
CS 318 Principles of Operating Systems

Lecture 16: File System Implementation

Prof. Ryan Huang

Fall 2021

Why disks are different

Disk = First state we’ve seen that doesn’t go away
- So: Where all important state ultimately resides

Slow (milliseconds access vs. nanoseconds for memory)

Huge (100–1,000x bigger than memory)
- How to organize large collection of ad hoc information?
- File System: Hierarchical directories, Metadata, Search

11/8/21 CS 318 – Lecture 16 – File System Implementation 2

improvement

Disk vs. Memory

Disk MLC NAND
Flash DRAM

Smallest write sector sector byte

Atomic write sector sector byte/word

Random read 8 ms 3-10 µs 50 ns

Random write 8 ms 9-11 µs* 50 ns

Sequential read 100 MB/s 550–2500 MB/s > 1 GB/s

Sequential write 100 MB/s 520–1500 MB/s* > 1 GB/s

Cost $0.03/GB $0.35/GB $6/GiB

Persistence Non-volatile Non-volatile Volatile

11/8/21 CS 318 – Lecture 16 – File System Implementation 3

*: Flash write performance degrades over time

Disk Review
Disk reads/writes in terms of sectors, not bytes
- Read/write single sector or adjacent groups

How to write a single byte? “Read-modify-write”
- Read in sector containing the byte
- Modify that byte
- Write entire sector back to disk
- Key: if cached, don’t need to read in

Sector = unit of atomicity.
- Sector write done completely, even if crash in middle (disk saves up enough momentum to complete)

Larger atomic units have to be synchronized by OS

11/8/21 CS 318 – Lecture 16 – File System Implementation 4

Some Useful Trends (1)

Disk bandwidth and cost/bit improving exponentially
- Similar to CPU speed, memory size, etc.

Seek time and rotational delay improving very slowly
- Why? require moving physical object (disk arm)

Disk access is a huge system bottleneck & getting worse
- Bandwidth increase lets system (pre-)fetch large chunks for about the same cost as

small chunk.
- Trade bandwidth for latency if you can get lots of related stuff.

11/8/21 CS 318 – Lecture 16 – File System Implementation 5

Some Useful Trends (2)

Desktop memory size increasing faster than typical workloads
- More and more of workload fits in file cache
- Disk traffic changes: mostly writes and new data

Memory and CPU resources increasing
- Use memory and CPU to make better decisions
- Complex prefetching to support more IO patterns
- Delay data placement decisions reduce random IO

11/8/21 CS 318 – Lecture 16 – File System Implementation 6

Goal

Want: operations to have as few disk accesses as possible & have

minimal space overhead (group related things)

What’s hard about grouping blocks?

Like page tables, file system metadata constructs mappings
- Page table: map virtual page # to physical page #
- File metadata: map byte offset to disk block address
- Directory: map name to disk address or file #

11/8/21 CS 318 – Lecture 16 – File System Implementation 7

File Systems vs. Virtual Memory

In both settings, want location transparency
- Application shouldn’t care about particular disk blocks or physical memory locations

In some ways, FS has easier job than VM:
- CPU time to do FS mappings not a big deal (why?) è no TLB
- Page tables deal with sparse address spaces and random access, files often denser (0 . . . filesize
− 1), ∼sequentially accessed

In some ways, FS’s problem is harder:
- Each layer of translation = potential disk access
- Space a huge premium! (But disk is huge?!?!)

• Cache space never enough; amount of data you can get in one fetch never enough

- Range very extreme: Many files < 10 KB, some files GB

11/8/21 CS 318 – Lecture 16 – File System Implementation 8

Some Working Intuitions

FS performance dominated by # of disk accesses
- Say each access costs ∼10 milliseconds
- Touch the disk 100 times = 1 second
- Can do a billion ALU ops in same time!

Access cost dominated by movement, not transfer:
- 1 sector: 5𝑚𝑠 + 4𝑚𝑠 + 5µ𝑠 (≈ 512 𝐵/(100 𝑀𝐵/𝑠)) ≈ 9𝑚𝑠
- 50 sectors: 5𝑚𝑠 + 4𝑚𝑠 + .25𝑚𝑠 = 9.25𝑚𝑠
- Can get 50x the data for only ∼3% more overhead!

Observations that might be helpful:
- All blocks in file tend to be used together, sequentially
- All files in a directory tend to be used together
- All names in a directory tend to be used together

11/8/21 CS 318 – Lecture 16 – File System Implementation 9

Problem: How to Track File’s Data

Disk management:
- Need to keep track of where file contents are on disk
- Must be able to use this to map byte offset to disk block
- Structure tracking a file’s sectors is called an index node or inode
- inodes must be stored on disk, too

Things to keep in mind while designing file structure:
- Most files are small
- Much of the disk is allocated to large files
- Many of the I/O operations are made to large files
- Want good sequential and good random access (what do these require?)

11/8/21 CS 318 – Lecture 16 – File System Implementation 10

Straw Man: Contiguous Allocation
“Extent-based”: allocate files like segmented memory
- When creating a file, make the user pre-specify its length and allocate all space at once
- Inode contents: location and size

Example: IBM OS/360

Pros?
- Simple, fast access, both sequential and random

Cons? (Think of corresponding VM scheme)
- Files may not dynamically grow after creation
- External fragmentation

11/8/21 CS 318 – Lecture 16 – File System Implementation 11

file a (base=1, len=3) file b (base=5, len=2)

What happens if file c needs
2 sectors?

Straw Man #2: Linked Files

Basically a linked list on disk.
- Keep a linked list of all free blocks
- Inode contents: a pointer to file’s first block
- In each block, keep a pointer to the next one

Examples (sort-of): Alto, TOPS-10, DOS FAT

Pros?
- Easy dynamic growth & sequential access, no fragmentation

Cons?
- Linked lists on disk a bad idea because of access times
- Random very slow (e.g., traverse whole file to find last block)
- Pointers take up room in block, skewing alignment

11/8/21 CS 318 – Lecture 16 – File System Implementation 12

file a (base=1) file b (base=5)

How do you find last block in a?

Linked files with key optimization: puts links in fixed-size “file allocation table” (FAT) rather

than in each data block.

Still do pointer chasing, but can cache entire FAT so can be cheap compared to disk access

Example: DOS FS (simplified)

11/8/21 CS 318 – Lecture 16 – File System Implementation 13

free

EOF

1

EOF

3

EOF

4

FAT (16-bit entries)

A: 6
6 4 3

0

1

2

3

4

5

6

File A:

2 1

File B:

Directory (5)

B: 2

...

FAT Discussion

Entry size = 16 bits (initial FAT16 in MS-DOS 3.0)
- What’s the maximum size of the FAT?
- Given a 512 byte block, what’s the maximum size of FS?
- One solution: go to bigger blocks. Pros? Cons?

Space overhead of FAT is trivial:
- 2 bytes / 512 byte block = ∼ 0.4% (Compare to Unix)

Reliability: how to protect against errors?
- Create duplicate copies of FAT on disk
- State duplication a very common theme in reliability

Bootstrapping: where is root directory?
- Fixed location on disk:

11/8/21 CS 318 – Lecture 16 – File System Implementation 14

65,536 entries
32MiB

FAT FAT (opt) Root dir …

Another Approach: Indexed Files

Each file has an array holding all of its block pointers
- Just like a page table, so will have similar issues
- Max file size fixed by array’s size (static or dynamic?)
- Allocate array to hold file’s block pointers on file creation
- Allocate actual blocks on demand using free list

Pros?
- Both sequential and random access easy

Cons?
- Mapping table requires large chunk of contiguous space
- ...Same problem we were trying to solve initially

11/8/21 CS 318 – Lecture 16 – File System Implementation 15

file a file b

Indexed Files

Issues same as in page tables
- Large possible file size = lots of unused entries
- Large actual size? table needs large contiguous disk chunk

Solve identically: small regions with index array, this array with another
array, ... Downside?

11/8/21 CS 318 – Lecture 16 – File System Implementation 16

Multi-level Indexed Files: Unix inodes

inode = 15 block pointers + “stuff”
- first 12 are direct blocks: solve problem of first blocks access slow
- then single, double, and triple indirect block

11/8/21 CS 318 – Lecture 16 – File System Implementation 17

ptr1
ptr2

ptr13
ptr14
ptr15

… …

… …

“stuff”

More About inode

11/8/21 CS 318 – Lecture 16 – File System Implementation 18

type (file or dir?)
uid (owner)

rwx (permissions)
size (in bytes)

blocks
time (access)
ctime (create)

links_count (# paths)
addrs[N] (N data blocks)

inode

indirect
data data data

inode

More About inodes

inodes are stored in a fixed-size array
- Size of array fixed when disk is initialized; can’t be changed
- Lives in known location, originally at one side of disk:

- The index of an inode in the inode array called an i-number
- Internally, the OS refers to files by i-number
- When file is opened, inode brought in memory
- Written back when modified and file closed or time elapses

11/8/21 CS 318 – Lecture 16 – File System Implementation 19

More About inodes

11/8/21 CS 318 – Lecture 16 – File System Implementation 20

0 7

D D D D D D D D

8 15

D D D D D D D D

16 23

D D D D D D D D

24 31

D D D D D D D D

32 39

D D D D D D D D

40 47

D D D D D D D D

48 55

D D D D D D D D

56 63

I I I I I

Unix inodes and Path Search

Unix inodes are not directories
- Inodes describe where on the disk the blocks for a file are placed
- Directories are files, so inodes also describe where the blocks for directories are

placed on the disk

Directory entries map file names to inodes, e.g., to open “/a.txt”
- Use Master Block to find inode for “/” on disk
- Read inode for “/” into memory, look for entry for “a.txt”
- This entry gives the disk block number for the inode for “a.txt”
- Read the inode for “a.txt” into memory
- The inode says where first data block is on disk
- Read that block into memory to access the data in the file

11/8/21 CS 318 – Lecture 16 – File System Implementation 21

How many disk accesses
are required?

What about reading
“/a/b/c.txt”

File Buffer Cache

Disk operations are slow…

Applications exhibit locality for reading and writing files

Idea: Cache file blocks in memory to capture locality
- Called the file buffer cache
- Cache is system wide, used and shared by all processes
- Reading from the cache makes a disk perform like memory
- Even a small cache can be very effective

Issues
- The file buffer cache competes with VM (tradeoff here)
- Like VM, it has limited size
- Need replacement algorithms again (LRU usually used)

11/8/21 CS 318 – Lecture 16 – File System Implementation 22

Caching Writes
On a write, some applications assume that data makes it through the

buffer cache and onto the disk
- As a result, writes are often slow even with caching

OSes typically do write back caching
- Maintain a queue of uncommitted blocks
- Periodically flush the queue to disk (30 second threshold)
- If blocks changed many times in 30 secs, only need one I/O
- If blocks deleted before 30 secs (e.g., /tmp), no I/Os needed

Unreliable, but practical
- On a crash, all writes within last 30 secs are lost
- Modern OSes do this by default; too slow otherwise
- System calls (Unix: fsync) enable apps to force data to disk

11/8/21 CS 318 – Lecture 16 – File System Implementation 23

Read Ahead

Many file systems implement “read ahead”
- FS predicts that the process will request next block
- FS goes ahead and requests it from the disk
- This can happen while the process is computing on previous block

• Overlap I/O with execution

- When the process requests block, it will be in cache
- Compliments the disk cache, which also is doing read ahead

For sequentially accessed files can be a big win
- Unless blocks for the file are scattered across the disk
- File systems try to prevent that, though (during allocation)

11/8/21 CS 318 – Lecture 16 – File System Implementation 24

Summary
File System Layouts
- Unix inodes

File Buffer Cache
- Strategies for handling writes

Read Ahead

11/8/21 CS 318 – Lecture 16 – File System Implementation 25

Next Time…

Read Chapter 41, 42

11/8/21 CS 318 – Lecture 16 – File System Implementation 26

