
CS 318 Principles of 
Operating Systems

Fall 2019

Lecture 4: Scheduling
Prof. Ryan Huang



Administrivia

• Lab 0
- Due today
- Submit in Blackboard

• Lab 1 released
- Due in two weeks
- Lab overview session next week
- If you still don’t have a group, let us know soon
- GitHub classroom invitation link on Piazza post

9/12/19 CS 318 – Lecture 4 – Scheduling 2



Recap: Processes

• The process is the OS abstraction for execution
- own view of machine

• Process components
- address space, program counter, registers, open files, etc.
- kernel data structure: Process Control Block (PCB)

• Process states and APIs
- state graph and queues
- process creation, deletion, waiting

• Multiple processes 
- overlapping I/O and CPU activities
- context switch

9/12/19 CS 318 – Lecture 4 – Scheduling 3



Scheduling Overview

• The scheduling problem:
- Have 𝐾 jobs ready to run
- Have 𝑁 ≥ 1 CPUs

• Policy: which jobs should we assign to which CPU(s), for how long? 
- we’ll refer to schedulable entities as jobs – could be processes, threads, people, etc.

• Mechanism: context switch, process state queues

9/12/19 CS 318 – Lecture 4 – Scheduling 4



Scheduling Overview

1. Goals of scheduling

2. Textbook scheduling

3. Priority scheduling 

4. Advanced scheduling topics 

9/12/19 CS 318 – Lecture 4 – Scheduling 5



When Do We Schedule CPU? 

• Scheduling decisions may take place when a process:
Switches from running to waiting state
Switches from running to ready state
Switches from new/waiting to ready
Exits

• Non-preemptive schedules use     &     only

• Preemptive schedulers run at all four points
9/12/19 CS 318 – Lecture 4 – Scheduling 6

❹

❶❷

❸

❸

❶
❷
❸
❹

❶ ❹



Scheduling Goals
• Scheduling works at two levels in an operating system

- To determine the multiprogramming level – # of jobs loaded into memory
• Moving jobs to/from memory is often called swapping

- To decide what job to run next to guarantee “good service”
• Good service could be one of many different criteria

• Known as long-term and short-term scheduling decisions
- Long-term scheduling happens relatively infrequently

• Significant overhead in swapping a process out to disk
- Short-term scheduling happens relatively frequently

• Want to minimize the overhead of scheduling
• Fast context switches, fast queue manipulation

9/12/19 CS 318 – Lecture 4 – Scheduling 7



Scheduling “Non-goal”: Starvation
• Starvation is when a process is prevented from making progress 

because some other process has the resource it requires
- Resource could be the CPU, or a lock (recall readers/writers)

• Starvation usually a side effect of the sched. algorithm
- A high priority process always prevents a low priority process from running
- One thread always beats another when acquiring a lock

• Starvation can be a side effect of synchronization
- Constant supply of readers always blocks out writers

9/12/19 CS 318 – Lecture 4 – Scheduling 8



Scheduling Criteria

• Why do we care?
- How do we measure the effectiveness of a scheduling algorithm?

9/12/19 CS 318 – Lecture 4 – Scheduling 9



Scheduling Criteria
• Throughput – # of processes that complete per unit time

- (# jobs/time)
- Higher is better

• Turnaround time – time for each process to complete
- (Tfinish – Tstart)
- Lower is better

• Response time – time from request to first response
- (Tresponse – Trequest) i.e., , time between waiting→ ready transition and ready→ running

• e.g., key press to echo, not launch to exit
- Lower is better

• Above criteria are affected by secondary criteria
- CPU utilization – %CPU fraction of time CPU doing productive work
- Waiting time – Avg(Twait) time each process waits in the ready queue

9/12/19 CS 318 – Lecture 4 – Scheduling 10



What Criterial Should We Use?

• Batch systems
- Strive for job throughput, turnaround time (supercomputers)

• Interactive systems
- Strive to minimize response time for interactive jobs (PC)

• Utilization and throughput are often traded off for better response time

• Usually optimize average measure
- Sometimes also optimize for min/max or variance

• e.g., minimize the maximum response time
• e.g., users prefer predictable response time over faster but highly variable response time

9/12/19 CS 318 – Lecture 4 – Scheduling 11



Scheduling Overview

1. Goals of scheduling

2. Textbook scheduling

3. Priority scheduling 

4. Advanced scheduling topics 

9/12/19 CS 318 – Lecture 4 – Scheduling 12



Example: FCFS Scheduling
• Run jobs in order that they arrive

- Called “First-come first-served” (FCFS)
- E.g., Say P1 needs 24 sec, while P2 and P3 need 3.
- Say P2, P3 arrived immediately after P1, get:

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec

• Turnaround Time: P1 : 24, P2 : 27, P3 : 30
- Average TT: (24 + 27 + 30) / 3 = 27

• Waiting Time: P1 : 0, P2 : 24, P3 : 27
- Average WT: (0 + 24 + 27) / 3 = 17

• Can we do better?

9/12/19 CS 318 – Lecture 4 – Scheduling 13

P1 P2 P3

0 24 27 30



FCFS Continued
• Suppose we scheduled P2, P3, then P1

- Would get:

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec

• Turnaround Time: P1 : 30, P2 : 3, P3 : 6
- Average TT: (30 + 3 + 6) / 3 = 13 – much less than 27

• Lesson: scheduling algorithm can reduce TT
- Minimizing waiting time can improve RT and TT

• Can a scheduling algorithm improve throughput?
- Yes, if jobs require both computation and I/O

9/12/19 CS 318 – Lecture 4 – Scheduling 14

P1P2 P3

0 3 6 30



View CPU and I/O devices the same

• CPU is one of several devices needed by users’ jobs
- CPU runs compute jobs, Disk drive runs disk jobs, etc.
- With network, part of job may run on remote CPU

• Scheduling 1-CPU system with n	I/O devices like scheduling 
asymmetric (n	+	1)-CPU multiprocessor
- Result: all I/O devices + CPU busy è (n	+	1)-fold throughput gain!

• Example: disk-bound grep + CPU-bound matrix_multiply
- Overlap them just right, throughput will be almost doubled

9/12/19 CS 318 – Lecture 4 – Scheduling 15

wait for disk wait for disk wait for diskgrep
matrix
multiply

wait for CPU



Bursts of Computation & I/O

• Jobs contain I/O and computation
- Bursts of computation
- Then must wait for I/O

• Goal: maximize throughput
- maximize both CPU and I/O device utilization

• How?
- Overlap computation from one job with I/O from other 

jobs

9/12/19 CS 318 – Lecture 4 – Scheduling 16

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•



FCFS Convoy Effect
• CPU-bound jobs will hold CPU until exit or I/O

- But I/O burst for CPU-bound job is small
- Long periods where no I/O requests issued, and CPU held
- Result: poor I/O device utilization

• Example: one CPU-bound job, many I/O bound
1. CPU-bound job runs (I/O devices idle)
2. Eventually, CPU-bound job blocks on I/O
3. I/O-bound jobs run, but each quickly blocks on I/O
4. CPU-bound job unblocks, runs again
5. All I/O requests complete, but CPU-bound job still hogs CPU
6. I/O devices sit idle since I/O-bound jobs can’t issue next requests

• Simple hack: run process whose I/O completed
- What is a potential problem?

• I/O-bound jobs can starve CPU-bound one

9/12/19 CS 318 – Lecture 4 – Scheduling 18

CPU burst

I/O burst

I/O burst

CPU burst

CPU burst

I/O burst

job 1 job 2

CPU-bound
I/O-bound

I/O idle

I/O idle

CPU burst



FCFS Convoy Effect

9/12/19 CS 318 – Lecture 4 – Scheduling 19

image source: http://web.cs.ucla.edu/classes/fall14/cs111/scribe/7a/convoy_effect.png



FCFS Convoy Effect

9/12/19 CS 318 – Lecture 4 – Scheduling 20



Shortest Job First (SJF)

• Shortest Job First (SJF)
- Choose the job with the smallest expected CPU burst

• Person with smallest number of items to buy
- Provably optimal minimum average waiting time (AWT)

9/12/19 CS 318 – Lecture 4 – Scheduling 21

AWT = (0+8+(8+4))/3 = 6.67

AWT = (0+4+(4+8))/3 = 5.33

AWT = (0+4+(4+2))/3 = 3.33

AWT = (0+2+(2+4))/3 = 2.67



Shortest Job First (SJF)

• Two schemes
- Non-preemptive – once CPU given to the process it cannot be preempted 

until completes its CPU burst
- Preemptive – if a new process arrives with CPU burst length less than 

remaining time of current executing process, preempt current process
• Known as the Shortest-Remaining-Time-First or SRTF

9/12/19 CS 318 – Lecture 4 – Scheduling 22



Examples

• Non-preemptive 

• Preemptive

9/12/19 CS 318 – Lecture 4 – Scheduling 23

What is the AWT?



SJF Limitations
• Doesn’t always minimize average TT

- Only minimizes waiting time
- Example where turnaround time might be suboptimal?

• Can potentially lead to unfairness or starvation

• Impossible to know size of CPU burst ahead of time
- Like choosing person in line without looking inside basket/cart 

• How can you make a reasonable guess?
- Estimate CPU burst length based on past
- E.g., exponentially weighted average

• 𝑡/ actual length of process’s 𝑛12 CPU burst
• 𝜏/45 estimated length of proc’s (𝑛 + 1)61 CPU burst
• Choose parameter 𝛼 where 0 < 𝛼 ≤ 1 , e.g., 𝛼 = 0.5
• Let 𝜏/45 = 𝛼𝑡/ + (1 − 𝛼)𝜏/

9/12/19 CS 318 – Lecture 4 – Scheduling 24



Exp. Weighted Average Example

9/12/19 CS 318 – Lecture 4 – Scheduling 25

6 4 6 4 13 13 13 …
810 6 6 5 9 11 12 …

CPU burst (ti)

"guess" (τi)

ti

τi

2

time

4

6

8

10

12



Round Robin (RR)

• Solution to fairness and starvation
- Each job is given a time slice called a quantum
- Preempt job after duration of quantum
- When preempted, move to back of FIFO queue

• Advantages:
- Fair allocation of CPU across jobs
- Low average waiting time when job lengths vary
- Good for responsiveness if small number of jobs

• Disadvantages?

9/12/19 CS 318 – Lecture 4 – Scheduling 26



RR Disadvantages

• Context switches are frequent and need to be very fast

• Varying sized jobs are good ...what about same-sized jobs?

• Assume 2 jobs of time=100 each:

• Even if context switches were free...
- What would average turnaround time be with RR?
- How does that compare to FCFS?

9/12/19 CS 318 – Lecture 4 – Scheduling 27



Time Quantum 

• How to pick quantum?
- Want much larger than context switch cost
- Majority of bursts should be less than quantum
- But not so large system reverts to FCFS

• Typical values: 1–100 msec

9/12/19 CS 318 – Lecture 4 – Scheduling 28



Scheduling Overview

1. Goals of scheduling

2. Textbook scheduling

3. Priority scheduling 

4. Advanced scheduling topics 

9/12/19 CS 318 – Lecture 4 – Scheduling 29



Priority Scheduling

• Priority Scheduling
- Associate a numeric priority with each process

• E.g., smaller number means higher priority (Unix/BSD)
• Or smaller number means lower priority (Pintos)

- Give CPU to the process with highest priority
• Airline check-in for first class passengers
• Can be done preemptively or non-preemptively

- Can implement SJF, priority = 1/(expected CPU burst)

• Problem: starvation – low priority jobs can wait indefinitely

• Solution?
- “Age” processes

• Increase priority as a function of waiting time
• Decrease priority as a function of CPU consumption

9/12/19 CS 318 – Lecture 4 – Scheduling 30



Combining Algorithms

• Different types of jobs have different preferences
- Interactive, CPU-bound, batch, system, etc.
- Hard to use one size to fit all

• Combining scheduling algorithms to optimize for multiple objectives
- Have multiple queues
- Use a different algorithm for each queue
- Move processes among queues

• Example: Multiple-level feedback queues (MLFQ)
- Multiple queues representing different job types
- Queues have priorities

• Job in higher-priority queue can preempt jobs lower-priority queue
- Jobs on same queue use the same scheduling algorithm, typically RR

9/12/19 CS 318 – Lecture 4 – Scheduling 31



Multilevel Queue Scheduling

9/12/19 CS 318 – Lecture 4 – Scheduling 32



MLFQ

• Goal #1: Optimize job turnaround time for “batch” jobs
- Shorter jobs run first
- Why not SJF?

• Goal #2: Minimize response time for “interactive” jobs

• Challenge:
- No a priori knowledge of what type a job is, what the next burst is, etc.

• Idea:
- Change a process’s priority based on how it behaves in the past (“feedback”)

9/12/19 CS 318 – Lecture 4 – Scheduling 33



MLFQ: How to Change Priority Over Time?

• Attempt
- Rule A: Processes start at top priority
- Rule B: If job uses whole slice, demote process

• i.e., longer time slices at lower priorities
- Example 1: A long-running “batch” job

9/12/19 CS 318 – Lecture 4 – Scheduling 34

A

B

C

Q3

Q2

Q1

Q0 D

0 5 10 15 20

Q3
Q2
Q1
Q0



120 140 160 180 200

Q3
Q2
Q1
Q0

MLFQ: How to Change Priority Over Time?

• Attempt
- Rule A: Processes start at top priority
- Rule B: If job uses whole slice, demote process

• i.e., longer time slices at lower priorities
- Example 1: A long-running “batch” job
- Example 2: An “interactive” job

9/12/19 CS 318 – Lecture 4 – Scheduling 35



MLFQ: How to Change Priority Over Time?

• Attempt
- Rule A: Processes start at top priority
- Rule B: If job uses whole slice, demote process
- Example 1: A long-running “batch” job
- Example 2: An “interactive” job
- Problems:

• unforgiving + starvation
• gaming the system

• E.g., performing I/O right before time-slice ends

9/12/19 CS 318 – Lecture 4 – Scheduling 36



MLFQ: How to Change Priority Over Time?

• Attempt
- Rule A: Processes start at top priority
- Rule B: If job uses whole slice, demote process
- Example 1: A long-running “batch” job
- Example 2: An “interactive” job
- Problems:

• unforgiving + starvation
• gaming the system

• Fixing the problems
- Periodically boost priority for jobs that haven’t been scheduled
- Account for job’s total run time at priority level (instead of just this time slice)

9/12/19 CS 318 – Lecture 4 – Scheduling 37



MLFQ in BSD

• Every runnable process on one of 32 run queues
- Kernel runs process on highest-priority non-empty queue
- Round-robins among processes on same queue

• Process priorities dynamically computed
- Processes moved between queues to reflect priority changes

• Idea: Favor interactive jobs that use less CPU
9/12/19 CS 318 – Lecture 4 – Scheduling 38



Process Priority

• p_nice – user-settable weighting factor

• p_estcpu – per-process estimated CPU usage
- Incremented whenever timer interrupt found process running
- Decayed every second while process runnable

- Load is sampled average of length of run queue plus short-term sleep queue 
over last minute

• Run queue determined by p_usrpri/4

9/12/19 CS 318 – Lecture 4 – Scheduling 39

𝑝_𝑒𝑠𝑡𝑐𝑝𝑢 ←
2 ∗ 𝑙𝑜𝑎𝑑

2 ∗ 𝑙𝑜𝑎𝑑 + 1
∗ 𝑝_𝑒𝑠𝑡𝑐𝑝𝑢 + 𝑝_𝑛𝑖𝑐𝑒

𝑝_𝑢𝑠𝑟𝑝𝑟𝑖 ← 50 +
𝑝_𝑒𝑠𝑡𝑐𝑝𝑢

4 + 2 ∗ 𝑝_𝑛𝑖𝑐𝑒



Sleeping Process Increases Priority

• p_estcpu not updated while asleep
- Instead p_slptime keeps count of sleep time

• When process becomes runnable

- Approximates decay ignoring nice and past loads
• Description based on “The Design and Implementation of the 

4.4BSD Operating System”

9/12/19 CS 318 – Lecture 4 – Scheduling 40

𝑝_𝑒𝑠𝑡𝑐𝑝𝑢 ←
2 ∗ 𝑙𝑜𝑎𝑑

2 ∗ 𝑙𝑜𝑎𝑑 + 1

P_6QP1RST
∗ 𝑝_𝑒𝑠𝑡𝑐𝑝𝑢



Pintos Notes

• Same basic idea for second half of Lab 1
- But 64 priorities, not 128
- Higher numbers mean higher priority
- Okay to have only one run queue if you prefer (less efficient, but we won’t 

deduct points for it)

• Have to negate priority equation:

9/12/19 CS 318 – Lecture 4 – Scheduling 41

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 63 −
𝑟𝑒𝑐𝑒𝑛𝑡_𝑐𝑝𝑢

4 − 2 ∗ 𝑛𝑖𝑐𝑒



Priority Inversion

• Two tasks: H at high priority, L at low priority
- L acquires lock l for exclusive use of a shared resource R
- If H tries to acquire l, blocked until L release resource R
- M enters system at medium priority, preempts L

• L unable to release R in time
• H unable to run, despite having higher priority than M

• A famous example: Mars PathFinder failure in 1997
- low-priority data gathering task and a medium-priority communications task 

prevented the critical bus management task from running

9/12/19 CS 318 – Lecture 4 – Scheduling 42



Priority Donation

• Say higher number = higher priority (like Pintos)

• Example 1: L (prio 2), M (prio 4), H (prio 8)
- L holds lock l
- M waits on l, L’s priority raised to L1 = max(M; L) = 4
- Then H waits on l, L’s priority raised to max(H; L1) = 8

• Example 2: Same L,M,H as above
- L holds lock l, M holds lock l2
- M waits on l, L’s priority now L1 = 4 (as before)
- Then H waits on l2. M’s priority goes to M1 = max(H;M) = 8, and L’s priority 

raised to max(M1; L1) = 8

9/12/19 CS 318 – Lecture 4 – Scheduling 43



Scheduling Overview

1. Goals of scheduling

2. Textbook scheduling

3. Priority scheduling 

4. Advanced scheduling topics

9/12/19 CS 318 – Lecture 4 – Scheduling 44



Multiprocessor Scheduling Issues
• Must decide on more than which processes to run

- Must decide on which CPU to run which process

• Moving between CPUs has costs
- More cache misses, depending on arch. more TLB misses too

• Affinity scheduling—try to keep process/thread on same CPU

- But also prevent load imbalances
- Do cost-benefit analysis when deciding to migrate...affinity can also be harmful, particularly when 

tail latency is critical
9/12/19 CS 318 – Lecture 4 – Scheduling 45



Multiprocessor Scheduling (cont)

• Want related processes/threads scheduled together
- Good if threads access same resources (e.g., cached files)
- Even more important if threads communicate often, otherwise must context 

switch to communicate

• Gang scheduling—schedule all CPUs synchronously
- With synchronized quanta, easier to schedule related processes/threads 

together

9/12/19 CS 318 – Lecture 4 – Scheduling 46



Real-time Scheduling 

• Two categories:
- Soft real time—miss deadline and CD will sound funny
- Hard real time—miss deadline and plane will crash

• System must handle periodic and aperiodic events
- E.g., processes A, B, C must be scheduled every 100, 200, 500 msec, 

require 50, 30, 100 msec respectively
- Schedulable if ∑ YPZ

PT[R\]
≤ 1

• Variety of scheduling strategies
- E.g., first deadline first (works if schedulable, otherwise fails spectacularly)

9/12/19 CS 318 – Lecture 4 – Scheduling 47



Scheduling Summary

• Scheduling algorithm determines which process runs, quantum, priority…

• Many potential goals of scheduling algorithms
- Utilization, throughput, wait time, response time, etc.

• Various algorithms to meet these goals
- FCFS/FIFO, SJF, RR, Priority

• Can combine algorithms
- Multiple-level feedback queues

• Advanced topics
- affinity scheduling, gang scheduling, real-time scheduling

9/12/19 CS 318 – Lecture 4 – Scheduling 48



Next Time

• Read Chapter 26, 27

9/12/19 CS 318 – Lecture 4 – Scheduling 49


