
CS 318 Principles of Operating Systems

Lecture 19: File System Crash Consistency

Prof. Ryan Huang

Fall 2021

Review: File I/O Path (Reads)

read() from file
- Check if block is in cache
- If so, return block to user

[1 in figure]
- If not, read from disk, insert into cache,

return to user [2]

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 2

Disk

Main Memory
(BUFFER Cache)

1Block in cache

2Block Not in cache L
e
a
v
e
 c

o
p
y
 i

n
 c

a
c
h

e

Review: File I/O Path (Writes)

write() to file
- Write is buffered in memory (“write behind”) [1]

- Sometime later, OS decides to write to disk [2]
• Periodic flush or fsync call

Why delay writes?
- Implications for performance

- Implications for reliability

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 3

Disk

Main Memory
(BUFFER Cache)

1

2

Buffer in memory

Later Write to disk

The Consistent Update Problem
Atomically update file system from one consistent state to another,

which may require modifying several sectors, despite that the disk only
provides atomic write of one sector at a time
- What do we mean by consistent state?

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 4

Example: File Creation of /a.txt

Initial state

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 5

Disk 01000 01000 /

inode
map

block
map

inode array data blocks

Memory

Example: File Creation of /a.txt

Read to in-memory Cache

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 6

Disk 01000 01000 /

inode
map

block
map

inode array data blocks

Memory

01000 /

<‘.’, #2>
<‘..’, #2>

<‘.’, #2>
<‘..’, #2>

01000

Example: File Creation of /a.txt

Modify metadata and blocks

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 7

Disk 01000 01000 /

inode
map

block
map

inode array data blocks

Memory

01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

Dirty blocks, memory state and disk state are inconsistent: must write to disk

Crash?

Disk: atomically write one sector
- Atomic: if crash, a sector is either completely written, or none of this sector is written

An FS operation may modify multiple sectors

Crash è FS partially updated

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 8

Possible Crash Scenarios

File creation dirties three blocks
- inode bitmap (B)
- inode for new file (I)
- parent directory data block (D)

Old and new contents of the blocks
- B = 01000 B’	= 01010
- I	= free I’	= allocated, initialized
- D = {} D’	= {<‘a.txt’, 4>}

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 9

Possible Crash Scenarios

Crash scenarios: any subset can be written
- B			I		D
- B’		I		D
- B	 I’	D
- B			I		D’
- B’		I’	D
- B’		I	 D’
- B	 I’	D’
- B’		I’	D’

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 10

The General Problem

Writes: Have to update disk with N writes
- Disk does only a single write atomically

Crashes: System may crash at arbitrary point
- Bad case: In the middle of an update sequence

Desire: To update on-disk structures atomically
- Either all should happen or none

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 11

Example: Bitmap First

Write Ordering: Bitmap (B), Inode (I), Data (D)
- But CRASH after B has reached disk, before I or D

Result?

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 12

Disk 01010 /
B I D

Memory 01010

Example: Inode First

Write Ordering: Inode (I), Bitmap (B), Data (D)
- But CRASH after I has reached disk, before B or D

Result?

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 13

Disk 01000 /
B I D

Memory 01010

Example: Inode First

Write Ordering: Inode (I), Bitmap (B), Data (D)
- But CRASH after I AND B have reached disk, before D

Result?

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 14

Disk 01010 /
B I D

Memory 01010

Example: Inode First

Write Ordering: Inode (I), Bitmap (B), Data (D)
- But CRASH after I AND B have reached disk, before D

Result?
- What if data block is a new block for the new file (i.e., create file with data)

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 15

Disk 01010 /
B I D

Memory 01010

Example: Data First

Write Ordering: Data (D) , Bitmap (B), Inode (I)
- CRASH after D has reached disk, before I or B

Result?

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 16

Disk 01000 /

Memory 01010

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

B I D

Example: Data First

Write Ordering: Data (D) , Bitmap (B), Inode (I)
- CRASH after D has reached disk, before I or B

Result?
- What if data block is a new block for the new file (i.e., create file with data)

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 17

Disk 01000 /

Memory 01010
‘Hello, 318’

B I D

Traditional Solution: FSCK

FSCK: “file system checker”

When system boots:
- Make multiple passes over file system, looking for inconsistencies

• e.g., inode pointers and bitmaps, directory entries and inode reference counts

- Try to fix automatically

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 18

FSCK Example 1

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 19

inode
link_count = 1

block
(number 123)

0011001100

for block 123

X
1

data bitmap

FSCK Example 2

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 20

Dir Entry

Dir Entry

inode
link_count = 1

2
X

FSCK Example 3

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 21

inode
link_count = 1

Dir Entry

ls -l /
total 150
drwxr-xr-x 401 18432 Dec 31 1969 afs/
drwxr-xr-x. 2 4096 Nov 3 09:42 bin/
drwxr-xr-x. 5 4096 Aug 1 14:21 boot/
dr-xr-xr-x. 13 4096 Nov 3 09:41 lib/
dr-xr-xr-x. 10 12288 Nov 3 09:41 lib64/
drwx------. 2 16384 Aug 1 10:57 lost+found/
...

???? How to fix?

FSCK Example 4

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 22

Block
(number 123)

inode
link_count = 1

inode
link_count = 1

???? How to fix?

FSCK Example 4.a

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 23

Block
(number 123)

inode
link_count = 1

???? How to fix?inode
link_count = 1

invalid

X

valid

FSCK Example 4.b

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 24

Block
(number 123)

Block
(number 789)

inode
link_count = 1

inode
link_count = 1valid

valid

Copy

Traditional Solution: FSCK

FSCK: “file system checker”

When system boots:
- Make multiple passes over file system, looking for inconsistencies
- Try to fix automatically

• Example: B’	I		D, B I’	D
- Or punt to admin

• Check lost+found, manually put the missing-link files to the correct place

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 25

Traditional Solution: FSCK

Problem:
- Cannot fix all crash scenarios

• Can B’		I	 D’	be fixed?

- Performance
• Sometimes takes hours to run

• Checking a 600GB disk takes ~70 minutes

• Does fsck have to run upon every reboot?

- Not well-defined consistency

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 26

“ffsck: The Fast File System Checker”, Ao
Ma et al. FAST ‘13

Another Solution: Journaling

Idea: Write “intent” down to disk before updating file system
- Called the “Write Ahead Logging” or “journal”
- Originated from database community

When crash occurs, look through log to see what was going on
- Use contents of log to fix file system structures

• Crash before “intent” is written è no-op

• Crash after “intent” is written è redo op

- The process is called “recovery”

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 27

Case Study: Linux Ext3

Physical journaling: write real block contents of the update to log
- Four totally ordered steps

• Commit dirty blocks to journal as one transaction (TxBegin, I, B, D blocks)
• Write commit record (TxEnd)
• Copy dirty blocks to real file system (checkpointing)
• Reclaim the journal space for the transaction

Logical journaling: write logical record of the operation to log
- “Add entry F to directory data block D”
- Complex to implement
- May be faster and save disk space

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 28

Step 1: Write Blocks to Journal

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 29

Disk 01000 01000 /

Memory 01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

journal 01010TxB
id=1

Step 2: Write Commit Record

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 30

Disk 01000 01000 /

Memory 01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

journal 01010TxB
id=1

TxE
id=1

Step 3: Copy Dirty Blocks to Real FS

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 31

Disk 01000 01000 /

Memory 01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

journal 01010TxB
id=1

TxE
id=1

Step 4: Reclaim Journal Space

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 32

Disk 01000 01000 /

Memory 01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

journal

What If There Is A Crash?

Recovery: Go through log and “redo” operations that have been

successfully committed to log

What if …
- TxBegin but not TxEnd in log?
- TxBegin through TxEnd are in log, but I, B, and D have not yet been checkpointed?

• How could this happen?

• Why don’t we merge step 2 and step 1?

- What if Tx is in log, I, B, D have been checkpointed, but Tx has not been freed from log?

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 33

Summary of Journaling Write Orders

Journal writes < FS writes
- Otherwise, crash è FS broken, but no record in journal to patch it up

FS writes < Journal clear
- Otherwise, crash è FS broken, but record in journal is already cleared

Journal writes < commit record write < FS writes
- Otherwise, crash è record appears committed, but contains garbage

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 34

Ext3 Journaling Modes
Journaling has cost
- one write = two disk writes, two seeks

Several journaling modes balance consistency and performance

Data journaling: journal all writes, including file data
- Problem: expensive to journal data

Metadata journaling: journal only metadata
- Used by most FS (IBM JFS, SGI XFS, NTFS)
- Problem: file may contain garbage data

Ordered mode: write file data to real FS first, then journal metadata
- Default mode for ext3
- Problem: old file may contain new data

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 35

Summary

The consistent update problem
- Example of file creation and different crash scenarios

Two approaches to crash consistency
- FSCK: slow, not well-defined consistency
- Journaling: well-defined consistency, different modes

Other approach
- Soft updates (advanced OS topics)

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 36

Next Time…

Read Appendix B

11/10/21 CS 318 – Lecture 19 – File System Crash Consistency 37

