CS 318 Principles of Operating Systems
Fall 2021

Lecture |: Introduction

Prof. Ryan Huang
=
S

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

® Zoom Meeting

student student Student student

Student student Student Student

student Student student Student

Student 3 4 Student

Professor

it -
Start Video

It is great to meet in person again...

8/31/21 CS 318 — Lecture | 2

Course Instructor

Prof. Ryan Huang

- Assistant Professor, joined Hopkins in 2017
* https://cs.jhu.edu/~huang

- Lead the Ordered Systems Lab: https://orderlab.io
* research on OS, Cloud and Mobile Computing, Systems Reliability

- Office: Malone 231

Office Hours
- Tue Thu 9:30-10:30 am Eastern Time (or by appointment)

- Default Zoom, in-person if necessary

8/31/21 CS 318 — Lecture |

https://cs.jhu.edu/~huang
https://orderlab.io/

Lecture | Overview

" 4% »

COURSE ADMINISTRATIVE WHAT IS AN OS?

WALK-THROUGH
OVERVIEW

OF OS BASICS

8/31/21 CS 318 — Lecture |

Staff: Teaching Assistants

Haoze Wu (TA) Gongqgi Huang (CA)
- Office Hours: Thu/Fri 4-5 pm - Office Hours: Tue/Thu 10:30-11:30 am
Yuzhuo Jing (CA) Evan Leung (CA)

- Office Hours: Mon &Wed 3:15-4:15 pm - Office Hours: Wed & Fri 8:30-9:30 am

8/31/21 CS 318 — Lecture |

Course Overview

An introductory course to operating systems

- Classic OS concepts and principles
- Prepare you for advanced OS and distributed system course
- OS concepts often asked in tech interview questions

A practice course for hands-on experience with OS

- Four large programming assignments on a small but real OS
- Reinforce your understandings about the theories

8/31/21 CS 318 — Lecture |

Bad News...

This is a TOUGH course

Requires proficiency in systems programming

- “Low level (C) programming absolutely necessary.”
- “Need to be fearless about breaking code (and then fixing it later).”
- “Need to be confident in touching and modifying large systems of code”

Requires significant time commitment

- “The projects are insanely time consuming”
- “The workload is much much heavier than your average CS course...Be prepared to spend

entire weeks working on nothing but the material for this course.”

8/31/21 CS 318 — Lecture |

Good News

There aren’t many such hardcore courses in CS curriculum ©

- Typically the final checkmark for a solid CS degree
- You don’t have to take it if you are not interested in it

It’s hard, but rewarding in the end

- “The project are very hard. But completing them is very rewarding.”
- “You learn a lot about operating systems and computers in general.”

A highly valued skill after graduation

We wiill try our best to help you

8/31/21 CS 318 — Lecture |

Why Study Operating Systems?
Technology trends

— CPU: |.85 GHz dual-core

memory: 2 GB

price: $329

— size: 9.4 in X 6.6 in

8/31/21 CS 318 — Lecture |

Why Study Operating Systems?

Technology trends

PanY: LT
~ RN

— CPU: |.85 GHz dual-core

iad L T

memory: 2 GB

price: $329

— size: 9.4 in X 6.6 in

iPad (2017) IBM 709 (c. late 1950~)

World’s most powerful computer then

8/31/21 CS 318 — Lecture | 10

Why Study Operating Systems?

Technology trends
— CPU: | .85 GHz dual-core 222 mult/div per sec. | e —
memory: 2 GB m
price: $329 m
—size: 9.4 in X 6.6 in m -

iPad (2017) IBM 709 (c. late 1950~)

World’s most powerful computer then

8/31/21 CS 318 — Lecture | I

Why Study Operating Systems?

Technology trends
— CPU: |.85 GHz dual-core ~4000 mult/div per sec.?] -~
memory: 2 GB 32K 36-bit words
price: $329 $2,630,000+
—size: 9.4 in x 6.6 in half room -
iPad (2017) IBM. 709 (c. late 1950~)

World’s most powerful computer then

8/31/21 CS 318 — Lecture | 12

Why Study Operating Systems?

Technology trends

3D stacked chip persistent memory accelerators

smartphones loT device self-driving cars robots data centers

8/31/21 CS 318 — Lecture |

Why Study Operating Systems?

Technology trends

They all need OS support to be useful!

Why Study Operating Systems?

An exciting time for OS designs

- New hardware, smart devices, self-driving cars, data centers, etc.
- Existing OSes face issues in performance, battery life, security, isolation

Pervasive principles for systems in general

. . many of you
- Caching, concurrency, memory management, I/O, protection

Complex software systems many of you

- Many of you will go on to work on large software projects
- OSes serve as examples of an evolution of complex systems

Understand what you use all of you

- System software tends to be mysterious
- Understanding OS makes you a more effective programmer

8/31/21 CS 318 — Lecture |

5

Course Materials

Course materials

- Lectures are the primary references
- Textbooks are supplementary readings
- Occasionally non-required papers

8/31/21 CS 318 — Lecture |

8/31/21

Topics Covered

Three Fundamental Pieces

CS 318 — Lecture

/ Virtualization\

_ /

8/31/21

Topics Covered

Three Fundamental Pieces

CS 318 — Lecture

/ Virtualization\

_ /

8/31/21

Topics Covered

/ Concurrency\

_ /

Three Fundamental Pieces

CS 318 — Lecture

/ Virtualization\

Topics Covered

/ Concurrency\

_ /

/ Persistence \

_ /

Three Fundamental Pieces

/ Virtualization\

Processes
Scheduling

Virtual Memory

_

/

Topics Covered

/ Concurrency\

_ /

/ Persistence \

_ /

Three Fundamental Pieces

Topics Covered

/ Virtualization\ / Concurrency\ / Persistence\

Processes Threads
Scheduling Synchronization
Virtual Memory Semaphores and Monitors

N NG N\ /

Three Fundamental Pieces

Topics Covered

/ Virtualization\ / Concurrency\ / Persistence\

Processes Threads /O
Scheduling Synchronization Disks
Virtual Memory Semaphores and Monitors File Systems

N NG N\ /

Three Fundamental Pieces

8/31/21

Textbook

Operatlng
;'*;Systems

v o Three Easy Pleces

- Remzi H'.A;'pa;i'-bus_::;_é'au
Andrea C.,Ar_pa'ci-D_usseéT_J

CS 318 — Lecture |

Operating Systems: Three
Easy Pieces, Version 0.91

By Remzi Arpaci-Dusseau and
Andrea Arpaci-Dusseau

24

http://from-a-to-
remzi.blogspot.com/2014/01/the-case-for-

free-online-books-fobs.html

8/31/21

Textbook

Operatlng
" ';Systems

v o Three Easy Pleces

- Remzi H'.A;'pa_ci‘ebus.;,_é'au
Andrea C.,Ar_pa'ci-DysseéT_:

CS 318 — Lecture |

Operating Systems: Three
Easy Pieces, Version 0.91

By Remzi Arpaci-Dusseau and
Andrea Arpaci-Dusseau

25

http://from-a-to-remzi.blogspot.com/2014/01/the-case-for-free-online-books-fobs.html

8/31/21

Textbook

CS 318 — Lecture |

Operating Systems
Concepts

By Silberschatz, Galvin and Gagne

26

What killed the dinosaur?

8/31/21

Textbook

CS 318 — Lecture |

Operating Systems
Concepts

By Silberschatz, Galvin and Gagne

27

Textbook

8/31/21

Other Recommended Textbooks

Operating
Systems

Principles & Practice

SECOND EDITION

Thomas Anderson
Michael Dahlin

O’REILLY" DANIEL P. BOVET & MARCO CESATI

8/31/21 CS 318 — Lecture |

Important Links (1)

Course Website (check it often)

- https://www.cs.jhu.edu/~huang/cs3 | 8/fall2 |

- Course syllabus and schedule
- Lecture slides
- Homework handouts

- Project descriptions and references

8/31/21 CS 318 — Lecture |

30

https://www.cs.jhu.edu/~huang/cs318/fall21

Important Links (2)

Discussion Forum: CampusWire

- https://campuswire.com/p/G432AC582
- Access code: 9699

- Questions about project, lecture, exams

Staff mail list:
- ¢s318-staff@cs.jhu.edu

- administrative requests, sensitive questions, etc.

8/31/21 CS 318 — Lecture |

31

https://campuswire.com/p/G432AC582
mailto:cs318-staff@cs.jhu.edu

Homework

Several homework assignments throughout the semester

- help you check understanding about the lectures

- prepare you for the exams

The homework assignments will not be graded

- amount learned from doing homework is proportional to effort

- your choice on how much effort

8/31/21 CS 318 — Lecture |

32

Project Assighments

Implement parts of Pintos operating system

- Developed in 2005 for Stanford’s CS 140 OS class
- Written in C, built for x86 hardware

* can run on a real machine!

8/31/21 CS 318 — Lecture |

33

Project Assighments

Implement p

]
5

USB Device 1: Fingerprint Semsor (
- DeVEIOPEd UHCI: Emabling 2 root ports

B

S i
l‘;.;’;'\.
- a

USB: scanning devices... €

. . UHCI: Enabling 2 root ports

- Written in — USB: scanning devices... =
" USB Device 1: Flashdrive 3838 (Menorex) -

°* can run o ; uda: 247,616 sectors (120 WD), USB 4oy

udal: 945 sectors (472 kB), Pintos 05 kermel (28)
uda2: 9,872 sectors (4 WB), Pintos file systen (21)
udal: 1,088 sectors (584 kB), Piwtos scratch (22)
filesys: using wida2

scratch: using wdad

Boot complete.

Executing ‘shell’:

Shell starting...The best operating systea?
—echo Hello Nerld

echo Hello Nerld

echo: exit(8)

“echo Hello Norld®: exit code 0

—shell

Shell starting...The best operating systea?
—exit

Shell exiting.shell: exit(@)

"shell®: exit code 0

el

8/31/21

Project Assighments

Implement parts of Pintos operating system

- Developed in 2005 for Stanford’s CS 140 OS class
- Written in C, built for x86 hardware

* can run on a real machine!

- Use hardware emulator (QEMU/Bochs) during development

8/31/21 CS 318 — Lecture |

35

QEMU
SeaBI0S (version rel-1.10.2-0-g5f4c?bl-prebuilt.gemu-pro ject.org)
Booting from Hard Disk...

-¢ run shell
3,968 kB RAM...
367 pages available in kernel pool.
367 pages available in user pool.
alibrating timer... 523,468,800 loopsss.
1,008 sectors (504 kB), model “"QMOOOO1", serial "QEMU HARDDISK"
hdal: 218 sectors (109 kB), Pintos 0S kernel (20)
hdb: 9,072 sectors (4 MB), model "(QMOOOEEZ2", serial "QEMU HARDDISK"
lhdb1l: 8,192 sectors (4 MB), Pintos file system (21)
f i lesys: using hdbl
N0 swap device--swap disabled
Boot complete.
Executing ’'shell’:
Shell starting...
-echo "hello cs318"
echo "hello cs318"

exit(0Q)
Yecho "hello cs318"": exit code 0O

exit(0)
“1s /": exit code O
-mkdir home
kdir: exit(0)
"mkdir home": exit code 0

Project Assignments (2)

One setup lab (lab 0)
- due next Thursday (done individually)

Four substantial labs:

- Required: Threads, User processes,Virtual memory
- Optional: File system

Implement projects in groups of up to 3 people

- Start picking your partners today

Warning: each project requires significant time to complete

- Don’t wait until the last minute to start!!

8/31/21 CS 318 — Lecture |

37

8/31/21

Project Assighments (3)

Automated tests

- All tests are given so you immediately know how well your solution performs

- You either pass a test case or fail, there is no partial credit

Desigh document

- Answer important questions related to your design for a lab

Coding style

- Can your group member and TAs understand your code easily?

CS 318 — Lecture |

38

Project Design and Style

Must turn in a desigh document along with code

- Large software systems not just about producing working code
- We supply you with templates for each project’s design doc

TAs will manually inspect code

- e.g., must actually implement the design
- must handle corner cases (e.g., handle malloc failure)

- will deduct points for error-prone code

Code must be easy to read

- Indent code, keep lines and functions short
- Use a consistent coding style
- Comment important structure members, globals, functions

8/31/21 CS 318 — Lecture |

39

Project Lab Environment

The CS department ugrad and grad lab machines

- Running Linux on x86

- The toolchain already setup

You may also use your own machine

- We have written detailed instructions for setting up the environment
* https://cs.jhu.edu/~huang/cs3|8/fall2 | /project/setup.html

- Unix and Mac OS preferred. Windows needs VMs
- Pre-built VM image provided

8/31/21 CS 318 — Lecture |

40

https://cs.jhu.edu/~huang/cs318/fall21/project/setup.html

Quizzes & Exam

Quizzes

- In class, bring your laptop or other computer devices

- Mainly cover topics in first half of class

Final Exam

- Mainly covers second half of class + selected materials from first part

* | will be explicit about the material covered

- Include project questions

8/31/21 CS 318 — Lecture |

41

Grading

Quizzes: 15%
Final Exam: 25%

Project: 60%

- Lab 3b is optional for 318-section students
- Lab 4 is optional for all students
* Completing it receives a max 6% extra credits

- For each project
* 60% based on passing test cases

* 40% based on design document and style

8/31/21 CS 318 — Lecture |

42

Late Policies

Late submissions receive penalties as follows

- | day late, 15% deduction
- 2 days late, 30% deduction
- 3 days late, 60% deduction
- after 4 days, no credit

Each team will have a total of 6-day grace period

- can spread into 4 projects
- for interview, attending conference, errands, etc., no questions asked

- use it wisely, strongly suggest to reserve it for later labs (lab3, 4)

8/31/21 CS 318 — Lecture |

43

Collaboration and Cheating Policies (A)

Collaboration

- Explaining a concept to someone in another group
- Discussing algorithms/testing strategies with other groups
- Helping someone else (in another group) debug

8/31/21 CS 318 — Lecture |

44

Collaboration and Cheating Policies (B)

Do not look at other people’s solutions

- Including solutions online

* This means copying code from GitHub will get you into big trouble

- We will run comprehensive tools to check for potential cheating

Do not publish your own solutions

- online (e.g., on GitHub) or share with other teams

Cite any code that inspired your code

- If you cite what you used, it won’t be treated as cheating

* in worst case, we deduct points if it undermines the assignment

8/31/21 CS 318 — Lecture |

45

Do Not Cheat

It will be caught
The consequence is very high

Truth: you can always get better outcome by not cheating

8/31/21 CS 318 — Lecture |

46

How Not to Pass CS 318?

Do not come to lecture

- The slides are online and the material is in the book anyway

- Lecture walks you through difficult materials and tells you the context

Do not do the homework

- It’s not part of the grade
- Concepts seem straightforward...until you apply them

- Excellent practice for the exams, and project

8/31/21 CS 318 — Lecture |

47

How Not to Pass CS 318?

Do not ask questions in lecture, office hours or online

- It’s scary, | don’t want to embarrass myself
- Asking questions is the best way to clarify lecture material

- Office hours and email will help with homework, projects

Wait until the last couple of days to start a project

- WE'll have to do the crunch anyways, why do it early!?

- The projects cannot be done in the last few days

- Repeat: The projects cannot be done in the last few days
- (p.s. The projects cannot be done in the last few days)

8/31/21 CS 318 — Lecture |

48

Questions

Before we start, any questions?

8/31/21 CS 318 — Lecture |

49

What Is An Operating System?

Layer between applications and hardware

All the code that you didn’t have to write to implement your app :)

vim

8/31/21 CS 318 — Lecture |

OS and Hardware Har(jvsvare

Manage hardware resources

B =

pooooo
np—o
Computation Volatile Persistent Communication /O
storage storage

Provides abstractions to hide details of hardware from applications

- Processes, threads
- Virtual memory
- File systems

8/31/21 CS 318 — Lecture | 51

OS and Hardware (2)

Mediate accesses from different applications

- Who has access at what point for how much/long

Why? Benefits to applications:

- Simpler (no tweaking device registers)
- Device independent (all network cards look the same)
- Portable (across Win95/98/ME/NT/2000/XP/Vista/7/8/10)

8/31/21 CS 318 — Lecture |

N
oS

Hardware

52

OS and Applications

Virtual machine interface

- Each program thinks it owns the computer

Provides protection

- Prevents one process/user from clobbering another

Provides sharing

- Concurrent execution of multiple programs (time slicing)
- Communication among multiple programs (pipes, cut & paste)
- Shared implementations of common facilities, e.g., file system

8/31/21 CS 318 — Lecture |

| 68

(ON

Chrome iTunes

53

Questions to Ponder

What is part of an OS? What is not?

- Is the windowing system part of an OS?
- |s the Web browser part of an OS!?
- This very question leads to different OS designs

How different are popular OSes today?

Windows 10 -

8/31/21 CS 318 — Lecture |

54

Walk-through of OS basics

A Primitive Operating System
Just a library of standard services

App

Simplifying assumptions

- System runs one program at a time
- No bad users or programs

Problems: poor utilization

- ...of hardware (e.g., CPU idle while waiting for disk)
- ...of human user (must wait for each program to finish)

8/31/21 CS 318 — Lecture |

56

8/31/21

Multitasking

CS 318 — Lecture |

57

Multitasking

Idea: more than one process can be running at once

- When one process blocks (waiting for disk, network, input, etc.) run another process

How? mechanism: context-switch

- When one process resumes, it can continue from last execution point

8/31/21 CS 318 — Lecture |

58

Multitasking

Idea: more than one process can be running at once
Mechanism: context-switch

Problems: ill-behaved process

- go into infinite loop and never relinquish CPU

- scribble over other processes’ memory to make them fail

8/31/21 CS 318 — Lecture |

59

Multitasking

Problems: ill-behaved process

- go into infinite loop and never relinquish CPU
- scribble over other processes’ memory to make them fail

Solutions:

- scheduling: fair sharing, take CPU away from looping process
- virtual memory: protect process’s memory from one another

8/31/21 CS 318 — Lecture |

60

Typical OS Structure

P1||P2||P3]||P4

user

kernel VM IPC
scheduler

device device device
driver driver driver
\ - ; . 4

network console disk

file system

Most software runs as user-level processes (P[1-4])

OS kernel runs in privileged mode (shaded)

8/31/21 CS 318 — Lecture |

System Calls

#include <fcntl.h> i
#include <unistd.h> user application
int main()

{ open ()

int fd = open("cs318.txt", O WRONLY | O CREAT | O TRUNC, 0644); user
if (?d <0) { . mode system call interface

write(2, "Failed to open cs318.txt\n", 25); kernel

_exit(1); mode A
}
write(fd, "Hello, 0S!\n", 11); | open ()
close(£fd); Implementation
return 0; i » of open ()

) - system call

return

Applications can invoke kernel through system calls

- Special instruction transfers control to kernel
- ...which dispatches to one of few hundred syscall handlers

8/31/21 CS 318 — Lecture | 62

System Calls (continued)

The only way for an application to invoke OS services

Goal: Do things application can’t do in unprivileged mode

- Like a library call, but into more privileged kernel code

Kernel supplies well-defined system call interface

- Applications set up syscall arguments and trap to kernel

- Kernel performs operation and returns result

8/31/21 CS 318 — Lecture |

63

8/31/21

System Calls (continued)

#include <stdio.h>
int main()
{

printf("Hello, 0S!\n");
return 0;

}

CS 318 — Lecture |

64

System Calls (continued)

#include <stdio.h>
int main()

{

printf("Hello, 0S!\n");
return 0;
I }

standard C library

8/31/21 CS 318 — Lecture |

8/31/21

System Calls (continued)

#include <stdio.h>
int main()

{

printf("Hello, 0S!\n");
return 0;
I }

standard C library

Standard library calls are built on syscalls

CS 318 — Lecture |

66

8/31/21

System Calls (continued)

#include <stdio.h>
int main()

{

printf("Hello, 0S!\n");
return 0;
I }

User mode standard C library

Kernel mode

Standard library calls are built on syscalls

CS 318 — Lecture | 67

8/31/21

System Calls (continued)

#include <stdio.h>
int main()

{
printf("Hello, 0S!\n");
return 0;
}
User mode standard C library
“Kernel mode £ write() T

Standard library calls are built on syscalls

CS 318 — Lecture | 68

System Calls (continued)

#include <stdio.h>
int main()

{

printf("Hello, 0S!\n");
return 0;
I }

User mode standard C library

Kernel mode

write() system

call
implementation

Standard library calls are built on syscalls

8/31/21 CS 318 — Lecture |

8/31/21

System Calls (continued)

#include <stdio.h>
int main()

{

printf("Hello, 0S!\n");
return 0;
I }

User mode standard C library

Kernel mode

write() system

call
implementation

Standard library calls are built on syscalls

CS 318 — Lecture |

70

8/31/21

System Calls (continued)

#include <stdio.h>
int main()

{

printf("Hello, 0S!\n");
return 0;
I }

User mode standard C library

Kernel mode

write() system

call
implementation

Standard library calls are built on syscalls

CS 318 — Lecture |

71

For Next Class...

Browse the course web
- https://cs.jhu.edu/~huang/cs3 18/fall2 |

Sign up on Campuswire
Read Chapters | and 2

Setup Pintos and read its documentation
- Work on Lab 0

Looking for project partners

8/31/21 CS 318 — Lecture |

72

https://cs.jhu.edu/~huang/cs318/fall21

For Next Class...

Browse the course web

- https://cs.jhu.edugal

Sign up on Camg
Read Chapters |

Setup Pintos and
- Work on Lab

ooting or oro AL ||'|ﬁ|s BEGIN]

8/31/21 CS 318 — Lecture |

73

https://cs.jhu.edu/~huang/cs318/fall21

