutch word "Verhogen" (increment)
- That's it! No other operations not even just reading its value

Semaphore safety property: the semaphore value is always greater than or equal to 0

Blocking in Semaphores

Associated with each semaphore is a queue of waiting threads

When P() is called by a thread:

- If semaphore is open, thread continues
- If semaphore is closed, thread blocks on queue

Then V() opens the semaphore:

- If a thread is waiting on the queue, the thread is unblocked
- If no threads are waiting on the queue, the signal is remembered for the next thread
 - In other words, V() has "history" (c.f., condition vars later)
 - This "history" is a counter

Semaphore Types

Semaphores come in two types

Mutex semaphore (or binary semaphore)

- Represents single access to a resource
- Guarantees mutual exclusion to a critical section

Counting semaphore (or general semaphore)

- Represents a resource with many units available, or a resource that allows certain kinds of unsynchronized concurrent access (e.g., reading)
- Multiple threads can pass the semaphore
- Number of threads determined by the semaphore "count"
 - mutex has count = I, counting has count = N

Using Semaphores

Use is similar to our locks, but semantics are different

Semaphore Implementation in Pintos

```
void sema_down(struct semaphore *sema)
{
    enum intr_level old_level;
    old_level = intr_disable();
    while (sema->value == 0) {
        list_push_back(&sema->waiters,
            &thread_current()->elem);
        thread_block();
    }
    sema->value--;
    intr_set_level(old_level);
}
```

```
void sema_up(struct semaphore *sema)
```

```
enum intr_level old_level;
old_level = intr_disable();
if (!list_empty (&sema->waiters))
   thread_unblock(list_entry(
        list_pop_front(&sema->waiters),
            struct thread, elem));
sema->value++;
intr_set_level(old_level);
```

To reference current thread: thread_current()

```
thread_block() puts the current thread to sleep
```

Implementation of thread_block()

```
/* Puts the current thread to sleep. This function must be called with
interrupts turned off.*/
void thread_block ()
{
    ASSERT (!intr_context ());
    ASSERT (intr_get_level () == INTR_OFF);
    thread_current ()->status = THREAD_BLOCKED;
    schedule ();
}
```

thread_block() assumes the interrupts are disabled

This means we will have the thread sleep with interrupts disabled

Isn't this bad?

- Don't we want to only disable interrupts when entering/leaving critical sections but keep interrupts enabled during critical section?

Interrupts Re-enabled Right After Ctxt Switch

Semaphore Questions

Are there any problems that can be solved with counting semaphores that cannot be solved with mutex semaphores?

- If a system only gives you mutex semaphore, can you use it to implement counting semaphores?

Does it matter which thread is unblocked by a signal operation?

Semaphore Summary

Semaphores can be used to solve any of the traditional synchronization problems

However, they have some drawbacks

- They are essentially shared global variables
 - Can potentially be accessed anywhere in program
- No connection between the semaphore and the data being controlled by the semaphore
- Used both for critical sections (mutual exclusion) and coordination (scheduling)
 - Note that I had to use comments in the code to distinguish
- No control or guarantee of proper usage

Sometimes hard to use and prone to bugs

- Another approach: Use programming language support

Monitors

A monitor is a programming language construct that controls access to shared data

- Synchronization code added by compiler, enforced at runtime
- Why is this an advantage?

A monitor is a module that encapsulates

- Shared data structures
- Procedures that operate on the shared data structures
- Synchronization between concurrent threads that invoke the procedures

A monitor protects its data from unstructured access

It guarantees that threads accessing its data through its procedures interact only in legitimate ways

Monitor Semantics

A monitor guarantees mutual exclusion

- Only one thread can execute any monitor procedure at any time
 - the thread is "in the monitor"
- If a second thread invokes a monitor procedure when a first thread is already executing one, it blocks
 - So the monitor has to have a wait queue...
- If a thread within a monitor blocks, another one can enter

What are the implications in terms of parallelism in a monitor?

A monitor invariant is a safety property associated with the monitor

- It's expressed over the monitored variables.
- It holds whenever a thread enters or exits the monitor.

Account Example

Hey, that was easy!

Monitor invariant: $balance \ge 0$

Condition Variables

But what if a thread wants to wait for sth inside the monitor?

- If we busy wait, it's bad
- Even worse, no one can get in the monitor to make changes now!

A condition variable is associated with a condition needed for a thread to make progress once it is in the monitor.

```
Monitor M {
    ... monitored variables
    Condition c;

    void enterMonitor (...) {
        if (extra property not true) wait(c); waits outside of the monitor's mutex
        do what you have to do
        if (extra property true) signal(c); brings in one thread waiting on condition
    }
```

Condition Variables

Condition variables support three operations:

- Wait release monitor lock, wait for C/V to be signaled
 - So condition variables have wait queues, too
- Signal wakeup one waiting thread
- Broadcast wakeup all waiting threads

Condition variables are not boolean objects

- X if (condition_variable) then ... does not make sense
- /if (num_resources == 0) then wait(resources_available) does
 - An example later will make this more clear

Condition Vars != Semaphores

Condition variables != semaphores

- Although their operations have the same names, they have entirely different semantics (such is life, worse yet to come)
- However, they each can be used to implement the other

Access to the monitor is controlled by a lock

- wait() blocks the calling thread, and gives up the lock
 - To call wait, the thread has to be in the monitor (hence has lock)
 - Semaphore::wait just blocks the thread on the queue
- signal() causes a waiting thread to wake up
 - If there is no waiting thread, the signal is lost
 - Semaphore::signal increases the semaphore count, allowing future entry even if no thread is waiting
 - Condition variables have no history

Signal Semantics

Two flavors of monitors that differ in the scheduling semantics of signal()

- Hoare monitors (original)
 - signal() immediately switches from the caller to a waiting thread
 - The condition that the waiter was anticipating is guaranteed to hold when waiter executes
 - Signaler must restore monitor invariants before signaling
- Mesa monitors (Mesa, Java)
 - signal() places a waiter on the ready queue, but signaler continues inside monitor
 - Condition is not necessarily true when waiter runs again
 - Returning from wait() is only a *hint* that something changed
 - Must recheck conditional case

Hoare vs. Mesa Monitors

- Mesa monitors easier to use, more efficient
 - Fewer context switches, easy to support broadcast
- Hoare monitors leave less to chance
 - Easier to reason about the program

More on Condition Variable and Monitor

C/Vs are also used without monitors in conjunction with locks

- void cond_init (cond_t *, ...);
- void cond_wait (cond_t *c, mutex_t *m);
 - Atomically unlock m and sleep until c signaled
 - Then re-acquire m and resume executing
- void cond_signal (cond_t *c);
- void cond_broadcast (cond_t *c);
 - - Wake one/all threads waiting on c

C/Vs are also used without monitors in conjunction with locks

A monitor \approx a module whose state includes a C/V and a lock

- Difference is syntactic; with monitors, compiler adds the code

It is "just as if" each procedure in the module calls acquire() on entry and release() on exit

- But can be done anywhere in procedure, at finer granularity

With condition variables, the module methods may wait and signal on independent conditions

Why must cond_wait both release mutex_t & sleep?

- void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables?

```
while (count == BUFFER_SIZE) {
    mutex_unlock(&mutex);
    cond_wait(&not_full);
    mutex_lock(&mutex);
}
```

Why must cond_wait both release mutex_t & sleep?

- void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables?

Producer

```
while (count == BUFFER_SIZE) {
    mutex_unlock(&mutex);
```

```
cond_wait(&not_full);
mutex_lock(&mutex);
```

Consumer

```
mutex_lock(&mutex);
... count--;
cond_signal(&not_full);
```

}

Using Cond Vars & Locks

Alternation of two threads (ping-pong)

Each executes the following:

Monitors and Java

A lock and condition variable are in every Java object

- No explicit classes for locks or condition variables

Every object is/has a monitor

- At most one thread can be inside an object's monitor
- A thread enters an object's monitor by
 - Executing a method declared "synchronized"
 - Can mix synchronized/unsynchronized methods in same class
 - Executing the body of a "synchronized" statement
 - Supports finer-grained locking than an entire procedure
 - Identical to the Modula-2 "LOCK (m) DO" construct
- The compiler generates code to acquire the object's lock at the start of the method and release it just before returning
 - The lock itself is implicit, programmers do not worry about it

Monitors and Java

Every object can be treated as a condition variable

- Half of Object's methods are for synchronization!

Take a look at the Java Object class:

- Object.wait(*) is Condition::wait()
- Object.notify() is Condition::signal()
- Object.notifyAll() is Condition::broadcast()

Summary

Semaphores

- wait()/signal() implement blocking mutual exclusion
- Also used as atomic counters (counting semaphores)
- Can be inconvenient to use

Monitors

- Synchronizes execution within procedures that manipulate encapsulated data shared among procedures
 - Only one thread can execute within a monitor at a time
- Relies upon high-level language support

Condition variables

- Used by threads as a synchronization point to wait for events
- Inside monitors, or outside with locks

Concurrency Bugs Cause Serious Consequences

- Race condition in the Therac-25 radiation therapy machine caused massive overdose and resulted in patient deaths and serious injuries
 - The software consists of several routines running concurrently.
 - The Data Entry and Keyboard Handler routines share a variable, which recorded whether the technician had completed entering commands.
 - A race condition bug of this shared variable cause the UI to display the wrong mode to operators
 - Incident report, horrible tragedies.

Exercise extra cautions when dealing with concurrency

Next Time...

Read Chapter 32