
CS 318 Principles of Operating Systems

Lecture 13: Dynamic Memory Allocation

Prof. Ryan Huang

Fall 2021

Administrivia

Lab 3a is out
- Due 11/05 Friday 11:59 pm
- Last lab for 318 section students, hang in there..
- Considered by many students as the most challenging lab

• Design is important, debugging is hard, need to fix Lab 2 bugs

- Suggest coming up with designs first, making an appointment
with the staff to check the design before coding

Lab 3 overview session this week

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 2

Image source: https://hashtagmomfail.com/climb-out-of-that-hole-peeps/

Memory Allocation

Static Allocation (fixed in size)
- want to create data structures that are fixed and don’t need to grow or shrink
- global variables, e.g., char name[16];
- done at compile time

Dynamic Allocation (change in size)
- want to increase or decrease the size of a data structure according to different demands
- done at run time

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 3

Dynamic Memory Allocation

Almost every useful program uses it
- Gives wonderful functionality benefits
- Don’t have to statically specify complex data structures
- Can have data grow as a function of input size
- Allows recursive procedures (stack growth)
- But, can have a huge impact on performance

Two types of dynamic memory allocation
- Stack allocation: restricted, but simple and efficient
- Heap allocation (focus today): general, but difficult to implement.

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 4

Dynamic Memory Allocation

Today: how to implement dynamic heap allocation
- Lecture based on [Wilson] (good survey from 1995)

Some interesting facts:
- Two or three line code change can have huge, non-obvious impact on how well allocator

works (examples to come)
- Proven: impossible to construct an "always good" allocator
- Surprising result: after 25 years, memory management still poorly understood

• Beyond malloc efficiency to fleet efficiency: a hugepage-aware memory allocator [OSDI ’21]

- Big companies may write their own “malloc”
• Google: TCMalloc
• Facebook: jemalloc

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 5

https://www.cs.jhu.edu/~huang/cs318/fall21/readings/wilson.pdf

Why Is It Hard?

Satisfy arbitrary set of allocation and frees.

Easy without free: set a pointer to the beginning of some big chunk of
memory (“heap”) and increment on each allocation:

Problem: free creates holes (“fragmentation”) Result? Lots of free space
but cannot satisfy request!

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation

heap (free memory)

allocation current free position

6

More Abstractly

What an allocator must do?
- Track which parts of memory in use, which parts are free
- Ideal: no wasted space, no time overhead

What the allocator cannot do?
- Control order of the number and size of requested blocks
- Know the number, size, & lifetime of future allocations
- Move allocated regions (bad placement decisions permanent), unlike Java allocator

The core fight: minimize fragmentation
- App frees blocks in any order, creating holes in “heap”
- Holes too small? cannot satisfy future requests

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation

NULL

freelist

20 10 20 10 20malloc(20)?

7

What Is Fragmentation Really?

Inability to use memory that is free

Two factors required for fragmentation
1. Different lifetimes—if adjacent objects die at different times, then fragmentation:

• If all objects die at the same time, then no fragmentation:

2. Different sizes: If all requests the same size, then no fragmentation (that’s why no
external fragmentation with paging):

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 8

Important Decisions

Placement choice: where in free memory to put a requested block?
- Freedom: can select any memory in the heap
- Ideal: put block where it won’t cause fragmentation later (impossible in general: requires future

knowledge)

Split free blocks to satisfy smaller requests?
- Fights internal fragmentation
- Freedom: can choose any larger block to split
- One way: choose block with smallest remainder (best fit)

Coalescing free blocks to yield larger blocks
- Freedom: when to coalesce (deferring can save work)
- Fights external fragmentation

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation

20 10 30

30 30

9

Impossible to “Solve” Fragmentation

If you read allocation papers to find the best allocator
- All discussions revolve around tradeoffs
- The reason? There cannot be a best allocator

Theoretical result:
- For any allocation algorithm, there exist streams of allocation and deallocation requests that

defeat the allocator and force it into severe fragmentation L

How much fragmentation should we tolerate?
- Let 𝑀 = bytes of live data, nmin = smallest allocation, nmax = largest allocation
- Bad allocator: M	·	(nmax/nmin)

• E.g., make all allocations of size nmax regardless of requested size

- Good allocator: ∼ M	·	log(nmax/nmin)

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 10

Pathological Examples

Suppose heap currently has 7 20-byte chunks

- What’s a bad stream of frees and then allocates?

Next: two allocators (best fit, first fit) that, in practice, work pretty well
- “pretty well” = ∼20% fragmentation under many workloads

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation

2020 20 20 20 20 20

11

Pathological Examples

Suppose heap currently has 7 20-byte chunks

- What’s a bad stream of frees and then allocates?

- Free every other chunk, then alloc 21 bytes

Next: two allocators (best fit, first fit) that, in practice, work pretty well
- “pretty well” = ∼20% fragmentation under many workloads

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation

2020 20 20 20 20 20

12

Best Fit

Strategy: minimize fragmentation by allocating space from block that

leaves smallest fragment
- Data structure: heap is a list of free blocks, each has a header holding block size and a

pointer to the next block

- Code: Search freelist for block closest in size to the request. (Exact match is ideal)
- During free: return free block, and (usually) coalesce adjacent blocks

Potential problem: Sawdust
- Remainder so small that over time left with “sawdust” everywhere
- Fortunately not a problem in practice

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 13

Best Fit Gone Wrong

Simple bad case: allocate n,	m	(n	<	m)	in alternating orders, free all the

ns, then try to allocate an n	+	1

Example: start with 99 bytes of memory

- alloc 19, 21, 19, 21, 19

- free 19, 19, 19:

- alloc 20? Fails! (wasted space = 57 bytes)

However, doesn’t seem to happen in practice

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation

2119 19 21 19

2119 19 21 19

14

First Fit

Strategy: pick the first block that fits
- Data structure: free list, sorted LIFO, FIFO, or by address
- Code: scan list, take the first one

Suppose memory has free blocks:
- Workload 1: alloc(10), alloc(20)

- Workload 2: alloc(8), alloc(12), alloc(12)

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation

1520

Best Fit 15 First Fit 1520

Fail!

Best Fit 1520

Fail!

First Fit 15

20

20

15

First Fit

LIFO: put free object on front of list.
- Simple, but causes higher fragmentation
- Potentially good for cache locality

Address sort: order free blocks by address
- Makes coalescing easy (just check if next block is free)
- Also preserves empty/idle space (locality good when paging)

FIFO: put free object at end of list
- Gives similar fragmentation as address sort, but unclear why

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 16

Subtle Pathology: LIFO FF

Storage management example of subtle impact of simple decisions

LIFO first fit seems good:
- Put object on front of list (cheap), hope same size used again (cheap + good locality)

But, has big problems for simple allocation patterns:
- E.g., repeatedly intermix short-lived 2n-byte allocations, with long-lived (n	+	1)-byte allocations

- Each time large object freed, a small chunk will be quickly taken, leaving useless fragment.
Pathological fragmentation

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation

alloc(8), free(8), alloc(5), alloc(8), free(8), alloc(5), alloc(8), free(8), …

17

Some Other Ideas

Worst-fit:
- Strategy: fight against sawdust by splitting blocks to maximize leftover size
- In real life seems to ensure that no large blocks around

Next fit:
- Strategy: use first fit, but remember where we found the last thing and start searching

from there
- Seems like a good idea, but tends to break down entire list

Buddy systems:
- Round up allocations to power of 2 to make management faster

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 18

Buddy Allocator Motivation

Allocation requests: frequently 2^n
- E.g., allocation physical pages in Linux
- Generic allocation strategies: overly generic

Fast search (allocate) and merge (free)
- Avoid iterating through free list

Avoid external fragmentation for req of 2^n

Keep physical pages contiguous

Used by Linux, FreeBSD

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 19

Buddy Allocator Implementation

Data structure
- N free lists of blocks of size 2^0, 2^1, …, 2^N

Allocation restrictions: 2^k, 0<= k <= N

Allocation of 2^k:
- Search free lists (k, k+1, k+2, …) for appropriate size
- Recursively divide larger blocks until reach block of correct size
- Insert “buddy” blocks into free lists

Free
- recursively coalesce block with “buddy” if buddy free

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 20

Buddy Allocation

Recursively divide larger blocks until reach suitable block
- Big enough to fit but if further splitting would be too small

Insert “buddy” blocks into free lists
- The addresses of the buddy pair only differ by one bit!

Upon free, recursively coalesce block with buddy if buddy free

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation

64 KB

32 KB 32 KB

16 KB 16 KB

8 KB buddy block

21

Buddy Allocation Example

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation

freelist[3] = {0}

freelist[0] = {1}, freelist[1] = {2}, freelist[2] = {4}

p1 = alloc(2^0)

p2 = alloc(2^2)

free(p1)

free(p2)

freelist[0] = {1}, freelist[1] = {2}

freelist[2] = {0}

freelist[3] = {0}

Note: 2^3

0 1 2 3 4 5 6 7

22

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Known Patterns of Real Programs

So far we’ve treated programs as black boxes.

Most real programs exhibit 1 or 2 (or all 3) of the following patterns of

alloc/dealloc:

- Ramps: accumulate data monotonically over time

- Peaks: allocate many objects, use briefly, then free all

- Plateaus: allocate many objects, use for a long time

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 23

Pattern 1: ramps

In a practical sense: ramp = no free!
- Implication for fragmentation?
- What happens if you evaluate allocator with ramp programs only?

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 24

Pattern 2: Peaks

Peaks: allocate many objects, use briefly, then free all
- Fragmentation a real danger
- What happens if peak allocated from contiguous memory?
- Interleave peak & ramp? Interleave two different peaks?

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 25

Exploiting Peaks

Peak phases: allocate a lot, then free everything
- Change allocation interface: alloc as before, but only support free of everything all at once
- Called “arena allocation”, “obstack” (object stack)

Arena = a linked list of large chunks of memory
- Advantages: alloc is a pointer increment, free is “free”
- No wasted space for tags or list pointers
- See Pintos threads/malloc.c

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 26

Pattern 3: Plateaus

Plateaus: allocate many objects, use for a long time

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 27

Slab Allocation

Kernel allocates many instances of same structures
- E.g., a 1.7 KB task_struct for every process on system

Often want contiguous physical memory (for DMA)

Slab allocation optimizes for this case:
- A slab is multiple pages of contiguous physical memory
- A cache contains one or more slabs
- Each cache stores only one kind of object (fixed size)

Each slab is full, empty, or partial

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 28

Slab Allocation

E.g., need new task_struct?
- Look in the task_struct cache
- If there is a partial slab, pick free task_struct in that
- Else, use empty, or may need to allocate new slab for cache

Free memory management: bitmap
- Allocate: set bit and return slot, Free: clear bit

Advantages: speed, and no internal fragmentation

Used in FreeBSD and Linux, implemented on top of buddy page

allocator
10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 29

Space Overheads

Free list bookkeeping and alignment determine minimum allocatable size:

If not implicit in page, must store size of block

Must store pointers to next and previous freelist element

Allocator doesn’t know types
- Must align memory to conservative boundary

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 30

Implementing malloc

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 31

Getting More Space from OS

malloc is a library call, how does malloc gets free space?
- Note in Pintos, malloc is provided as a kernel function (see threads/malloc.c)

On Unix, can use sbrk and brk
- int brk(void *p)

• Move the program break to address p

• Return 0 if successful and -1 otherwise

- void *sbrk(intptr_t n)
• Increment the program break by n bytes

• If n is 0, then return the current location of the program break

• Return 0 if successful and (void*)-1 otherwise

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 32

Implement malloc()

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation

void *malloc(size_t n)
{
char *p = sbrk(0);
if (brk(p + n) == -1)
return NULL;

return p;
}

get current “program break”
set “program break” to be current plus n

void free(void * p)
{
}

Problem?
• Two system calls for every malloc!
• Freed blocks are not reused

Solutions
• Allocators request memory pool
• Keep track of free list
• If can’t find free chunk, request from OS

33

Returning Heap Memory

Allocator can mark blocks as free when free() is called
- These blocks can be reused later by the process
- Problem: they are not returned to the system!

• can cause memory pressure

Allocator can return heap memory with brk(pBrk–n), but…
- p in free(p) is not always at the end of the heap!
- So can’t reduce the heap size with brk(pBrk–n)

Therefore, for large allocations, sbrk() is a bad idea
- Can’t return memory to the system

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 34

Solution: VM Mapping

void *mmap(void *p, size_t n, int prot, int flags,

int fd, off_t offset);
- Creates a new mapping in the virtual address space of the calling process
- p: the starting address for the new mapping
- n: the length of the mapping
- If p is NULL, the kernel chooses the address at which to create the mapping

- On success, returns address of the mapped area

int munmap(void *p, size_t n);
- Deletes the mappings for the specified address range

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 35

Implement malloc() with mmap()

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation

void *malloc(size_t n)
{
size_t *p;
if (n == 0) return NULL;
p = mmap(NULL, n + sizeof(size_t),

PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);

if (p == (void*)-1) return NULL;
*p = n + sizeof(size_t); // Store size in header
p++; // Move forward from header to payload
return p;

}

void free(void *p)
{
if (p == NULL) return;
p--; // Move backward from

// payload to header
munmap(p, *p);

}

36

Next Time…

Chapters 36, 37

10/19/21 CS 318 – Lecture 13 – Dynamic Memory Allocation 37

