CS 318 Principles of Operating Systems
Fall 2021

Lecture |9: File System Crash Consistency

Prof. Ryan Huang
=
S

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Review: File 1/O Path (Reads)

read() from file BLOCK IN CACHE u 1
- Check if block is in cache []
- If so, return block to user MAIN MEM
[| in figure] (BUFFER CAc
- If not, read from disk, insert into cache,

return to user [2]

BLOCK NOT IN CACHE

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

LEAVE COPY IN CACHE

Review: File I/O Path (Writes)

write() tofile
BUFFER IN MEMORYU 1

- Write is buffered in memory (“write behind”) [1]

- Sometime later, OS decides to write to disk [2]

]
MAIN MEMORY

(BUFFER CAcHE)

* Periodic flush or £sync call

Why delay writes?

- Implications for performance

- Implications for reliability
LATER WRITE TO DISK 2

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

The Consistent Update Problem

Goal: atomically update file system from one consistent state to another,

- What do we mean by consistent state?

Challenge: an update may require modifying several sectors, despite that
the disk only provides atomic write of one sector at a time

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

Example: File Creation of /a.txt

Initial state

MEMORY

T

DISK 01000 | 01000 /

inode Dblock
map map

inode array data blocks

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

Read to in-memory Cache

j]L

01000

A X7 7j

d\ A~ \g\o

Example: File Creation of /a.txt

) <.,#2>1
| <A

-
B

/7 < l“"’ftx ’/#3>

—
®» - 1 <@
MEMORY
DISK 01000 | 01000 /
inode block :
inode array data blocks
map map
[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

Example: File Creation of /a.txt

Modify metadata and blocks

<!, #2>
<., #2>
<‘a.txt’, #4>
01010 /
MEMORY N/v
Dirty blocks, memory state and disk state are inconsistent: must write to disk
DISK 01000 | 01000 /

inode block
map map

inode array data blocks

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

Crash?

Disk: atomically write one sector

- Atomic: if crash, a sector is either completely written, or none of this sector is written

An FS operation may modify multiple sectors

Crash = FS partially updated

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

Possible Crash Scenarios

File creation dirties three blocks

- inode bitmap (B)
- inode for new file (I)

- parent directory data block (D)

Old and new contents of the blocks

-B=01000 B’=01010
- [= free [’ = allocated, initialized
- D ={} D’ = {<‘a.txt’, 4>}

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

Possible Crash Scenarios

Crash scenarios: any subset can be written

-B ID
-B'I D
-B I'D
-B I D’
-B"'I'D
-B' I D’
-B I'D’
-B' I'D’

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

The General Problem

Writes: Have to update disk with N writes

- Disk does only a single write atomically

Crashes: System may crash at arbitrary point

- Bad case: In the middle of an update sequence

Desire: To update on-disk structures atomically

- Either all should happen or none

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

Example: Bitmap First

Write Ordering: Bitmap (B), Inode (1), Data (D)
- But CRASH after B has reached disk, before | or D

Result?
i =2

MEMORY |01010

—
DISK (o1o1o> /
~

B \J | D

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

Example: Inode First

Write Ordering: Inode (1), Bitmap (B), Data (D)
- But CRASH after | has reached disk, before B or D

Result?
PEd jod

.)%/

MEMORY |01010

DISK 01000 /

B IL-)‘Q\X) D

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

Example: Inode First

Write Ordering: Inode (1), Bitmap (B), Data (D)
- But CRASH after | AND B have reached disk, before D

Result?

/’7&5*)“(= 4>

MEMORY |01010

DiskK 01@ /

1 p D
a A’

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

Example: Inode First

Write Ordering: Inode (1), Bitmap (B), Data (D)
- But CRASH after | AND B have reached disk, before D

Result?

- What if data block is a new block for the new file (i.e., create file with data)

MEMORY |01010

l l

|

DISK 01010 / e

1 D
‘e ¥t

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

Example: Data First

Write Ordering: Data (D) , Bitmap (B), Inode ()
- CRASH after D has reached disk, before | or B

o
Result? <t #2>
S| <He
/ P V. T<awe s |
V3 2 \
MEMORY |01010
DISK 01000 /
B | D

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

Example: Data First

Write Ordering: Data (D) , Bitmap (B), Inode ()
- CRASH after D has reached disk, before | or B

Result?

- What if data block is a new block for the new file (i.e., create file with data)

MEMORY |01010

‘Hello, 318’]
((o\-f\'X—T ﬁt‘l‘

DISK 01000 /

B | D

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

Traditional Solution: FSCK

FSCK: “file system checker”

When system boots:

- Make multiple passes over file system, looking for inconsistencies

* e.g.,inode pointers and bitmaps, directory entries and inode reference counts

- Try to fix automatically

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

[1/15/21

FSCK Example |

inode block
link_count = 1 (number 123)

data bitmap

1
001100110¢

for block 123

CS 318 — Lecture 19 — File System Crash Consistency

[1/15/21

FSCK Example 2

Dir Entry

inode >

link count = !
Dir Entry

CS 318 — Lecture 19 — File System Crash Consistency

20

[1/15/21

FSCK Example 3

Dir Entry

1s -1 /
total 150
drwxr—xr—x

drwxr—-xr—x.
drwxr—-xr—x.
dr—-xr—-xr-x.
dr—-xr—-xr-x.

1?7? How to fix!?

401 18432 Dec 31 1969 afs/
2 4096 Nov 3 09:42 bin/
5 4096 Aug 1 14:21 boot/
13 4096 Nov 3 09:41 lib/
10 12288 Nov 3 09:41 1ib64/
2 16384 Aug 1 10:57 lost+found/

CS 318 — Lecture 19 — File System Crash Consistency

21

[1/15/21

FSCK Example 4

inode

link_count =3 Block
(number 123)

inode
link count = 1

1?7? How to fix!?

CS 318 — Lecture 19 — File System Crash Consistency

22

[1/15/21

FSCK Example 4.a

inode

valid .
link count =1 Block
(number 123)
inode 2222 How to fix?
invalid

link count =1

CS 318 — Lecture 19 — File System Crash Consistency

23

[1/15/21

FSCK Example 4.b

inode
valid .
link_count = 1 Block
(number 123) W)
“" Copy
inode
valid

Block
link count = 1 \

CS 318 — Lecture 19 — File System Crash Consistency

24

Traditional Solution: FSCK

FSCK: “file system checker”

When system boots:

- Make multiple passes over file system, looking for inconsistencies

- Try to fix automatically
 Example:B’'[D, BI'D
- Or punt to admin

* Check lost+found, manually put the missing-link files to the correct place

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

25

Traditional Solution: FSCK
—+ 4

’f—L\ 4500 1 . Eﬂase ; % Bﬂase 2 N\ Phase 54176
P ro b I em: 7 04 7 S ao00{ %Phase ase NCATCN
4 o}

7 3500 3398
%) O Rerdreretye iy
L] L] Y
- Cannot fiX all crash-scéenarios " # e

e Can B’ | D’ be fixed?
- Performance 0

=)\%)5)\§)4)))

- ‘.1)6)\§\.§\))

Checking Time (Se

150GB 300GB 450GB 600GB
File system image size

 Sometimes takes hours to run

® CheCking a 600GB disk takes ~70 minutes Figure 1: e2fsck Execution Time
By Size. This graph shows e2fsck’s
execution time for differently sized file-

- Not well-defined consistency system images, broken down by time

spent in each phase.

* Does fsck have to run upon every reboot!?

“ffsck: The Fast File System Checker”, Ao
Ma et al. FAST ‘I3

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency 26

Another Solution: Journaling

Idea: Write “intent” down to disk before updating file system

- Called the “Write Ahead Logging” or “journal”
- Originated from database community

When crash occurs, look through log to see what was going on

- Use contents of log to fix file system structures
* Crash before “intent” is written =» no-op

* Crash after “intent” is written =» redo op

- The process is called “recovery”

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

27

Case Study: Linux Ext3

Physical journaling: write real block contents of the update to log
- Four totally ordered steps

O * Commit dirty blocks to |ournal,a»3/0'r‘ré’t?a_n§a‘_ (foBeg]u LI B,D bIocgs)

* Write commit record (’(E@

@ . Copy dirty blocks to real file system (checkpointing)
@° Reclaim the journal space for the transaction

Logical journaling: write logical record of the operation to log

- “Add entry F to directory data block D”
- Complex to implement

- May be faster and save disk space

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

28

Step |: Write Blocks to Journal

<, #2>
I P/] <UH
7 <‘.txt’, #4>
MEMORY 01010 /
DISK 01000 | 01000 /

e

ororo -
(L 1

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency 29

Step 2: Write Commit Record

<!, #2>
<. #2>
<‘a.txt’, #4>
MEMORY 01010
DIsSK 01000 | 01000
JOURNAL TxB TxE —
2 191010 =
[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

Step 3: Copy Dirty Blocks to Real FS

<!, #2>
<. #2>
<‘a.txt’, #4>
MEMORY 01010
DIsSK 01000 | 01000 |
——
——— Zz
JOURNA§ e | 01010 T
id= id=
[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency 31

Step 4: Reclaim Journal Space

<, #2>
<. #2>
<‘a.txt’, #4>
MEMORY 01010
DIsSK 01000 | 01000
JOURNAL
[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

32

What If There Is A Crash?

Recovery: Go through log and “redo” operations that have been
successfully committed to log

What if ...

- TxBegin but not TXEnd in log? ——)
- TxBegin through TxEnd are in log, but |, B,and D have not yet been checkpointed?

JOURNAL D8 | 1[vo] B[V2]-Ti§5|

* How could this happen!?

Yio—o Y w)}'_j _7

* Why don’t we merge step 2 and step 1?7 —

- What if Tx is in log, |, B, D have been checkpointed, but Tx has not been freed from log?

— ve-4o

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency 33

Summary of Journaling Write Orders

Journal writes < FS writes

- Otherwise, crash =» FS broken, but no record in journal to patch it up

FS writes < Journal clear

- Otherwise, crash =» FS broken, but record in journal is already cleared
<

Journal write{<>ommit record write < FS writes

- Otherwise, crash =» record appears committed, but contains garbage

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

34

Ext3 Journaling Modes

Journaling has cost

- one write = two disk writes, two seeks
Several journaling modes balance consistency and performance

Data journaling: journal all writes, including file data
- Problem: expensive to journal data

Metadata journaling: journal only metadata

- Used by most FS (IBM JFS, SGI XFS, NTFS)
- Problem: file may contain garbage data

Ordered mode: write file data to real FS first, then journal metadata
- Default mode for ext3

- Problem: old file may contain new data

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

35

Summary

The consistent update problem

- Example of file creation and different crash scenarios

Two approaches to crash consistency

- FSCK: slow, not well-defined consistency
- Journaling: well-defined consistency, different modes

Other approach
- Soft updates (advanced OS topics)

[1/15/21 CS 318 — Lecture 19 — File System Crash Consistency

36

Read Appendix B

[1/15/21

Next Time...

CS 318 — Lecture 19 — File System Crash Consistency

37

