
CS 318 Principles of Operating Systems

Lecture I: Introduction

Prof. Ryan Huang

Fall 2021

It is great to meet in person again…
8/31/21 CS 318 – Lecture 1 2

Course Instructor

Prof. Ryan Huang
- Assistant Professor, joined Hopkins in 2017

• https://cs.jhu.edu/~huang

- Lead the Ordered Systems Lab: https://orderlab.io
• research on OS, Cloud and Mobile Computing, Systems Reliability

- Office: Malone 231

Office Hours
- Tue Thu 9:30-10:30 am Eastern Time (or by appointment)
- Default Zoom, in-person if necessary

8/31/21 CS 318 – Lecture 1 3

https://cs.jhu.edu/~huang
https://orderlab.io/

Lecture 1 Overview

8/31/21 CS 318 – Lecture 1 4

COURSE
OVERVIEW

ADMINISTRATIVE WHAT IS AN OS? WALK-THROUGH
OF OS BASICS

Staff: Teaching Assistants

Haoze Wu (TA)
- Office Hours: Thu/Fri 4-5 pm

Yuzhuo Jing (CA)
- Office Hours: Mon & Wed 3:15-4:15 pm

Gongqi Huang (CA)
- Office Hours: Tue/Thu 10:30-11:30 am

Evan Leung (CA)
- Office Hours: Wed & Fri 8:30-9:30 am

8/31/21 CS 318 – Lecture 1 5

Course Overview

An introductory course to operating systems
- Classic OS concepts and principles
- Prepare you for advanced OS and distributed system course
- OS concepts often asked in tech interview questions

A practice course for hands-on experience with OS
- Four large programming assignments on a small but real OS
- Reinforce your understandings about the theories

8/31/21 CS 318 – Lecture 1 6

Bad News…

This is a TOUGH course

Requires proficiency in systems programming
- “Low level (C) programming absolutely necessary.”
- “Need to be fearless about breaking code (and then fixing it later).”
- “Need to be confident in touching and modifying large systems of code”

Requires significant time commitment
- “The projects are insanely time consuming”

- “The workload is much much heavier than your average CS course…Be prepared to spend

entire weeks working on nothing but the material for this course.”

8/31/21 CS 318 – Lecture 1 7

Good News

There aren’t many such hardcore courses in CS curriculum J
- Typically the final checkmark for a solid CS degree
- You don’t have to take it if you are not interested in it

It’s hard, but rewarding in the end
- “The project are very hard. But completing them is very rewarding.”
- “You learn a lot about operating systems and computers in general.”

A highly valued skill after graduation

We will try our best to help you

8/31/21 CS 318 – Lecture 1 8

Why Study Operating Systems?

8/31/21 CS 318 – Lecture 1 9

CPU: 1.85 GHz dual-core

memory: 2 GB

price: $329

size: 9.4 in × 6.6 in

iPad (2017)

Technology trends

Why Study Operating Systems?

8/31/21 CS 318 – Lecture 1 10

CPU: 1.85 GHz dual-core

memory: 2 GB

price: $329

size: 9.4 in × 6.6 in

iPad (2017)

Technology trends

IBM 709 (c. late 1950~)

World’s most powerful computer then

Why Study Operating Systems?

8/31/21 CS 318 – Lecture 1 11

CPU: 1.85 GHz dual-core

memory: 2 GB

price: $329

size: 9.4 in × 6.6 in

iPad (2017)

Technology trends

IBM 709 (c. late 1950~)

??? mult/div per sec.

???

???

???

World’s most powerful computer then

Why Study Operating Systems?

8/31/21 CS 318 – Lecture 1 12

CPU: 1.85 GHz dual-core

memory: 2 GB

price: $329

size: 9.4 in × 6.6 in

iPad (2017)

Technology trends

IBM 709 (c. late 1950~)

~4000 mult/div per sec.

32K 36-bit words

$2,630,000+

half room

World’s most powerful computer then

Why Study Operating Systems?

Technology trends

8/31/21 CS 318 – Lecture 1 13

manycore 3D stacked chip persistent memory

smartphones self-driving cars data centers

…

Tensor Processing Unit

IoT device robots

accelerators

Why Study Operating Systems?

Technology trends

8/31/21 CS 318 – Lecture 1 14

manycore 3D stacked chip persistent memory

smartphones self-driving cars data centers

…

Tensor Processing Unit

IoT device robots

accelerators

They all need OS support to be useful!

Why Study Operating Systems?

An exciting time for OS designs
- New hardware, smart devices, self-driving cars, data centers, etc.
- Existing OSes face issues in performance, battery life, security, isolation

Pervasive principles for systems in general
- Caching, concurrency, memory management, I/O, protection

Complex software systems
- Many of you will go on to work on large software projects
- OSes serve as examples of an evolution of complex systems

Understand what you use
- System software tends to be mysterious
- Understanding OS makes you a more effective programmer

8/31/21 CS 318 – Lecture 1 15

some of you

many of you

many of you

all of you

Course Materials

Course materials
- Lectures are the primary references
- Textbooks are supplementary readings
- Occasionally non-required papers

8/31/21 CS 318 – Lecture 1 16

Topics Covered

8/31/21 CS 318 – Lecture 1 17

Three Fundamental Pieces

Topics Covered

8/31/21 CS 318 – Lecture 1 18

Virtualization

Three Fundamental Pieces

Topics Covered

8/31/21 CS 318 – Lecture 1 19

Virtualization Concurrency

Three Fundamental Pieces

Topics Covered

8/31/21 CS 318 – Lecture 1 20

Virtualization Concurrency Persistence

Three Fundamental Pieces

Topics Covered

8/31/21 CS 318 – Lecture 1 21

Virtualization Concurrency Persistence

Three Fundamental Pieces

Processes

Scheduling

Virtual Memory

Topics Covered

8/31/21 CS 318 – Lecture 1 22

Virtualization Concurrency Persistence

Three Fundamental Pieces

Processes

Scheduling

Virtual Memory

Threads

Synchronization

Semaphores and Monitors

Topics Covered

8/31/21 CS 318 – Lecture 1 23

Virtualization Concurrency Persistence

Three Fundamental Pieces

Processes

Scheduling

Virtual Memory

Threads

Synchronization

Semaphores and Monitors

I/O

Disks

File Systems

Textbook

8/31/21 CS 318 – Lecture 1 24

Operating Systems: Three
Easy Pieces, Version 0.91

By Remzi Arpaci-Dusseau and
Andrea Arpaci-Dusseau

Textbook

8/31/21 CS 318 – Lecture 1 25

Operating Systems: Three
Easy Pieces, Version 0.91

By Remzi Arpaci-Dusseau and
Andrea Arpaci-Dusseau

FREE

http://from-a-to-
remzi.blogspot.com/2014/01/the-case-for-
free-online-books-fobs.html

http://from-a-to-remzi.blogspot.com/2014/01/the-case-for-free-online-books-fobs.html

Textbook

8/31/21 CS 318 – Lecture 1 26

Operating Systems
Concepts

By Silberschatz, Galvin and Gagne

Textbook

8/31/21 CS 318 – Lecture 1 27

Operating Systems
Concepts

By Silberschatz, Galvin and Gagne
What killed the dinosaur?

Textbook

8/31/21 CS 318 – Lecture 1 28

Other Recommended Textbooks

8/31/21 CS 318 – Lecture 1 29

Important Links (1)

Course Website (check it often)
- https://www.cs.jhu.edu/~huang/cs318/fall21
- Course syllabus and schedule
- Lecture slides
- Homework handouts
- Project descriptions and references

8/31/21 CS 318 – Lecture 1 30

https://www.cs.jhu.edu/~huang/cs318/fall21

Important Links (2)

Discussion Forum: CampusWire
- https://campuswire.com/p/G432AC582
- Access code: 9699
- Questions about project, lecture, exams

Staff mail list:
- cs318-staff@cs.jhu.edu
- administrative requests, sensitive questions, etc.

8/31/21 CS 318 – Lecture 1 31

https://campuswire.com/p/G432AC582
mailto:cs318-staff@cs.jhu.edu

Homework

Several homework assignments throughout the semester
- help you check understanding about the lectures
- prepare you for the exams

The homework assignments will not be graded
- amount learned from doing homework is proportional to effort
- your choice on how much effort

8/31/21 CS 318 – Lecture 1 32

Project Assignments

Implement parts of Pintos operating system
- Developed in 2005 for Stanford’s CS 140 OS class
- Written in C, built for x86 hardware

• can run on a real machine!

8/31/21 CS 318 – Lecture 1 33

Project Assignments

Implement parts of Pintos operating system
- Developed in 2005 for Stanford’s CS 140 OS class
- Written in C, built for x86 hardware

• can run on a real machine!

8/31/21 CS 318 – Lecture 1 34

Project Assignments

Implement parts of Pintos operating system
- Developed in 2005 for Stanford’s CS 140 OS class
- Written in C, built for x86 hardware

• can run on a real machine!

- Use hardware emulator (QEMU/Bochs) during development

8/31/21 CS 318 – Lecture 1 35

8/31/21 CS 318 – Lecture 1 36

Project Assignments (2)

One setup lab (lab 0)
- due next Thursday (done individually)

Four substantial labs:
- Required: Threads, User processes, Virtual memory
- Optional: File system

Implement projects in groups of up to 3 people
- Start picking your partners today

Warning: each project requires significant time to complete
- Don’t wait until the last minute to start!!

8/31/21 CS 318 – Lecture 1 37

Project Assignments (3)

Automated tests
- All tests are given so you immediately know how well your solution performs
- You either pass a test case or fail, there is no partial credit

Design document
- Answer important questions related to your design for a lab

Coding style
- Can your group member and TAs understand your code easily?

8/31/21 CS 318 – Lecture 1 38

Project Design and Style

Must turn in a design document along with code
- Large software systems not just about producing working code
- We supply you with templates for each project’s design doc

TAs will manually inspect code
- e.g., must actually implement the design
- must handle corner cases (e.g., handle malloc failure)
- will deduct points for error-prone code

Code must be easy to read
- Indent code, keep lines and functions short
- Use a consistent coding style
- Comment important structure members, globals, functions

8/31/21 CS 318 – Lecture 1 39

Project Lab Environment

The CS department ugrad and grad lab machines
- Running Linux on x86
- The toolchain already setup

You may also use your own machine
- We have written detailed instructions for setting up the environment

• https://cs.jhu.edu/~huang/cs318/fall21/project/setup.html

- Unix and Mac OS preferred. Windows needs VMs
- Pre-built VM image provided

8/31/21 CS 318 – Lecture 1 40

https://cs.jhu.edu/~huang/cs318/fall21/project/setup.html

Quizzes & Exam

Quizzes
- In class, bring your laptop or other computer devices
- Mainly cover topics in first half of class

Final Exam
- Mainly covers second half of class + selected materials from first part

• I will be explicit about the material covered

- Include project questions

8/31/21 CS 318 – Lecture 1 41

Grading

Quizzes: 15%

Final Exam: 25%

Project: 60%
- Lab 3b is optional for 318-section students
- Lab 4 is optional for all students

• Completing it receives a max 6% extra credits

- For each project
• 60% based on passing test cases

• 40% based on design document and style

8/31/21 CS 318 – Lecture 1 42

Late Policies

Late submissions receive penalties as follows
- 1 day late, 15% deduction
- 2 days late, 30% deduction
- 3 days late, 60% deduction
- after 4 days, no credit

Each team will have a total of 6-day grace period
- can spread into 4 projects
- for interview, attending conference, errands, etc., no questions asked
- use it wisely, strongly suggest to reserve it for later labs (lab3, 4)

8/31/21 CS 318 – Lecture 1 43

Collaboration and Cheating Policies (A)

Collaboration
- Explaining a concept to someone in another group
- Discussing algorithms/testing strategies with other groups
- Helping someone else (in another group) debug

8/31/21 CS 318 – Lecture 1 44

Collaboration and Cheating Policies (B)

Do not look at other people’s solutions
- Including solutions online

• This means copying code from GitHub will get you into big trouble

- We will run comprehensive tools to check for potential cheating

Do not publish your own solutions
- online (e.g., on GitHub) or share with other teams

Cite any code that inspired your code
- If you cite what you used, it won’t be treated as cheating

• in worst case, we deduct points if it undermines the assignment

8/31/21 CS 318 – Lecture 1 45

Do Not Cheat
It will be caught

The consequence is very high

Truth: you can always get better outcome by not cheating

8/31/21 CS 318 – Lecture 1 46

How Not to Pass CS 318?

Do not come to lecture
- The slides are online and the material is in the book anyway
- Lecture walks you through difficult materials and tells you the context

Do not do the homework
- It’s not part of the grade
- Concepts seem straightforward...until you apply them
- Excellent practice for the exams, and project

8/31/21 CS 318 – Lecture 1 47

How Not to Pass CS 318?

Do not ask questions in lecture, office hours or online
- It’s scary, I don’t want to embarrass myself
- Asking questions is the best way to clarify lecture material
- Office hours and email will help with homework, projects

Wait until the last couple of days to start a project
- We’ll have to do the crunch anyways, why do it early?
- The projects cannot be done in the last few days
- Repeat: The projects cannot be done in the last few days
- (p.s. The projects cannot be done in the last few days)

8/31/21 CS 318 – Lecture 1 48

Questions

Before we start, any questions?

8/31/21 CS 318 – Lecture 1 49

What Is An Operating System?

Layer between applications and hardware

All the code that you didn’t have to write to implement your app :)

8/31/21 CS 318 – Lecture 1 50

vim Chrome iTunesGCC

OS

Hardware

OS and Hardware

Manage hardware resources

Provides abstractions to hide details of hardware from applications
- Processes, threads
- Virtual memory
- File systems
- …

8/31/21 CS 318 – Lecture 1 51

Computation Persistent
storage

Volatile
storage

Communication I/O

OS
Hardware

OS and Hardware (2)

Mediate accesses from different applications
- Who has access at what point for how much/long

Why? Benefits to applications:
- Simpler (no tweaking device registers)
- Device independent (all network cards look the same)
- Portable (across Win95/98/ME/NT/2000/XP/Vista/7/8/10)

8/31/21 CS 318 – Lecture 1 52

OS
Hardware

OS and Applications

Virtual machine interface
- Each program thinks it owns the computer

Provides protection
- Prevents one process/user from clobbering another

Provides sharing
- Concurrent execution of multiple programs (time slicing)
- Communication among multiple programs (pipes, cut & paste)
- Shared implementations of common facilities, e.g., file system

8/31/21 CS 318 – Lecture 1 53

OS

vim GCC Chrome iTunes

Questions to Ponder

What is part of an OS? What is not?
- Is the windowing system part of an OS?
- Is the Web browser part of an OS?
- This very question leads to different OS designs

How different are popular OSes today?

8/31/21 CS 318 – Lecture 1 54

Walk-through of OS basics

8/31/21 CS 318 – Lecture 1 55

A Primitive Operating System
Just a library of standard services

Simplifying assumptions
- System runs one program at a time
- No bad users or programs

Problems: poor utilization
- ...of hardware (e.g., CPU idle while waiting for disk)
- ...of human user (must wait for each program to finish)

8/31/21 CS 318 – Lecture 1 56

App

Hardware

OS

Multitasking

8/31/21 CS 318 – Lecture 1 57

vim Chrome

Hardware

OS

Multitasking

Idea: more than one process can be running at once
- When one process blocks (waiting for disk, network, input, etc.) run another process

How? mechanism: context-switch
- When one process resumes, it can continue from last execution point

8/31/21 CS 318 – Lecture 1 58

vim Chrome

Hardware

OS

Multitasking

Idea: more than one process can be running at once

Mechanism: context-switch

Problems: ill-behaved process
- go into infinite loop and never relinquish CPU
- scribble over other processes’ memory to make them fail

8/31/21 CS 318 – Lecture 1 59

vim Chrome

Hardware

OS

Multitasking

Problems: ill-behaved process
- go into infinite loop and never relinquish CPU
- scribble over other processes’ memory to make them fail

Solutions:
- scheduling: fair sharing, take CPU away from looping process
- virtual memory: protect process’s memory from one another

8/31/21 CS 318 – Lecture 1 60

vim Chrome

Hardware

OS

Typical OS Structure

Most software runs as user-level processes (P[1-4])

OS kernel runs in privileged mode (shaded)

8/31/21 CS 318 – Lecture 1 61

System Calls

Applications can invoke kernel through system calls
- Special instruction transfers control to kernel
- ...which dispatches to one of few hundred syscall handlers

8/31/21 CS 318 – Lecture 1 62

#include <fcntl.h>
#include <unistd.h>
int main()
{

int fd = open("cs318.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (fd < 0) {

write(2, "Failed to open cs318.txt\n", 25);
_exit(1);

}
write(fd, "Hello, OS!\n", 11);
close(fd);
return 0;

}

System Calls (continued)

The only way for an application to invoke OS services

Goal: Do things application can’t do in unprivileged mode
- Like a library call, but into more privileged kernel code

Kernel supplies well-defined system call interface
- Applications set up syscall arguments and trap to kernel
- Kernel performs operation and returns result

8/31/21 CS 318 – Lecture 1 63

System Calls (continued)

8/31/21 CS 318 – Lecture 1 64

#include <stdio.h>
int main()
{
printf("Hello, OS!\n");
return 0;

}

System Calls (continued)

8/31/21 CS 318 – Lecture 1 65

#include <stdio.h>
int main()
{
printf("Hello, OS!\n");
return 0;

}

standard C library

Standard library calls are built on syscalls

System Calls (continued)

8/31/21 CS 318 – Lecture 1 66

#include <stdio.h>
int main()
{
printf("Hello, OS!\n");
return 0;

}

standard C library

Standard library calls are built on syscalls

System Calls (continued)

8/31/21 CS 318 – Lecture 1 67

#include <stdio.h>
int main()
{
printf("Hello, OS!\n");
return 0;

}

standard C libraryUser mode

Kernel mode

Standard library calls are built on syscalls

System Calls (continued)

8/31/21 CS 318 – Lecture 1 68

#include <stdio.h>
int main()
{
printf("Hello, OS!\n");
return 0;

}

standard C library

write()

User mode

Kernel mode

Standard library calls are built on syscalls

System Calls (continued)

8/31/21 CS 318 – Lecture 1 69

#include <stdio.h>
int main()
{
printf("Hello, OS!\n");
return 0;

}

write() system
call

implementation

standard C library

write()

User mode

Kernel mode

Standard library calls are built on syscalls

System Calls (continued)

8/31/21 CS 318 – Lecture 1 70

#include <stdio.h>
int main()
{
printf("Hello, OS!\n");
return 0;

}

write() system
call

implementation

standard C library

write()

User mode

Kernel mode

Standard library calls are built on syscalls

System Calls (continued)

8/31/21 CS 318 – Lecture 1 71

#include <stdio.h>
int main()
{
printf("Hello, OS!\n");
return 0;

}

write() system
call

implementation

standard C library

write()

User mode

Kernel mode

For Next Class...

Browse the course web
- https://cs.jhu.edu/~huang/cs318/fall21

Sign up on Campuswire

Read Chapters 1 and 2

Setup Pintos and read its documentation
- Work on Lab 0

Looking for project partners

8/31/21 CS 318 – Lecture 1 72

https://cs.jhu.edu/~huang/cs318/fall21

For Next Class...

Browse the course web
- https://cs.jhu.edu/~huang/cs318/fall21

Sign up on Campuswire

Read Chapters 1 and 2

Setup Pintos and read its documentation
- Work on Lab 0

Looking for project partners

8/31/21 CS 318 – Lecture 1 73

https://cs.jhu.edu/~huang/cs318/fall21

