
CS 318 Principles of
Operating Systems

Fall 2020

Lecture 1: Introduction
Prof. Ryan Huang

9/1/20 CS 318 – Lecture 1 2

I hope you
are all safe
and well
during
these times

Virtual Greetings to You

9/1/20 CS 318 – Lecture 1 3

Virtual Greetings to You

9/1/20 CS 318 – Lecture 1 4

Virtual Greetings to You: Retry J

9/1/20 CS 318 – Lecture 1 5

Lecture 1 Overview

• Course overview

• Administrative

• What is an Operating System?

• Walk-through of OS basics

9/1/20 CS 318 – Lecture 1 6

Staff: Instructor

• Prof. Ryan Huang
- Web: https://cs.jhu.edu/~huang
- Office Hours: Tue 9:30-10:30am, Thu 4-5pm ET (or by appointment)

• Research Areas
- Operating Systems
- Cloud and Mobile Computing
- Systems Reliability and Availability

9/1/20 CS 318 – Lecture 1 7

https://cs.jhu.edu/~huang

Staff: Teaching Assistants

• Yuzhuo Jing (TA)
- Office Hours: Mon 10-11am, Wed 9-10pm ET

• Haoze Wu (CA)
- Office Hours: Wed 2-3pm, Fri 2-3pm ET

• Gongqi Huang (CA)
- Office Hours: Tue 10:30-11:30am,

Thu 10:30-11:30am ET

9/1/20 CS 318 – Lecture 1 8

Quick Survey

• How many juniors? seniors?

• Graduate students?

• Any non-CS majors?

• Any has some prior experience with OS?

9/1/20 CS 318 – Lecture 1 9

Bad News…

• This is a TOUGH course

• Requires proficiency in systems programming
- “Low level (C) programming absolutely necessary.”
- “Need to be fearless about breaking code (and then fixing it later).”
- “Need to be confident in touching and modifying large systems of code”

• Requires significant time commitment
- “The projects are insanely time consuming”
- “If you're worried about your course load this semester, maybe consider putting this class off

for a later year”
- “The workload is much much heavier than your average CS course…Be prepared to spend

entire weeks working on nothing but the material for this course. If you start only one week in
advance you WILL NOT finish without at least two all-nighters! ”

9/1/20 CS 318 – Lecture 1 10

Good News

• There aren’t many such hardcore courses in CS curriculum J
- Typically the final checkmark for a solid CS degree
- You don’t have to take it if you are not interested in it at all

• It’s hard, but rewarding in the end
- “The project are very hard. But completing them is very rewarding.”
- “I loved this course, it was very challenging but very satisfying and I learned a lot.”
- “You learn a lot about operating systems and computers in general.”

• A highly valued skill after graduation

• We will try our best to help you

9/1/20 CS 318 – Lecture 1 11

Course Overview

• An introductory course to operating systems
- Classic OS concepts and principles
- Prepare you for advanced OS and distributed system course
- OS concepts often asked in tech interview questions

• A practice course for hands-on experience with OS
- Four large programming assignments on a small but real OS
- Reinforce your understandings about the theories

9/1/20 CS 318 – Lecture 1 12

Topics Covered
• Threads, Processes

• Concurrency, Synchronization

• Scheduling

• Virtual Memory

• I/O

• Disks, Filesystems

• Protection & Security

• Virtual Machines

9/1/20 CS 318 – Lecture 1 13

Why Study Operating Systems?

• Technology trends

9/1/20 CS 318 – Lecture 1 14

CPU: ~4000 mult/div per sec. CPU: 1.85 GHz dual-core

memory: 2 GB

price: $2,630,000+ price: $329

size: half room size: 9.4 in × 6.6 in

IBM 709 iPad (2017)

memory: 32K 36-bit words

Why Study Operating Systems?

• Technology trends

9/1/20 CS 318 – Lecture 1 15

manycore 3D stacked chip persistent memory

smartphones self-driving cars data centers

…

Tensor Processing Unit

IoT device robots

accelerators

Why Study Operating Systems?

• An exciting time for building operating systems
- New hardware, smart devices, self-driving cars, data centers, etc.
- Existing OSes face issues in performance, battery life, security, isolation

• Pervasive principles for systems in general
- Caching, concurrency, memory management, I/O, protection

• Understand what you use
- System software tends to be mysterious
- Understanding OS makes you a more effective programmer

• Complex software systems
- Many of you will go on to work on large software projects
- OSes serve as examples of an evolution of complex systems

9/1/20 CS 318 – Lecture 1 16

some of you

many of you

all of you

all of you

Course Materials

• Course materials
- Lectures are the primary references
- Textbooks are supplementary readings
- Occasionally non-required papers

9/1/20 CS 318 – Lecture 1 17

Textbook

9/1/20 CS 318 – Lecture 1 18

Operating Systems: Three
Easy Pieces, Version 0.91

By Remzi Arpaci-Dusseau and
Andrea Arpaci-Dusseau

FREE

http://from-a-to-
remzi.blogspot.com/2014/01/the-case-
for-free-online-books-fobs.html

🥳

http://from-a-to-remzi.blogspot.com/2014/01/the-case-for-free-online-books-fobs.html

Textbook

9/1/20 CS 318 – Lecture 1 19

Operating Systems: Three
Easy Pieces, Version 0.91

By Remzi Arpaci-Dusseau and
Andrea Arpaci-Dusseau

FREE

🥳
http://from-a-to-
remzi.blogspot.com/2014/01/the-case-
for-free-online-books-fobs.html

http://from-a-to-remzi.blogspot.com/2014/01/the-case-for-free-online-books-fobs.html

Textbook

9/1/20 CS 318 – Lecture 1 20

Operating Systems Concepts

By Silberschatz, Galvin and
Gagne

Textbook

9/1/20 CS 318 – Lecture 1 21

Other Recommended Textbooks

9/1/20 CS 318 – Lecture 1 22

Important Links

• Course Website (check it often)
- https://www.cs.jhu.edu/~huang/cs318/fall20/
- Course syllabus and schedule
- Lecture slides
- Homework handouts
- Project descriptions and references

• Discussion Forum
- https://piazza.com/jhu/fall2020/cs318418618 Access Code(0x7C00)
- project, lecture, exam questions

• Staff mail list:
- cs318-staff@cs.jhu.edu
- administrative requests, sensitive questions

9/1/20 CS 318 – Lecture 1 23

https://www.cs.jhu.edu/~huang/cs318/fall20/
https://piazza.com/jhu/fall2020/cs318418618
mailto:cs318-staff@cs.jhu.edu

Homework

• Five homework assignments throughout the semester
- help you check understanding about the lectures
- prepare you for the exams

• The homework assignments will not be graded
- solutions released ~a week later
- amount learned from doing homework is proportional to effort
- your choice on how much effort

9/1/20 CS 318 – Lecture 1 24

Project Assignments

• Implement parts of Pintos operating system
- Developed in 2005 for Stanford’s CS 140 OS class
- Written in C, built for x86 hardware

• can run on a real machine!

9/1/20 CS 318 – Lecture 1 25

Project Assignments

• Implement parts of Pintos operating system
- Developed in 2005 for Stanford’s CS 140 OS class
- Written in C, built for x86 hardware

• can run on a real machine!

9/1/20 CS 318 – Lecture 1 26

Project Assignments

• Implement parts of Pintos operating system
- Developed in 2005 for Stanford’s CS 140 OS class
- Written in C, built for x86 hardware

• can run on a real machine!
- Use hardware emulator (QEMU/Bochs) during development

9/1/20 CS 318 – Lecture 1 27

9/1/20 CS 318 – Lecture 1 28

Project Assignments (2)

• One setup lab (lab 0)
- due next Thursday (done individually)

• Four substantial labs:
- Threads, User processes, Virtual memory, File system

• Implement projects in groups of up to 3 people
- Start picking your partners today

• Warning: each project requires significant time to complete
- Don’t wait until the last minute to start!!

9/1/20 CS 318 – Lecture 1 29

Project Assignments (3)

• Automated tests
- All tests are given so you immediately know how well your solution performs
- You either pass a test case or fail, there is no partial credit

• Design document
- Answer important questions related to your design for a lab

• Coding style
- Can your group member and TAs understand your code easily?

9/1/20 CS 318 – Lecture 1 30

Project Design and Style

• Must turn in a design document along with code
- Large software systems not just about producing working code
- We supply you with templates for each project’s design doc

• TAs will manually inspect code
- e.g., must actually implement the design
- must handle corner cases (e.g., handle malloc failure)
- will deduct points for error-prone code

• Code must be easy to read
- Indent code, keep lines and functions short
- Use a consistent coding style
- Comment important structure members, globals, functions

9/1/20 CS 318 – Lecture 1 31

Project Lab Environment

• The CS department ugrad and grad lab machines
- Running Linux on x86
- The toolchain already setup

• You may also use your own machine
- We have written detailed instructions for setting up the environment

• https://cs.jhu.edu/~huang/cs318/fall20/project/setup.html
- Unix and Mac OS preferred. Windows needs VMs
- Pre-built VM image can be downloaded here

9/1/20 CS 318 – Lecture 1 32

https://cs.jhu.edu/~huang/cs318/fall20/project/setup.html
https://jhucs318.blob.core.windows.net/pintosvm/CS318.ova

Exams

• Midterm
- Covers first half of class + questions related to projects
- Tuesday, October 20th

• Final
- Covers second half of class + selected materials from first part

• I will be explicit about the material covered
- Also include project questions
- TBA

9/1/20 CS 318 – Lecture 1 33

Exam Format

• Online with the LockDown Browser
- This course uses LockDown Browser and a webcam for online exams
- Make sure you have a webcam that's built into your computer or one that

plugs in with a USB cable.

• Download link and instructions will be provided later on Piazza

9/1/20 CS 318 – Lecture 1 34

Grading

• Midterm: 15%

• Final Exam: 25%

• Project: 60%
- Lab 4 is optional for 318-section student

• Will receive a max 6% bonus points if choosing to do it
- For each project

• 60% based on passing test cases
• 40% based on design document and style

9/1/20 CS 318 – Lecture 1 35

Late Policies

• Late submissions receive penalties as follows
- 1 day late, 15% deduction
- 2 days late, 30% deduction
- 3 days late, 60% deduction
- after 4 days, no credit

• Each team will have a total of 6-day grace period
- can spread into 4 projects
- for interview, attending conference, errands, etc., no questions asked
- use it wisely, strongly suggest to reserve it for later labs (lab3, 4)

9/1/20 CS 318 – Lecture 1 36

Collaboration and Cheating Policies
• Collaboration

- Explaining a concept to someone in another group
- Discussing algorithms/testing strategies with other groups
- Helping debug someone else’s code (in another group)

• Do not look at other people’s solutions
- Including solutions online

• This means copying code from GitHub will get you into big trouble
- We will run comprehensive tools to check for potential cheating.

• Do not publish your own solutions
- online (e.g., on GitHub) or share with other teams

• Cite any code that inspired your code
- If you cite what you used, it won’t be treated as cheating

• in worst case, we deduct points if it undermines the assignment

9/1/20 CS 318 – Lecture 1 37

Do Not Cheat

• It will be caught

• The consequence is very high

• Truth: you always get better outcome by not cheating

9/1/20 CS 318 – Lecture 1 38

How Not to Pass CS 318?

• Do not come to lecture
- The slides are online and the material is in the book anyway
- Lecture walks you through difficult materials and tells you the context

• Do not do the homework
- It’s not part of the grade
- Concepts seem straightforward...until you apply them
- Excellent practice for the exams, and project

9/1/20 CS 318 – Lecture 1 39

How Not to Pass CS 318?

• Do not ask questions in lecture, office hours or online
- It’s scary, I don’t want to embarrass myself
- Asking questions is the best way to clarify lecture material
- Office hours and email will help with homework, projects

• Wait until the last couple of days to start a project
- We’ll have to do the crunch anyways, why do it early?
- The projects cannot be done in the last few days
- Repeat: The projects cannot be done in the last few days
- (p.s. The projects cannot be done in the last few days)

9/1/20 CS 318 – Lecture 1 40

Questions

• Before we start, any questions?

9/1/20 CS 318 – Lecture 1 41

What Is An Operating System?

• Layer between applications and hardware

• All the code that you didn’t have to write to implement your app

9/1/20 CS 318 – Lecture 1 42

vim Chrome iTunesGCC

OS

Hardware

OS and Hardware

• Manage hardware resources
- Computation (CPUs)
- Volatile storage (memory) and persistent storage (disk, etc.)
- Communication (network, modem, etc.)
- Input/output devices (keyboard, display, printer, camera, etc.)

• Provides abstractions to hide details of hardware from applications
- Processes, threads
- Virtual memory
- File systems
- …

9/1/20 CS 318 – Lecture 1 43

OS and Hardware (2)

• Mediate accesses from different applications
- Who has access at what point for how much/long

• Benefits to applications
- Simpler (no tweaking device registers)
- Device independent (all network cards look the same)
- Portable (across Win95/98/ME/NT/2000/XP/Vista/7/8/10)

9/1/20 CS 318 – Lecture 1 44

OS and Applications

• Virtual machine interface
- The OS defines a logical, well-defined environment
- Each program thinks it owns the computer

• Provides protection
- Prevents one process/user from clobbering another

• Provides sharing
- Concurrent execution of multiple programs (time slicing)
- Communication among multiple programs (pipes, cut & paste)
- Shared implementations of common facilities, e.g., file system

9/1/20 CS 318 – Lecture 1 45

Questions to Ponder

• What is part of an OS? What is not?
- Is the windowing system part of an OS?
- Is the Web browser part of an OS?
- This very question leads to different OS designs

• How different are popular OSes today?

9/1/20 CS 318 – Lecture 1 46

Walk-through of OS basics

9/1/20 CS 318 – Lecture 1 47

A Primitive Operating System
• Just a library of standard services

• Simplifying assumptions
- System runs one program at a time
- No bad users or programs

• Problems: poor utilization
- ...of hardware (e.g., CPU idle while waiting for disk)
- ...of human user (must wait for each program to finish)

9/1/20 CS 318 – Lecture 1 48

App

Hardware

OS

Multitasking

• Idea: more than one process can be running at once
- When one process blocks (waiting for disk, network, user input, etc.) run

another process

• Mechanism: context-switch
- When one process resumes, it can continue from last execution point

9/1/20 CS 318 – Lecture 1 49

vim Chrome

Hardware

OS

Multitasking

• Idea: more than one process can be running at once

• Mechanism: context-switch

• Problems: ill-behaved process
- go into infinite loop and never relinquish CPU
- scribble over other processes’ memory to make them fail

9/1/20 CS 318 – Lecture 1 50

vim Chrome

Hardware

OS

Multitasking

• Problems: ill-behaved process
- go into infinite loop and never relinquish CPU
- scribble over other processes’ memory to make them fail

• Solutions:
- scheduling: fair sharing, take CPU away from looping process
- virtual memory: protect process’s memory from one another

9/1/20 CS 318 – Lecture 1 51

vim Chrome

Hardware

OS

Typical OS Structure

• Most software runs as user-level processes (P[1-4])

• OS kernel runs in privileged mode (shaded)

9/1/20 CS 318 – Lecture 1 52

System Calls

• Applications can invoke kernel through system calls
- Special instruction transfers control to kernel
- ...which dispatches to one of few hundred syscall handlers

9/1/20 CS 318 – Lecture 1 53

#include <fcntl.h>
#include <unistd.h>
int main()
{

int fd = open("cs318.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (fd < 0) {

write(2, "Failed to open cs318.txt\n", 25);
_exit(1);

}
write(fd, "Hello, OS!\n", 11);
close(fd);
return 0;

}

System Calls (continued)

• The only way for an application to invoke OS services

• Goal: Do things application can’t do in unprivileged mode
- Like a library call, but into more privileged kernel code

• Kernel supplies well-defined system call interface
- Applications set up syscall arguments and trap to kernel
- Kernel performs operation and returns result

• Higher-level functions built on syscall interface
- printf, scanf, fgets, etc. all user-level code

9/1/20 CS 318 – Lecture 1 54

• Standard library implemented in terms of syscalls

System Calls (continued)

9/1/20 CS 318 – Lecture 1 55

#include <stdio.h>
int main()
{
printf("Hello, OS!\n");
return 0;

}

write()
system call

implementation

standard C library
write()

User mode

Kernel mode

For Next Class...

• Browse the course web
- https://cs.jhu.edu/~huang/cs318/fall20

• Sign up on Piazza

• Read Chapters 1 and 2

• Setup Pintos and read its documentation
- Work on Lab 0

• Looking for project partners

9/1/20 CS 318 – Lecture 1 56

https://cs.jhu.edu/~huang/cs318/fall20

For Next Class...

• Browse the course web
- https://cs.jhu.edu/~huang/cs318/fall20

• Sign up on Piazza

• Read Chapters 1 and 2

• Setup Pintos and read its documentation
- Work on Lab 0

• Looking for project partners

9/1/20 CS 318 – Lecture 1 57

https://cs.jhu.edu/~huang/cs318/fall20

