
CS 318 Principles of
Operating Systems

Fall 2019

Lecture 5: Thread
Ryan Huang

Administrivia

• Lab 0 grading
- in progress

• Lab 1
- review session by Yigong tomorrow 3pm in Malone G33/35
- start working on it

• Do not need to wait for the next Lecture (synchronization)
- due next Friday

9/17/19 CS 318 – Lecture 5 – Thread 2

Processes
• Recall that a process includes many things

- An address space (defining all the code and data pages)
- OS resources (e.g., open files) and accounting information
- Execution state (PC, SP, regs, etc.)

• Creating a new process is costly
- because of all of the data structures that must be allocated and initialized

• recall struct proc in Solaris

• Communicating between processes is also costly
- because most communication goes through the OS

• overhead of system calls and copying data

9/17/19 CS 318 – Lecture 5 – Thread 3

Concurrent Programs

9/17/19 CS 318 – Lecture 5 – Thread 4

• Recall our Web server example (or any parallel program)…
- forks off copies of itself to handle multiple simultaneous requests

• To execute these programs we need to
- Create several processes that execute in parallel
- Cause each to map to the same address space to share data

• They are all part of the same computation
- Have the OS schedule these processes in parallel (logically or physically)

• This situation is very inefficient
- Space: PCB, page tables, etc.
- Time: create data structures, fork and copy addr space, etc.

Rethinking Processes

• What is similar in these cooperating processes?
- They all share the same code and data (address space)
- They all share the same privileges
- They all share the same resources (files, sockets, etc.)

• What don’t they share?
- Each has its own execution state: PC, SP, and registers

• Key idea: Why not separate the process concept from its execution state?
- Process: address space, privileges, resources, etc.
- Execution state: PC, SP, registers

• Exec state also called thread of control, or thread

9/17/19 CS 318 – Lecture 5 – Thread 5

Threads

• Modern OSes separate the concepts of processes and threads
- The thread defines a sequential execution stream within a process (PC, SP,

registers)
- The process defines the address space and general process attributes

(everything but threads of execution)

• A thread is bound to a single process
- Processes, however, can have multiple threads

• Threads become the unit of scheduling
- Processes are now the containers in which threads execute
- Processes become static, threads are the dynamic entities

9/17/19 CS 318 – Lecture 5 – Thread 6

Small and Fast…

• Pintos thread class

9/17/19 CS 318 – Lecture 5 – Thread 7

struct thread
{
tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name (for debugging purposes). */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem allelem; /* List element for all threads list. */
struct list_elem elem; /* List element. */
unsigned magic; /* Detects stack overflow. */

};

Threads in a Process

9/17/19 CS 318 – Lecture 5 – Thread 8

What about heap?

Threads in a Process

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

9/17/19 CS 318 – Lecture 5 – Thread 9

Thread Design Space

One Thread/Process
Many Address Spaces

(Early Unix)

One Thread/Process
One Address Space

(MSDOS)

Many Threads/Process
Many Address Spaces

Many Threads/Process
One Address Space

(Pilot, Java)

Address
Space

Thread

9/17/19 CS 318 – Lecture 5 – Thread 10

(Mach, Unix, Windows, OS X)

Process/Thread Separation

9/17/19 CS 318 – Lecture 5 – Thread 11

• Easier to support multithreaded applications
- Concurrency does not require creating new processes

• Concurrency (multithreading) can be very useful
- Improving program structure
- Allowing one process to use multiple CPUs/cores
- Handling concurrent events (e.g., Web requests)
- Allowing program to overlap I/O and computation

• So multithreading is even useful on a uniprocessor
- Although today even cell phones are multicore

• But, brings a whole new meaning to Spaghetti Code
- Forcing OS students to learn about synchronization…

Threads: Concurrent Servers

9/17/19 CS 318 – Lecture 5 – Thread 12

• fork() to create new processes to handle requests is overkill

• Recall our forking Web server:
while (1) {
int sock = accept();
if ((child_pid = fork()) == 0) {
// Handle client request
// Close socket and exit

} else {
// Close socket

}
}

Threads: Concurrent Servers

9/17/19 CS 318 – Lecture 5 – Thread 13

• Instead, we can create a new thread for each request
web_server() {

while (1) {
int sock = accept();
thread_fork(handle_request, sock);

}
}

handle_request(int sock) {
Process request
close(sock);

}

Thread Package API

• tid thread_create (void (*fn) (void *), void *);

- Create a new thread, run fn with arg

• void thread_exit ();
- Destroy current thread

• void thread_join (tid thread);
- Wait for thread thread to exit

• See Birrell for good introduction

9/17/19 CS 318 – Lecture 5 – Thread 14

https://cs.jhu.edu/~huang/cs318/fall19/readings/birrell.pdf

Implementing Threads

• thread_create(fun, args)
- Allocate Thread Control Block (TCB)
- Allocate stack
- Build stack frame for base of stack
- Put func, args on stack
- Put thread on ready list

9/17/19 CS 318 – Lecture 5 – Thread 15

Kernel

User-Level Processes

Heap

Code

Globals TCB 1

Kernel Thread 1

Stack

TCB 2

Kernel Thread 2

Stack

TCB 3

Kernel Thread 3

Stack

TCB 1.B

Stack

TCB 1.A

Stack

Process 1

PCB 1

TCB 2.B

Stack

TCB 2.A

Stack

Process 2

PCB 2

Heap

Code

Globals

Stack

Thread A

Stack

Thread B
Process 2

Heap

Code

Globals

Stack

Thread A

Stack

Thread B
Process 1

Kernel-Level Threads

• All thread operations are implemented in the kernel

• The OS schedules all of the threads in the system

• Also known as lightweight processes
- Windows: threads
- Solaris: lightweight processes (LWP)
- POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM

9/17/19 CS 318 – Lecture 5 – Thread 16

Kernel Thread Limitations

9/17/19 CS 318 – Lecture 5 – Thread 17

• Every thread operation must go through kernel
- create, exit, join, synchronize, or switch for any reason
- On my laptop: syscall takes 100 cycles, fn call 5 cycles
- Result: threads 10x-30x slower when implemented in kernel

• One-size fits all thread implementation
- Kernel threads must please all people
- Maybe pay for fancy features (priority, etc.) you don’t need

• General heavy-weight memory requirements
- e.g., requires a fixed-size stack within kernel
- other data structures designed for heavier-weight processes

Alternative: User-Level Threads

9/17/19 CS 318 – Lecture 5 – Thread 18

• Implement as user-level library (a.k.a. green threads)
- One kernel thread per process
- thread_create, thread_exit, etc., just library functions
- library does thread context switch

• User-level threads are small and fast
- pthreads: PTHREAD_SCOPE_PROCESS
- Java: Thread

User-Level Thread Limitations

• Can’t take advantage of multiple CPUs or cores

• User-level threads are invisible to the OS
- They are not well integrated with the OS

• As a result, the OS can make poor decisions
- Scheduling a process with idle threads
- A blocking system call (e.g., disk read) blocks all threads

• Even if the process has other threads that can execute
- Unscheduling a process with a thread holding a lock

• How to solve this?
- communication between the kernel and the user-level thread manager (Windows 8)

• Scheduler Activation

9/17/19 CS 318 – Lecture 5 – Thread 19

https://homes.cs.washington.edu/~tom/pubs/sched_act.pdf

Kernel vs. User Threads

• Kernel-level threads
- Integrated with OS (informed scheduling)
- Slower to create, manipulate, synchronize

• User-level threads
- Faster to create, manipulate, synchronize
- Not integrated with OS (uninformed scheduling)

• Understanding their differences is important
- Correctness, performance

9/17/19 CS 318 – Lecture 5 – Thread 20

Kernel and User Threads

• Or use both kernel and user-level threads
- Can associate a user-level thread with a kernel-level thread
- Or, multiplex user-level threads on top of kernel-level threads

• Java Virtual Machine (JVM) (also C#, others)
- Java threads are user-level threads
- On older Unix, only one “kernel thread” per process

• Multiplex all Java threads on this one kernel thread
- On modern OSes

• Can multiplex Java threads on multiple kernel threads
• Can have more Java threads than kernel threads
• Why?

9/17/19 CS 318 – Lecture 5 – Thread 21

User Threads on Kernel Threads

• User threads implemented on kernel threads
- Multiple kernel-level threads per process
- thread_create, thread_exit still library functions as before

• Sometimes called n : m threading
- Have n user threads per m kernel threads (Simple user-level threads are n : 1, kernel

threads 1 : 1)

9/17/19 CS 318 – Lecture 5 – Thread 22

Implementing User-Level Threads

• Allocate a new stack for each thread_create

• Keep a queue of runnable threads

• Replace blocking system calls

(read/write/etc.) to non-blocking calls
- If operation would block, switch and run different thread

• Schedule periodic timer signal (setitimer)
- Switch to another thread on timer signals (preemption)

9/17/19 CS 318 – Lecture 5 – Thread 23

Thread Scheduling

• The thread scheduler determines when a thread runs

• It uses queues to keep track of what threads are doing
- Just like the OS and processes
- But it is implemented at user-level in a library

• Run queue: Threads currently running (usually one)

• Ready queue: Threads ready to run

• Are there wait queues?
- How might you implement sleep(time)?

9/17/19 CS 318 – Lecture 5 – Thread 24

Non-Preemptive Scheduling

• Threads voluntarily give up the CPU with yield

• What is the output of running these two threads?

9/17/19 CS 318 – Lecture 5 – Thread 25

while (1) {

printf(“ping\n”);

yield();

}

while (1) {

printf(“pong\n”);

yield();

}

Ping Thread Pong Thread

yield()

• Wait a second. How does yield() work?

• The semantics of yield are that it gives up the CPU to another thread
- In other words, it context switches to another thread

• So what does it mean for yield to return?
- It means that another thread called yield!

• Execution trace of ping/pong
- printf(“ping\n”);
- yield();
- printf(“pong\n”);
- yield();
- …

9/17/19 CS 318 – Lecture 5 – Thread 26

Implementing yield()

• The magic step is invoking context_switch()

• Why do we need to call append_to_queue()?

9/17/19 CS 318 – Lecture 5 – Thread 27

yield() {
thread_t old_thread = current_thread;
current_thread = get_next_thread();
append_to_queue(ready_queue, old_thread);
context_switch(old_thread, current_thread);
return;

}

As old thread

As new thread

Preemptive Scheduling

• Non-preemptive threads have to voluntarily give up CPU
- A long-running thread will take over the machine
- Only voluntary calls to yield, sleep, or finish cause a context switch

• Preemptive scheduling causes an involuntary context switch
- Need to regain control of processor asynchronously
- Use timer interrupt
- Timer interrupt handler forces current thread to “call” yield

9/17/19 CS 318 – Lecture 5 – Thread 28

Thread Context Switch

• The context switch routine does all of the magic
- Saves context of the currently running thread (old_thread)

• Push all machine state onto its stack
- Restores context of the next thread

• Pop all machine state from the next thread’s stack
- The next thread becomes the current thread
- Return to caller as new thread

• This is all done in assembly language
- It works at the level of the procedure calling convention, so it cannot be

implemented using procedure calls

9/17/19 CS 318 – Lecture 5 – Thread 29

Background: Calling Conventions (1)

• What
- a standard on how functions should be implemented and called by the machine
- how a function call in C or C++ gets converted into assembly language

• how arguments are passed to a func, how return values are passed back out of a function,
how the func is called, and how the func manages the stack and its stack frame, etc.

- Compilers need to obey this standard in compiling code into assembly
• set up the stack and registers properly

• Why
- A program calls functions across many object files and libraries
- For these codes to be interfaced together, we need a standardization for calls

9/17/19 CS 318 – Lecture 5 – Thread 30

Background: Calling Conventions (2)

• x86 calling convention stack setup

9/17/19 CS 318 – Lecture 5 – Thread 31

Background: Calling Conventions

• Registers divided into 2 groups
- caller-saved regs: callee function free to modify

• on x86, %eax [return val], %edx, & %ecx
- callee-saved regs: callee function must restore to

original value upon return
• on x86, %ebx, %esi, %edi, plus %ebp and %esp

9/17/19 CS 318 – Lecture 5 – Thread 32

• save active caller registers
• call foo (pushes pc)

• restore caller registers

• save used callee registers
• ...do stuff...
• restore callee saved registers
• jump back to calling function

Pintos Thread Implementation

• Per-thread state in thread control block structure

• Thread initialization function to create new stack:
- void thread_create (const char *name, thread_func *function, void *aux);

• C declaration for thread-switch function in assembly:
- struct thread *switch_threads (struct thread *cur, struct thread *next);

9/17/19 CS 318 – Lecture 5 – Thread 33

struct thread {
...
uint8_t *stack; /* Saved stack pointer. */
...

};
uint32_t thread_stack_ofs = offsetof(struct thread, stack);

i386 switch_threads

• This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation

9/17/19 CS 318 – Lecture 5 – Thread 34

pushl %ebx; pushl %ebp # Save callee-saved regs
pushl %esi; pushl %edi
mov thread_stack_ofs, %edx # %edx = offset of stack field

in thread struct
movl 20(%esp), %eax # %eax = cur
movl %esp, (%eax,%edx,1) # cur->stack = %esp
movl 24(%esp), %ecx # %ecx = next
movl (%ecx,%edx,1), %esp # %esp = next->stack
popl %edi; popl %esi # Restore calle-saved regs
popl %ebp; popl %ebx
ret # Resume execution

https://cs.jhu.edu/~huang/cs318/fall19/project/pintos_7.html

i386 switch_threads

• This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation

9/17/19 CS 318 – Lecture 5 – Thread 35

https://cs.jhu.edu/~huang/cs318/fall19/project/pintos_7.html

i386 switch_threads

• This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation

9/17/19 CS 318 – Lecture 5 – Thread 36

https://cs.jhu.edu/~huang/cs318/fall19/project/pintos_7.html

i386 switch_threads

• This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation

9/17/19 CS 318 – Lecture 5 – Thread 37

https://cs.jhu.edu/~huang/cs318/fall19/project/pintos_7.html

i386 switch_threads

• This is actual code from Pintos switch.S (slightly reformatted)
- See Thread Switching in documentation

9/17/19 CS 318 – Lecture 5 – Thread 38

https://cs.jhu.edu/~huang/cs318/fall19/project/pintos_7.html

Threads Summary

• The operating system as a large multithreaded program
- Each process executes as a thread within the OS

• Multithreading is also very useful for applications
- Efficient multithreading requires fast primitives
- Processes are too heavyweight

• Solution is to separate threads from processes
- Kernel-level threads much better, but still significant overhead
- User-level threads even better, but not well integrated with OS

• Now, how do we get our threads to correctly cooperate with each other?
- Synchronization…

9/17/19 CS 318 – Lecture 5 – Thread 39

Next Time…

• Read Chapters 28, 29

9/17/19 CS 318 – Lecture 5 – Thread 40

