CS 318 Principles of
Operating Systems

Fall 2020

Lecture 9: Virtual Memory

Prof. Ryan Huang

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Administrivia

 Lab 2 out

- Does not depend on Lab 1:

* You can either build on your lab1 submission or start from beginning
« Content mostly about syscalls
« Only requires very basic knowledge about Virtual Memory (Lab 3 is on VM), start now

- Due Saturday 10/17 11:59 pm

- Lab 2 review session
- Wednesday (09/30) from 8pm to 9pm

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 2

Memory Management

Next few lectures are going to cover memory management

- Goals of memory management

- To provide a convenient abstraction for programming

- To allocate scarce memory resources among competing processes to maximize
performance with minimal overhead

* Mechanisms

- Physical and virtual addressing (1)
- Techniques: partitioning, paging, segmentation (1)
- Page table management, TLBs, VM tricks (2)

 Policies
- Page replacement algorithms (3)

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 3

| ecture Overview

* Virtual memory warm-up

* Survey techniques for implementing virtual memory

- Fixed and variable partitioning
- Paging
- Segmentation

* Focus on hardware support and lookup procedure

- Next lecture we’ll go into sharing, protection, efficient implementations, and
other VM tricks and features

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 4

Virtual Memory

- The abstraction that the OS provides for managing memory

- VM enables a program to execute with less physical memory than it “needs”
« Can also run on a machine with “too much” physical memory

- Many programs do not need all of their code and data at once (or ever) — no
need to allocate memory for it

- OS will adjust memory allocation to a process based upon its behavior
- VM requires hardware support and OS management algorithms to pull it off

* Let’s go back to the beginning...

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 5

In the beginning...

- Rewind to the days of “second-generation” computers

- Programs use physical addresses directly
- OS loads job, runs it, unloads it

* Multiprogramming changes all of this
- Want multiple processes in memory at once

- Consider multiprogramming on physical memory PP R
- What happens if pintos needs to expand? 0x7000

- If vim needs more memory than is on the machine? gee
- If pintos has an error and writes to address 0x71007? intos 0x4000
- When does gcc have to know it will run at 0x40007? 0x3000

- What if vim isn’t using its memory? vim
0x0000

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 6

Issues in Sharing Physical Memory

* Protection

- A bug in one process can corrupt memory in another
- Must somehow prevent process A from trashing B’s memory
- Also prevent A from even observing B’s memory (ssh-agent)

- Transparency

- A process shouldn’t require particular physical memory bits

- Yet processes often require large amounts of contiguous memory (for stack, large
data structures, etc.)

 Resource exhaustion

- Programmers typically assume machine has “enough” memory
- Sum of sizes of all processes often greater than physical memory

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 7

Virtual Memory Goals

kernel Is address
legal?

Virtual address Yes: phy. addr

0x30408 0x92408 memory
load >l MMU —>

<€

- Give each program its own virtual address space

- At runtime, Memory-Management Unit (MMU) relocates each load/store
- Application doesn’t see physical memory addresses

- Enforce protection
- Prevent one app from messing with another’s memory

- And allow programs to see more memory than exists
- Somehow relocate some memory accesses to disk

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 8

Virtual Memory Goals

No: to fault handler

kernel [« s address
legal?
Virtual address
0x30408 memory
load > MMU

- Give each program its own virtual address space

- At runtime, Memory-Management Unit (MMU) relocates each load/store
- Application doesn’t see physical memory addresses

- Enforce protection
- Prevent one app from messing with another’s memory

- And allow programs to see more memory than exists
- Somehow relocate some memory accesses to disk

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 9

Virtual Memory Advantages

- Can re-locate program while running
- Run partially in memory, partially on disk

- Most of a process’s memory may be idle (80/20 rule)

- Write idle parts to disk until needed
- Let other processes use memory of idle part

- Like CPU virtualization: when process not using CPU, switch (Not using a
memory region? switch it to another process)

- Challenge: VM = extra layer, could be slow

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 10

ldea 1: Load-time Linking

static a.out

kernel

0x3000 .
call 0x2200

0x1000

P

call 0x5200

0x6000

0x4000

- Linker patches addresses of symbols like printf

- Idea: link when process executed, not at compile time

- Determine where process will reside in memory
- Adjust all references within program (using addition)

* Problems?

9/29/20 CS 318 — Lecture 9 — Virtual Memory |

11

ldea 1: Load-time Linking

kernel

. 0x6000
static a.out

0x3000 ; / call 0x5200
call 0x2200 : 0x4000

0x1000
* Linker patches addresses of symbols like printf

* Idea: link when process executed, not at compile time

- Determine where process will reside in memory
- Adjust all references within program (using addition)

 Problems?

- How to enforce protection?
- How to move once already in memory? (consider data pointers)
- What if no contiguous free region fits program?

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 12

ldea 2: Base + Bound Register

kernel

. 0x6000
static a.out

0x3000 ; / call 0x5200
call 0x2200 : 0x4000

0x1000

- Two special privileged registers: base and bound

* On each load/store/jump:

- Physical address = virtual address + base
- Check 0 =< virtual address < bound, else trap to kernel

- How to move process in memory?

- What happens on context switch?

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 13

ldea 2: Base + Bound Register

kernel

. 0x6000
static a.out

0x3000 : / call 0x5200
call 0x2200 : 0x4000

0x1000
- Two special privileged registers: base and bound

- On each load/store/jump:

- How to move process in memory?
- Change base register

- What happens on context switch?
- OS must re-load base and bound register

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 14

Definitions

- Programs load/store to virtual addresses
- Actual memory uses physical addresses

- VM Hardware is Memory Management Unit (MMU)

virtual physical
addres address
CPU MMU |« > memory

- Usually part of CPU
« Configured through privileged instructions (e.g., load bound reg)

- Translates from virtual to physical addresses
- Gives per-process view of memory called address space

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 15

Base + Bound Trade-offs

- Advantages

- Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel
- Examples: Cray-1 used this scheme

- Disadvantages

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 16

Base + Bound Trade-offs

- Advantages

- Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel
- Examples: Cray-1 used this scheme

- Disadvantages

- Growing a process is expensive or impossible
- No way to share code or data (E.g., two copies of bochs,

both running pintos) free space
. . pintos2
* One solution: Multiple segments
- E.g., separate code, stack, data segments e
- Possibly multiple data segments bintos1

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 17

Segmentation

gcc

text r/o

data

stack

* Let processes have many base/bound regs

- Address space built from many segments
- Can share/protect memory at segment granularity

* Must specify segment as part of virtual address

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 18

Segmentation Mechanics

Virtual Address
3 128

0x1000
vzs
0x1080

seg# offset

> 0x1000 | 512 r //

- Each process has a segment table

- Each VA indicates a segment and offset:

- Top bits of addr select segment, low bits select offset
- x86 stores segment #s in registers (CS, DS, SS, ES, FS, GS)

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 19

Segmentation Example

mml

0 0x4000 Ox6ff 0x4000 0x4700
1 0x0000 Ox4ff 11 0x3000 0x4000
2 0x3000 Oxfff 11

3 00

0x1500

0x0700 0x0500

0x0000

- 2-bit segment number (1st digit), 12 bit offset (last 3)
- Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x16007

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 20

Segmentation Trade-offs

- Advantages

- Multiple segments per process
- Can easily share memory! (how?)
- Don’t need entire process in memory

- Disadvantages

- Requires translation hardware, which could limit performance

- Segments not completely transparent to program (e.g., default segment
faster or uses shorter instruction)

- n byte segment needs n contiguous bytes of physical memory
- Makes fragmentation a real problem.

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 21

Fragmentation

- Fragmentation = Inability to use free memory

- Over time:

- Variable-sized pieces = many small holes (external fragmentation)

- Fixed-sized pieces = no external holes, but force internal waste (internal
fragmentation)

P
<

External
' 22 — e/,f”””fra mentation
Pintos 20 g

€emacCs

:}:Unused

(“internal
fragmentation”)

allocated

N—
9/29/20 CS 318 — Lecture 9 — Virtual Memory | 22

Alternatives to Hardware MMU

- Language-level protection (Java)

- Single address space for different modules
- Language enforces isolation
- Singularity OS does this

- Software fault isolation

- Instrument compiler output
- Checks before every store operation prevents modules from trashing each other
- Google Native Client does this

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 23

https://www.microsoft.com/en-us/research/wp-content/uploads/2005/10/tr-2005-135.pdf
https://developer.chrome.com/native-client

- Divide memory up into fixed-size pages

- Eliminates external fragmentation Physical Memory
Virtual Memory
- Map virtual pages to physical pages Page 0
- Each process has separate mapping Page 1
Page 2

 Allow OS to gain control on certain operations

- Read-only pages trap to OS on write Page N-1
- Invalid pages trap to OS on read or write
- OS can change mapping and resume application

/

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 24

Paging Trade-offs

/7

Pages, typical —__»

size: 4K-8K -\

vim

internal frag

- Eliminates external fragmentation
- Simplifies allocation, free, and backing storage (swap)

- Average internal fragmentation of .5 pages per “segment”

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 25

Simplified Allocation

physical
memory

gcc emacs

disk

 Allocate any physical page to any process

- Can store idle virtual pages on disk

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 26

Paging Data Structures (1)

- Pages are fixed size, e.g., 4K

- Virtual address has two parts: virtual page number and offset
- Least significant 12 (log,4k) bits of address are page offset
- Most significant bits are page number

- Page tables

- Map virtual page number (VPN) to physical page number (PPN)
* VPN is the index into the table that determines PPN
* PPN also called page frame number

- Also includes bits for protection, validity, etc.
- One page table entry (PTE) per page in virtual address space

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 27

Page Table Entries (PTES)

1 1 1 2 20
M|R|V]| Prot Physical Page Number

- Page table entries control mapping

- The Modify bit says whether or not the page has been written
 ltis set when a write to the page occurs

- The Reference bit says whether the page has been accessed
 Itis set when a read or write to the page occurs

- The Valid bit says whether or not the PTE can be used

* |t is checked each time the virtual address is used

- The Protection bits say what operations are allowed on page
« Read, write, execute

- The Physical page number (PPN) determines physical page

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 29

Virtual Address

Page Lookups

Page number

Offset

Page Table

Physical Address

Page frame

Offset

Physical Memory

9/29/20

Page frame

-

CS 318 — Lecture 9 — Virtual Memory |

Y

30

Paging Example

- Pages are 4K
- VPN is 20 bits (22° VPNSs), offset is 12 bits

* Virtual address is 0x7468
- Virtual page is 0x7, offset is 0x468

- Page table entry 0x7 contains 0x2

- Physical page number is 0x2
- Seventh virtual page is at address 0x2000 (2nd physical page)

* Physical address = 0x2000 + 0x468 = 0x2468

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 31

x86 Paging

- Paging enabled by bits in a control register (3cr0)
- Only privileged OS code can manipulate control registers

- Normally 4KB pages

* 3cr3: points to 4KB page directory
- See pagedir activate() in Pintos userprog/pagedir.c

- Page directory: 1024 PDEs (page directory entries)

- Each contains physical address of a page table

- Page table: 1024 PTEs (page table entries)

- Each contains physical address of virtual 4K page
- Page table covers 4 MB of virtual mem

- See old Intel manual for simplest explanation

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 32

https://github.com/jhu-cs318/pintos/blob/master/src/userprog/pagedir.c

x86 Page Translation

Linear Address
31 22 21 12 11 0

Directory Table O ffset

,
/112 4-KByte Page

//10 A10 Page Table —»|Physical Address

Page Directory

—>»1 Page-Table Entry 7L)

20

Y

—| Directory Entry

%
/7] 32~ 1024 PDE \times 1024 PTE =2%° Pages
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary
9/29/20 CS 318 — Lecture 9 — Virtual Memory | 33

x86 Page Directory Entry

Page-Directory Entry (4-KByte Page Table)

31 12 11 9 87 6 5 4 3 210
PIP|U|R

Page-Table Base Address Avail |c|Plo|alc|w]|/]/|P
S p|T|s |w

Available for system programmer's use 4|

Global page (Ilgnored)
Page size (0 indicates 4 KBytes)
Reserved (setto 0)
Accessed
Cache disabled
W rite-through
User/Supervisor
Read/Write

Present
9/29/20 CS 318 — Lecture 9 — Virtual Memory | 34

x86 Page Table Entry

Page-Table Entry (4-KByte Page)

31 12 11 9 87 65 43210
P PlP
Page Base Address Avalil G|AID|A|CIW]|/]|/ |P
T DIT|S |W

Available for system programmer's use
Global Page
Page Table Attribute Index
Dirty
Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write

Present
9/29/20 CS 318 — Lecture 9 — Virtual Memory | 35

Paging Advantages

- Easy to allocate memory

- Memory comes from a free list of fixed size chunks
- Allocating a page is just removing it from the list
- External fragmentation not a problem

- Easy to swap out chunks of a program

- All chunks are the same size
- Use valid bit to detect references to swapped pages
- Pages are a convenient multiple of the disk block size

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 36

Paging Limitations

- Can still have internal fragmentation
- Process may not use memory in multiples of a page

- Memory reference overhead

- 2 or more references per address lookup (page table, then memory)
- Solution — use a hardware cache of lookups (more later)

- Memory required to hold page table can be significant

- Need one PTE per page

- 32 bit address space w/ 4KB pages = 2?° PTEs
- 4 bytes/PTE = 4MB/page table

- 25 processes = 100MB just for page tables!

- Solution — page the page tables (more later)

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 37

x86 Paging and Segmentation

- Xx86 architecture supports both paging and segmentation

- Segment register base + pointer val = linear address
- Page translation happens on linear addresses

- Two levels of protection and translation check

- Segmentation model has four privilege levels (CPL 0-3)
- Paging only two, so 0—2 = kernel, 3 = user

- Why do you want both paging and segmentation?

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 38

Why Want Both Paging and Segmentation?

- Short answer: You don’t — just adds overhead

- Most OSes use “flat mode” — set base = 0, bounds = Oxffff£f££ff in all
segment registers, then forget about it

- X86-64 architecture removes much segmentation support

- Long answer: Has some fringe/incidental uses

- Use segments for logically related units + pages to partition segments into
fixed size chunks

» Tend to be complex
- VMware runs guest OS in CPL 1 to trap stack faults

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 39

Where Does the OS Live in Memory?

* In its own address space?

- Can’t do this on most hardware (e.g., syscall instruction won’t switch address spaces)
- Also would make it harder to parse syscall arguments passed as pointers

* So in the same address space as process

- Use protection bits to prohibit user code from writing kernel
- Recent Spectre and Meltdown CPU attacks force OSes to reconsider this !1!

- Typically all kernel text, most data at same VA in every address space
- On x86, must manually set up page tables for this

« Questions to ponder

- Does the kernel have to use VAs during its execution as well?
- If so, how can OS setup page tables for processes?

[1]: https://lwn.net/Articles/743265/
9/29/20 CS 318 — Lecture 9 — Virtual Memory | 40

https://lwn.net/Articles/743265/

Pintos Virtual Memory Layout

~— Oxffffffff
Kernel/
Pseudo-physical memory

- - 0xc0000000
User stac (PHYS_BASE)

J v

A !
BSS / Heap
Data segment

Code segment

- 0x08048000

Invalid virtual addresses

- 0x00000000

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 41

Summary

* Virtual memory

- Processes use virtual addresses
- OS + hardware translates virtual address into physical addresses

 Various techniques

- Fixed partitions — easy to use, but internal fragmentation

- Variable partitions — more efficient, but external fragmentation
- Paging — use small, fixed size chunks, efficient for OS

- Segmentation — manage in chunks from user’s perspective

- Combine paging and segmentation

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 42

Next time...

- Chapters 19, 20

9/29/20 CS 318 — Lecture 9 — Virtual Memory | 43

