
CS 318 Principles of
Operating Systems

Fall 2020

Lecture 11: Page Replacement
Prof. Ryan Huang

Administrivia

• Start working on Lab 2 if you haven’t

• This Thursday is project hacking day, no lecture

10/5/20 CS 318 – Lecture 11 – Page Replacement 2

Memory Management

10/5/20 CS 318 – Lecture 11 – Page Replacement 3

• Goals of memory management
- To provide a convenient abstraction for programming
- To allocate scarce memory resources among competing processes to

maximize performance with minimal overhead

• Mechanisms
- Physical and virtual addressing (1)
- Techniques: Partitioning, paging, segmentation (1)
- Page table management, TLBs, VM tricks (2)

• Policies
- Page replacement algorithms (3)

Lecture Overview

• Review paging and page replacement

• Survey page replacement algorithms

• Discuss local vs. global replacement

• Discuss thrashing

10/5/20 CS 318 – Lecture 11 – Page Replacement 4

Review: Paging

• Recall paging from the OS perspective:
- Pages are evicted to disk when memory is full
- Pages loaded from disk when referenced again
- References to evicted pages cause a TLB miss

• PTE was invalid, causes fault
- OS allocates a page frame, reads page from disk
- When I/O completes, the OS fills in PTE, marks it valid, and restarts faulting

process

• Dirty vs. clean pages
- Actually, only dirty pages (modified) need to be written to disk
- Clean pages do not – but you need to know where on disk to read them from again

10/5/20 CS 318 – Lecture 11 – Page Replacement 5

Review: Paging

• Use disk to simulate larger virtual than physical mem
10/5/20 CS 318 – Lecture 11 – Page Replacement 6

disk

Paging Challenges

• How to resume a process after a fault?
- Need to save state and resume
- Process might have been in the middle of an instruction!

• What to fetch from disk?
- Just needed page or more?

• What to eject?
- How to allocate physical pages amongst processes?
- Which of a particular process’s pages to keep in memory?
- A poor choice can lead to horrible performance

10/5/20 CS 318 – Lecture 11 – Page Replacement 7

Locality

• All paging schemes depend on locality
- Processes reference pages in localized patterns

• Temporal locality
- Locations referenced recently likely to be referenced again

• Spatial locality
- Locations near recently referenced locations are likely to be referenced soon

• Although the cost of paging is high, if it is infrequent enough it is
acceptable
- Processes usually exhibit both kinds of locality during their execution, making

paging practical

10/5/20 CS 318 – Lecture 11 – Page Replacement 8

Working Set Model (more later)

• Disk much, much slower than memory
- Goal: run at memory speed, not disk speed

• 80/20 rule: 20% of memory gets 80% of memory accesses
- Keep the hot 20% in memory
- Keep the cold 80% on disk

10/5/20 CS 318 – Lecture 11 – Page Replacement 9

Working Set Model (more later)

10/5/20 CS 318 – Lecture 11 – Page Replacement 10

• Disk much, much slower than memory
- Goal: run at memory speed, not disk speed

• 80/20 rule: 20% of memory gets 80% of memory accesses
- Keep the hot 20% in memory
- Keep the cold 80% on disk

Working Set Model (more later)

10/5/20 CS 318 – Lecture 11 – Page Replacement 11

• Disk much, much slower than memory
- Goal: run at memory speed, not disk speed

• 80/20 rule: 20% of memory gets 80% of memory accesses
- Keep the hot 20% in memory
- Keep the cold 80% on disk

Page Replacement
• When a page fault occurs, the OS loads the faulted page from disk into a

page frame of physical memory

• At some point, the process used all of the page frames it is allowed to use
- This is likely (much) less than all of available memory

• When this happens, the OS must replace a page for each page faulted in
- It must evict a page to free up a page frame

• The page replacement algorithm determines how this is done
- Greatly affect performance of paging (virtual memory)
- Also called page eviction policies

10/5/20 CS 318 – Lecture 11 – Page Replacement 12

First-In First-Out (FIFO)

• Evict oldest fetched page in system

• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 physical pages: 9 page faults

10/5/20 CS 318 – Lecture 11 – Page Replacement 13

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

First-In First-Out (FIFO)

• Evict oldest fetched page in system

• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 physical pages: 9 page faults

• 4 physical pages: 10 page faults

10/5/20 CS 318 – Lecture 11 – Page Replacement 14

10 page faults

1

2

3

1

2

3

5

1

2

4

5

44 3

Belady’s Anomaly

• More physical memory doesn’t always mean fewer faults

10/5/20 CS 318 – Lecture 11 – Page Replacement 15

Optimal Page Replacement

• What is optimal (if you knew the future)?

10/5/20 CS 318 – Lecture 11 – Page Replacement 16

Optimal Page Replacement

• What is optimal (if you knew the future)?
- Replace page that will not be used for longest period of time

• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• With 4 physical pages:

10/5/20 CS 318 – Lecture 11 – Page Replacement 17

1

2

3

1

2

3

4

544

6 page faults

Belady’s Algorithm

• Known as the optimal page replacement algorithm
- Rationale: the best page to evict is the one never touched again
- Never is a long time, so picking the page closest to “never” is the next best thing
- Proved by Belady

• Problem: Have to predict the future

• Why is Belady’s useful then? Use it as a yardstick
- Compare implementations of page replacement algorithms with the optimal to

gauge room for improvement
- If optimal is not much better, then algorithm is pretty good
- If optimal is much better, then algorithm could use some work

• Random replacement is often the lower bound

10/5/20 CS 318 – Lecture 11 – Page Replacement 18

Least Recently Used (LRU)

• Approximate optimal with least recently used
- Because past often predicts the future
- On replacement, evict the page that has not been used for the longest time in the

past (Belady’s: future)

• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• With 4 physical pages: 8 page faults

10/5/20 CS 318 – Lecture 11 – Page Replacement 19

1

2

3

1

2

3

5

344

5 4

Least Recently Used (LRU)

• Approximate optimal with least recently used
- Because past often predicts the future
- On replacement, evict the page that has not been used for the longest time in the

past (Belady’s: future)

• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• With 4 physical pages: 8 page faults

• Problem 1: Can be pessimal – example?
- Looping over memory (then want MRU eviction)

• Problem 2: How to implement?

10/5/20 CS 318 – Lecture 11 – Page Replacement 20

Straw Man LRU Implementations

• Stamp PTEs with timer value
- E.g., CPU has cycle counter
- Automatically writes value to PTE on each page access
- Scan page table to find oldest counter value = LRU page
- Problem: Would double memory traffic!

• Keep doubly-linked list of pages
- On access remove page, place at tail of list
- Problem: again, very expensive

• What to do?
- Just approximate LRU, don’t try to do it exactly

10/5/20 CS 318 – Lecture 11 – Page Replacement 21

Clock Algorithm

• Use accessed bit supported by most hardware
- E.g., Pentium will write 1 to A bit in PTE on first access
- Software managed TLBs like MIPS can do the same

• Do FIFO but skip accessed pages

• Keep pages in circular FIFO list

• Scan:
- page’s A bit = 1, set to 0 & skip
- else if A = 0, evict

• A.k.a. second-chance replacement

10/5/20 CS 318 – Lecture 11 – Page Replacement 22

A=1

A=0

A=0

A=1
A=1 A=0

A=0

A=1

A=0

A=0

A=1
A=0A=0

Clock Algorithm

• Use accessed bit supported by most hardware
- E.g., Pentium will write 1 to A bit in PTE on first access
- Software managed TLBs like MIPS can do the same

• Do FIFO but skip accessed pages

• Keep pages in circular FIFO list

• Scan:
- page’s A bit = 1, set to 0 & skip
- else if A = 0, evict

• A.k.a. second-chance replacement

10/5/20 CS 318 – Lecture 11 – Page Replacement 23

A=0

A=0

A=0

A=1
A=1 A=0

A=0

A=1

A=0

A=0

A=1
A=0A=0

Clock Algorithm

• Use accessed bit supported by most hardware
- E.g., Pentium will write 1 to A bit in PTE on first access
- Software managed TLBs like MIPS can do the same

• Do FIFO but skip accessed pages

• Keep physical pages in circular list

• Scan:
- page’s A bit = 1, set to 0 & skip
- else if A = 0, evict

• A.k.a. second-chance replacement

10/5/20 CS 318 – Lecture 11 – Page Replacement 24

A=0

A=0

A=0

A=1
A=1 A=0

A=0

A=1

A=0

A=0

A=1
A=0A=0

Clock Algorithm (continued)

• Large memory may be a problem
- Most pages referenced in long interval

• Add a second clock hand
- Two hands move in lockstep
- Leading hand clears A bits
- Trailing hand evicts pages with A=0

10/5/20 CS 318 – Lecture 11 – Page Replacement 25

A=1

A=0

A=0

A=1
A=1 A=0

A=0

A=1

A=0

A=1

A=0
A=0A=1

Clock Algorithm (continued)

• Large memory may be a problem
- Most pages referenced in long interval

• Add a second clock hand
- Two hands move in lockstep
- Leading hand clears A bits
- Trailing hand evicts pages with A=0

10/5/20 CS 318 – Lecture 11 – Page Replacement 26

A=1

A=0

A=0

A=1
A=1 A=0

A=0

A=1

A=0

A=0

A=0
A=0A=1

Clock Algorithm (continued)

• Large memory may be a problem
- Most pages referenced in long interval

• Add a second clock hand
- Two hands move in lockstep
- Leading hand clears A bits
- Trailing hand evicts pages with A=0

10/5/20 CS 318 – Lecture 11 – Page Replacement 27

A=1

A=0

A=0

A=1
A=1 A=0

A=0

A=1

A=0

A=0

A=0
A=0A=1

Other Replacement Algorithms

• Random eviction
- Dirt simple to implement
- Not overly horrible (avoids Belady & pathological cases)

• LFU (least frequently used) eviction
- Instead of just A bit, count # times each page accessed
- Least frequently accessed must not be very useful (or maybe was just brought in and is

about to be used)
- Decay usage counts over time (for pages that fall out of usage)

• MFU (most frequently used) algorithm
- Because page with the smallest count was probably just brought in and has yet to be used

• Neither LFU nor MFU used very commonly

10/5/20 CS 318 – Lecture 11 – Page Replacement 28

Fixed vs. Variable Space
• How to determine how much memory to give to each process?
• Fixed space algorithms

- Each process is given a limit of pages it can use
- When it reaches the limit, it replaces from its own pages
- Local replacement

• Some processes may do well while others suffer

• Variable space algorithms
- Process’ set of pages grows and shrinks dynamically
- Global replacement

• One process can ruin it for the rest

10/5/20 CS 318 – Lecture 11 – Page Replacement 29

Working Set Model

• A working set of a process is used to model the dynamic
locality of its memory usage
- Defined by Peter Denning in 60s, published at the first SOSP conference

• Definition
- 𝑊𝑆(𝑡, 𝑤) = {pages P such that P was referenced in the time interval (𝑡, 𝑡-𝑤)}
- 𝑡 – time, 𝑤 – working set window (measured in page refs)

• A page is in the working set (WS) only if it was referenced in the
last w references

10/5/20 CS 318 – Lecture 11 – Page Replacement 30

Working Set Size

• The working set size is the # of unique pages in the working set
- The number of pages referenced in the interval (𝑡, 𝑡 − 𝑤)

• The working set size changes with program locality
- During periods of poor locality, you reference more pages
- Within that period of time, the working set size is larger

• Intuitively, want the working set to be the set of pages a
process needs in memory to prevent heavy faulting
- Each process has a param 𝑤 that determines a working set with few faults
- Denning: Don’t run a process unless working set is in memory

10/5/20 CS 318 – Lecture 11 – Page Replacement 31

Example: gcc Working Set

10/5/20 CS 318 – Lecture 11 – Page Replacement 32

Working Set Problems

• Problems
- How do we determine w?
- How do we know when the working set changes?

• Too hard to answer
- So, working set is not used in practice as a page replacement algorithm

• However, it is still used as an abstraction
- The intuition is still valid
- When people ask, “How much memory does Firefox need?”, they are in

effect asking for the size of Firefox’s working set

10/5/20 CS 318 – Lecture 11 – Page Replacement 33

Page Fault Frequency (PFF)

• Page Fault Frequency (PFF) is a variable space algorithm that
uses a more ad-hoc approach
- Monitor the fault rate for each process
- If the fault rate is above a high threshold, give it more memory

• So that it faults less
• But not always (FIFO, Belady’s Anomaly)

- If the fault rate is below a low threshold, take away memory
• Should fault more
• But not always

• Hard to use PFF to distinguish between changes in locality and
changes in size of working set

10/5/20 CS 318 – Lecture 11 – Page Replacement 34

Thrashing

• Page replacement algorithms avoid thrashing
- When OS spent most of the time in paging data back and forth from disk
- Little time spent doing useful work (making progress)
- In this situation, the system is overcommitted

• No idea which pages should be in memory to reduce faults
• Ex: Running Windows95 with 4 MB of memory…

10/5/20 CS 318 – Lecture 11 – Page Replacement 35

Reasons for Thrashing

• Access pattern has no temporal locality (past ≉ future)

• Hot memory does not fit in physical memory

• Each process fits individually, but too many for system

10/5/20 CS 318 – Lecture 11 – Page Replacement 36

80/20 rule has broken

P1
memory

memory

Thrashing & Multiprogramming

10/5/20 CS 318 – Lecture 11 – Page Replacement 37

Dealing with Thrashing

• Only run processes if memory requirements can be satisfied
- Thrashing viewed from a caching perspective: given locality of reference,

how big a cache does the process need?
- Or: how much memory does the process need in order to make reasonable

progress (its working set)

• Swapping – write out all pages of a process

• Buy more memory…

10/5/20 CS 318 – Lecture 11 – Page Replacement 38

Summary

• Page replacement algorithms
- Belady’s – optimal replacement (minimum # of faults)
- FIFO – replace page loaded furthest in past
- LRU – replace page referenced furthest in past

• Approximate using PTE reference bit
- LRU Clock – replace page that is “old enough”
- Working Set – keep the set of pages in memory that has minimal fault rate

(the “working set”)
- Page Fault Frequency – grow/shrink page set as a function of fault rate

• Multiprogramming
- Should a process replace its own page, or that of another?

10/5/20 CS 318 – Lecture 11 – Page Replacement 39

Next time…

• Read Chapter 14, 17

10/5/20 CS 318 – Lecture 11 – Page Replacement 40

