
CS 318 Principles of Operating Systems

Lecture 4: Thread

Prof. Ryan Huang

Fall 2021

Administrivia

Lab 0 due today
- Submit through Blackboard
- Double check the lab0-handin.tar.gz contains the changes you made

Fill out project group form

Lab 1 released

9/8/21 CS 318 – Lecture 4 – Thread 2

Processes
Recall that a process includes many things
- An address space (defining all the code and data pages)
- OS resources (e.g., open files) and accounting information
- Execution state (PC, SP, regs, etc.)

Creating a new process is costly
- because of all of the data structures that must be allocated and initialized

• recall struct proc in Solaris

Communicating between processes is also costly
- because most communication goes through the OS

• overhead of system calls and copying data

9/8/21 CS 318 – Lecture 4 – Thread 3

Concurrent Programs

Recall our Web server example (or any parallel program)…
- forks off copies of itself to handle multiple simultaneous requests

To execute these programs we need to
- Create several processes that execute in parallel
- Cause each to map to the same address space to share data

• They are all part of the same computation

- Have the OS schedule these processes in parallel (logically or physically)

This situation is very inefficient
- Space: PCB, page tables, etc.
- Time: create data structures, fork and copy addr space, etc.

9/8/21 CS 318 – Lecture 4 – Thread 4

Rethinking Processes

What is similar in these cooperating processes?
- They all share the same code and data (address space)
- They all share the same privileges
- They all share the same resources (files, sockets, etc.)

What don’t they share?
- Each has its own execution state: PC, SP, and registers

Idea: Why not separate the process concept from its execution state?
- Process: address space, privileges, resources, etc.
- Execution state: PC, SP, registers

Exec state also called thread of control, or thread

9/8/21 CS 318 – Lecture 4 – Thread 5

Threads

Modern OSes separate the concepts of processes and threads
- The thread defines a sequential execution stream within a process (PC, SP, registers)
- The process defines the address space and general process attributes

A thread is bound to a single process
- Processes, however, can have multiple threads

Threads become the unit of scheduling
- Processes are now the containers in which threads execute
- Processes become static, threads are the dynamic entities

Data structure: Thread Control Block (TCB)

9/8/21 CS 318 – Lecture 4 – Thread 6

Small and Fast…

Pintos thread class

9/8/21 CS 318 – Lecture 4 – Thread 7

struct thread {
tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name (for debugging purposes). */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem allelem; /* List element for all threads list. */
struct list_elem elem; /* List element. */
unsigned magic; /* Detects stack overflow. */

};

Threads in a Process

9/8/21 CS 318 – Lecture 4 – Thread 8

What about heap?

Threads in a Process

9/8/21 CS 318 – Lecture 4 – Thread 9

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Process/Thread Separation

Easier to support multithreaded applications
- Concurrency does not require creating new processes

Concurrency (multithreading) can be very useful
- Improving program structure
- Allowing one process to use multiple CPUs/cores
- Handling concurrent events (e.g., Web requests)
- Allowing program to overlap I/O and computation

So multithreading is even useful on a uniprocessor
- Although today even cell phones are multicore

But, brings a whole new meaning to Spaghetti Code
- Forcing OS students to learn about synchronization…

9/8/21 CS 318 – Lecture 4 – Thread 10

Threads: Concurrent Servers

fork() to create new processes to handle requests is overkill

Recall our forking Web server:

9/8/21 CS 318 – Lecture 4 – Thread 11

while (1) {
int sock = accept();
if ((child_pid = fork()) == 0) {
// Handle client request
// Close socket and exit

} else {
// Close socket

}
}

Threads: Concurrent Servers

Instead, we can create a new thread for each request

9/8/21 CS 318 – Lecture 4 – Thread 12

web_server() {
while (1) {

int sock = accept();
thread_fork(handle_request, sock);

}
}

handle_request(int sock) {
Process request
close(sock);

}

Thread Package API

tid thread_create (void (*fn) (void *), void *);

- Create a new thread, run fn with arg

void thread_exit ();

- Destroy current thread

void thread_join (tid thread);

- Wait for thread thread to exit

See Birrell for good introduction

9/8/21 CS 318 – Lecture 4 – Thread 13

https://cs.jhu.edu/~huang/cs318/fall19/readings/birrell.pdf

Implementing Threads

thread_create(fun, args)
- Allocate Thread Control Block (TCB)
- Allocate stack
- Build stack frame for base of stack
- Put func, args on stack
- Put thread on ready list

9/8/21 CS 318 – Lecture 4 – Thread 14

Kernel

User-Level Processes

Heap

Code

Globals TCB 1

Kernel Thread 1

Stack

TCB 2

Kernel Thread 2

Stack

TCB 3

Kernel Thread 3

Stack

TCB 1.B

Stack

TCB 1.A

Stack

Process 1

PCB 1

TCB 2.B

Stack

TCB 2.A

Stack

Process 2

PCB 2

Heap

Code

Globals

Stack

Thread A

Stack

Thread B
Process 2

Heap

Code

Globals

Stack

Thread A

Stack

Thread B
Process 1

Kernel-Level Threads

All thread operations are implemented in the kernel

The OS schedules all the threads in the system

Also known as lightweight processes
- Windows: threads
- Solaris: lightweight processes (LWP)
- POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM

9/8/21 CS 318 – Lecture 4 – Thread 15

Kernel Thread Limitations

Every thread operation must go through kernel
- create, exit, join, synchronize, or switch for any reason
- On my laptop: syscall takes 100 cycles, fn call 5 cycles
- Result: threads 10x-30x slower when implemented in kernel

One-size fits all thread implementation
- Kernel threads must please all people
- Maybe pay for fancy features (priority, etc.) you don’t need

General heavy-weight memory requirements
- e.g., requires a fixed-size stack within kernel
- other data structures designed for heavier-weight processes

9/8/21 CS 318 – Lecture 4 – Thread 16

Alternative: User-Level Threads

Implement as user-level library (a.k.a. green threads)
- One kernel thread per process
- thread_create, thread_exit, etc., just library functions

- library does thread context switch

User-level threads are small and fast
- pthreads: PTHREAD_SCOPE_PROCESS
- Java: Thread

9/8/21 CS 318 – Lecture 4 – Thread 17

User-Level Thread Limitations

Can’t take advantage of multiple CPUs or cores

User-level threads are invisible to the OS
- They are not well integrated with the OS

As a result, the OS can make poor decisions
- Scheduling a process with idle threads
- A blocking system call (e.g., disk read) blocks all threads

• Even if the process has other threads that can execute

- Unscheduling a process with a thread holding a lock

How to solve this?
- communication between the kernel and the user-level thread manager (Windows 8)

• Scheduler Activation

9/8/21 CS 318 – Lecture 4 – Thread 18

https://homes.cs.washington.edu/~tom/pubs/sched_act.pdf

Kernel vs. User Threads

Kernel-level threads
- Integrated with OS (informed scheduling)
- Slower to create, manipulate, synchronize

User-level threads
- Faster to create, manipulate, synchronize
- Not integrated with OS (uninformed scheduling)

Understanding their differences is important
- Correctness, performance

9/8/21 CS 318 – Lecture 4 – Thread 19

Kernel and User Threads

Or use both kernel and user-level threads
- Can associate a user-level thread with a kernel-level thread
- Or, multiplex user-level threads on top of kernel-level threads

Java Virtual Machine (JVM) (also C#, others)
- Java threads are user-level threads
- On older Unix, only one “kernel thread” per process

• Multiplex all Java threads on this one kernel thread

- On modern OSes
• Can multiplex Java threads on multiple kernel threads
• Can have more Java threads than kernel threads

• Why?

9/8/21 CS 318 – Lecture 4 – Thread 20

User Threads on Kernel Threads

User threads implemented on kernel threads
- Multiple kernel-level threads per process
- thread_create, thread_exit still library functions as before

Sometimes called n : m threading
- Have n user threads per m kernel threads (Simple user-level threads are n : 1, kernel threads 1 : 1)

9/8/21 CS 318 – Lecture 4 – Thread 21

Implementing User-Level Threads

Allocate a new stack for each thread_create

Keep a queue of runnable threads

Schedule periodic timer signal (setitimer)
- Switch to another thread on timer signals (preemption)

Replace blocking system calls (read/write/etc.)

to non-blocking calls
- If operation would block, switch and run different thread

9/8/21 CS 318 – Lecture 4 – Thread 22

User-Level Thread Scheduling

The thread scheduler determines when a thread runs

It uses queues to keep track of what threads are doing
- Just like the OS and processes
- But it is implemented at user-level in a library

Run queue: Threads currently running (usually one)

Ready queue: Threads ready to run

Are there wait queues?
- How might you implement sleep(time)?

9/8/21 CS 318 – Lecture 4 – Thread 23

Non-Preemptive Thread Scheduling

Threads voluntarily give up the CPU with yield

What is the output of running these two threads?

9/8/21 CS 318 – Lecture 4 – Thread 24

while (1) {

printf(“ping\n”);

yield();

}

while (1) {

printf(“pong\n”);

yield();

}

Ping Thread Pong Thread

yield()

Wait a second. How does yield() work?

The semantics of yield are that it gives up the CPU to another thread
- In other words, it context switches to another thread

So what does it mean for yield to return?
- It means that another thread called yield!

Execution trace of ping/pong
- printf(“ping\n”);
- yield();
- printf(“pong\n”);
- yield();
- …

9/8/21 CS 318 – Lecture 4 – Thread 25

Preemptive Thread Scheduling

Non-preemptive threads have to voluntarily give up CPU
- A long-running thread will take over the machine
- Only voluntary calls to yield, sleep, or finish cause a context switch

Preemptive scheduling causes an involuntary context switch
- Need to regain control of processor asynchronously
- Use timer interrupt
- Timer interrupt handler forces current thread to “call” yield

9/8/21 CS 318 – Lecture 4 – Thread 26

Thread Context Switch

The context switch routine does all of the magic
- Saves context of the currently running thread (old_thread)

• Push all machine state onto its stack

- Restores context of the next thread
• Pop all machine state from the next thread’s stack

- The next thread becomes the current thread
- Return to caller as new thread

This is all done in assembly language
- It works at the level of the procedure calling convention, so it cannot be implemented

using procedure calls

9/8/21 CS 318 – Lecture 4 – Thread 27

Background: Calling Conventions (1)

What
- a standard on how functions should be implemented and called by the machine
- how a function call in C or C++ gets converted into assembly language

• how arguments are passed to a func, how return values are passed back out of a function, how the
func is called, and how the func manages the stack and its stack frame, etc.

- Compilers need to obey this standard in compiling code into assembly
• set up the stack and registers properly

Why
- A program calls functions across many object files and libraries
- For these codes to be interfaced together, we need a standardization for calls

9/8/21 CS 318 – Lecture 4 – Thread 28

Background: Calling Conventions (2)

x86 calling convention stack setup

9/8/21 CS 318 – Lecture 4 – Thread 29

int compute(int a, int b)
{
int i, result;
result = 0;
for (i = 0; i < a; i++)
result = result + b - i;

return result;
}
void foo()
{
int x, y, z;
x = 3;
y = 5;
z = compute(x, y);
printf("compute(%d, %d)=%d\n", x, y, z);

}

Background: Calling Conventions

Registers divided into 2 groups
- caller-saved regs: callee function free to modify

• on x86, %eax [return val], %edx, & %ecx

- callee-saved regs: callee function must restore to
original value upon return
• on x86, %ebx, %esi, %edi, plus %ebp and %esp

9/8/21 CS 318 – Lecture 4 – Thread 30

• save active caller registers
• call foo (pushes pc)

• restore caller registers

• save used callee registers
• ...do stuff...
• restore callee saved registers
• jump back to calling function

Pintos Thread Implementation

Thread control block structure

9/8/21 CS 318 – Lecture 4 – Thread 31

struct thread {
tid_t tid;
enum thread_status status;
char name[16];
uint8_t *stack; /* Saved stack pointer. */
struct list_elem allelem;
struct list_elem elem;
unsigned magic; /* Detects stack overflow. */

};

uint32_t thread_stack_ofs =
offsetof(struct thread, stack);

/* Each thread structure is stored in its own 4 kB page. The
thread structure itself sits at the very bottom of the page
(at offset 0). The rest of the page is reserved for the
thread's kernel stack, which grows downward from the top of
the page (at offset 4 kB) */

Pintos switch_threads

C declaration for thread-switch function:
- struct thread *switch_threads (struct thread *cur, struct thread *next);

Actual implementation is in i386 assembly

9/8/21 CS 318 – Lecture 4 – Thread 32

i386 switch_threads

This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation

9/8/21 CS 318 – Lecture 4 – Thread 33

pushl %ebx; pushl %ebp # Save callee-saved regs
pushl %esi; pushl %edi
mov thread_stack_ofs, %edx # %edx = offset of stack field

in thread struct
movl 20(%esp), %eax # %eax = cur
movl %esp, (%eax,%edx,1) # cur->stack = %esp
movl 24(%esp), %ecx # %ecx = next
movl (%ecx,%edx,1), %esp # %esp = next->stack
popl %edi; popl %esi # Restore calle-saved regs
popl %ebp; popl %ebx
ret # Resume execution

struct thread *switch_threads (struct thread *cur, struct thread *next);

https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_7.html
https://cs.jhu.edu/~huang/cs318/fall19/project/pintos_7.html

i386 switch_threads

9/8/21 CS 318 – Lecture 4 – Thread 34

pushl %ebx; pushl %ebp
pushl %esi; pushl %edi

i386 switch_threads

9/8/21 CS 318 – Lecture 4 – Thread 35

mov thread_stack_ofs, %edx
movl 20(%esp), %eax
movl %esp, (%eax,%edx,1)
movl 24(%esp), %ecx
movl (%ecx,%edx,1), %esp

cur->stack = %esp
%esp = next->stack

pushl %ebx; pushl %ebp
pushl %esi; pushl %edi

i386 switch_threads

9/8/21 CS 318 – Lecture 4 – Thread 36

popl %edi; popl %esi
popl %ebp; popl %ebx

mov thread_stack_ofs, %edx
movl 20(%esp), %eax
movl %esp, (%eax,%edx,1)
movl 24(%esp), %ecx
movl (%ecx,%edx,1), %esp

pushl %ebx; pushl %ebp
pushl %esi; pushl %edi

i386 switch_threads

9/8/21 CS 318 – Lecture 4 – Thread 37

popl %edi; popl %esi
popl %ebp; popl %ebx

mov thread_stack_ofs, %edx
movl 20(%esp), %eax
movl %esp, (%eax,%edx,1)
movl 24(%esp), %ecx
movl (%ecx,%edx,1), %esp

pushl %ebx; pushl %ebp
pushl %esi; pushl %edi

ret

Threads Summary

The operating system as a large multithreaded program
- Each process executes as a thread within the OS

Multithreading is also very useful for applications
- Efficient multithreading requires fast primitives
- Processes are too heavyweight

Solution is to separate threads from processes
- Kernel-level threads much better, but still significant overhead
- User-level threads even better, but not well integrated with OS

Now, how do we get our threads to correctly cooperate with each other?
- Synchronization…

9/8/21 CS 318 – Lecture 4 – Thread 38

Next Time…

Read Chapters 28, 29

9/8/21 CS 318 – Lecture 4 – Thread 39

