
CS 318 Principles of
Operating Systems

Fall 2019

Lecture 3: Processes
Prof. Ryan Huang

Administrivia

• Homework 1

• Lab 0
- Due this Thursday

• Find your project group member soon
- Lab 1 starts this Friday
- Fill out Google form of group info

09/10/19 CS 318 – Lecture 3 – Processes 2

Recap: Architecture Support for OS

• Manipulating privileged machine state
- CPU protection: dual-mode operation, protected instructions
- Memory protection: MMU, virtual address

• Generating and handling “events”
- Interrupt, syscall, trap
- Interrupt controller, IVT
- Fix fault vs. notify proceed

• Mechanisms to handle concurrency
- Interrupts, atomic instructions

09/10/19 CS 318 – Lecture 3 – Processes 3

Unexpected Deliberate
Exceptions (sync) fault syscall trap
Interrupts (async) interrupt software interrupt

Ugly Hardware Interface è
Elegant Software Interface/Abstraction

09/10/19 CS 318 – Lecture 3 – Processes 4

vim Chrome iTunesGCC
OS

Hardware

Overview

• Today’s topics are processes and process management
- What are the units of execution?
- How are those units of execution represented in the OS?
- How is work scheduled in the CPU?
- What are the possible execution states of a process?
- How does a process move from one state to another?

09/10/19 CS 318 – Lecture 3 – Processes 5

OS abstraction?

Process Abstraction

• The process is the OS abstraction for CPU (execution)
- It is the unit of execution
- It is the unit of scheduling
- It is the dynamic execution context of a program
- Sometimes also called a job or a task

• A process is a program in execution
- It defines the sequential, instruction-at-a-time execution of a program
- Programs are static entities with the potential for execution

09/10/19 CS 318 – Lecture 3 – Processes 6

How Should the OS Manage Processes?

09/10/19 CS 318 – Lecture 3 – Processes 7

CPU
OS

vim

Chrome iTunes

GCC

Pick me!Pick me!

Pick me!Pick me!

???

Simple Process Management: One-at-a-time

• Uniprogramming: a process runs from start to full completion
- What the early batch operating system does
- Load a job from disk (tape) into memory, execute it, unload the job
- Problem: low utilization of hardware

• an I/O-intensive process would spend most of its time waiting for punched cards to be read
• CPU is wasted
• computers were very expensive back then

09/10/19 CS 318 – Lecture 3 – Processes 8

circa 1960s

Multiple Processes

• Modern OSes run multiple processes simultaneously

09/10/19 CS 318 – Lecture 3 – Processes 9

Multiple Processes

• Modern OSes run multiple processes simultaneously

• Examples (can all run simultaneously):
- gcc file_A.c – compiler running on file A
- gcc file_B.c – compiler running on file B
- vim – text editor
- firefox – web browser

• Non-examples (implemented as one process):
- Multiple firefox or tmux windows (still one process)

09/10/19 CS 318 – Lecture 3 – Processes 10

Multiprogramming (Multitasking)

• Multiprogramming: run more than one process at a time
- Multiple processes loaded in memory and available to run
- If a process is blocked in I/O, select another process to run on CPU
- Different hardware components utilized by different tasks at the same time

• Why multiple processes (multiprogramming)?
- Advantages: speed & hardware utilization

• higher throughput
• lower latency

09/10/19 CS 318 – Lecture 3 – Processes 11

Speed

• Multiple processes can increase CPU utilization
- Overlap one process’s computation with another’s wait

• Multiple processes can reduce latency
- Running A then B requires 100 sec for B to complete

- Running A and B concurrently makes B finish faster

- A is slower than if it had whole machine to itself, but still < 100 sec unless both A
and B completely CPU-bound

09/10/19 CS 318 – Lecture 3 – Processes 12

vim
gcc

wait for input wait for input

A B80s 20s

A
B

Kernel’s View of Processes

09/10/19 CS 318 – Lecture 3 – Processes 13

Process Components

• A process contains all state for a program in execution
- An address space
- The code for the executing program
- The data for the executing program
- An execution stack encapsulating the state of procedure calls
- The program counter (PC) indicating the next instruction
- A set of general-purpose registers with current values
- A set of operating system resources

• Open files, network connections, etc.

09/10/19 CS 318 – Lecture 3 – Processes 14

Process Address Space

Stack

0x00000000

0xFFFFFFFF

Code
(Text Segment)

Static Data
(Data Segment)

Heap
(Dynamic Memory Alloc)

Address
Space

SP

PC

09/10/19 CS 318 – Lecture 3 – Processes 15

A Process’s View of the World

• Each process has own view of machine
- Its own address space
- Its own open files
- Its own virtual CPU (through preemptive multitasking)

• *(char *)0xc000 means different thing in P1 & P2

• Simplifies programming model
- gcc does not care that firefox is running

• Sometimes want interaction between processes
- Simplest is through files: vim edits file, gcc compiles it
- More complicated: Shell/command, Window manager/app.

09/10/19 CS 318 – Lecture 3 – Processes 16

Naming A Process

• A process is named using its process ID (PID)

09/10/19 CS 318 – Lecture 3 – Processes 17

Implementing Process
• Keep a data structure for each process

- Process Control Block (PCB)
- Contains all of the info about a process

• Tracks state of the process
- Running, ready (runnable), waiting, etc.

• Includes information necessary for execution
- Registers, virtual memory mappings, etc.
- Open files (including memory mapped files)
- PCB is also maintained when the process is not running

• Needed by context switch mechanism

• Various other data about the process
- Credentials (user/group ID), signal mask, priority, accounting, etc.
- It is a heavyweight abstraction

09/10/19 CS 318 – Lecture 3 – Processes 18

struct proc (Solaris)
/*
* One structure allocated per active process. It contains all
* data needed about the process while the process may be swapped
* out. Other per-process data (user.h) is also inside the proc structure.
* Lightweight-process data (lwp.h) and the kernel stack may be swapped out.
*/
typedef struct proc {

/*
* Fields requiring no explicit locking
*/
struct vnode *p_exec; /* pointer to a.out vnode */
struct as *p_as; /* process address space pointer */
struct plock *p_lockp; /* ptr to proc struct's mutex lock */
kmutex_t p_crlock; /* lock for p_cred */
struct cred *p_cred; /* process credentials */
/*
* Fields protected by pidlock
*/
int p_swapcnt; /* number of swapped out lwps */
char p_stat; /* status of process */
char p_wcode; /* current wait code */
ushort_t p_pidflag; /* flags protected only by pidlock */
int p_wdata; /* current wait return value */
pid_t p_ppid; /* process id of parent */
struct proc *p_link; /* forward link */
struct proc *p_parent; /* ptr to parent process */
struct proc *p_child; /* ptr to first child process */
struct proc *p_sibling; /* ptr to next sibling proc on chain */
struct proc *p_psibling; /* ptr to prev sibling proc on chain */
struct proc *p_sibling_ns; /* prt to siblings with new state */
struct proc *p_child_ns; /* prt to children with new state */
struct proc *p_next; /* active chain link next */
struct proc *p_prev; /* active chain link prev */
struct proc *p_nextofkin; /* gets accounting info at exit */
struct proc *p_orphan;
struct proc *p_nextorph;

p_pglink; / process group hash chain link next */
struct proc *p_ppglink; /* process group hash chain link prev */
struct sess *p_sessp; /* session information */
struct pid *p_pidp; /* process ID info */
struct pid *p_pgidp; /* process group ID info */
/*
* Fields protected by p_lock
*/
kcondvar_t p_cv; /* proc struct's condition variable */
kcondvar_t p_flag_cv;
kcondvar_t p_lwpexit; /* waiting for some lwp to exit */
kcondvar_t p_holdlwps; /* process is waiting for its lwps */

/* to to be held. */
ushort_t p_pad1; /* unused */
uint_t p_flag; /* protected while set. */

/* flags defined below */
clock_t p_utime; /* user time, this process */

clock_t p_stime; /* system time, this process */
clock_t p_cutime; /* sum of children's user time */

clock_t p_cstime; /* sum of children's system time */
caddr_t *p_segacct; /* segment accounting info */

caddr_t p_brkbase; /* base address of heap */
size_t p_brksize; /* heap size in bytes */

/*
* Per process signal stuff.

*/
k_sigset_t p_sig; /* signals pending to this process */

k_sigset_t p_ignore; /* ignore when generated */

k_sigset_t p_siginfo; /* gets signal info with signal */
struct sigqueue *p_sigqueue; /* queued siginfo structures */

struct sigqhdr *p_sigqhdr; /* hdr to sigqueue structure pool */
struct sigqhdr *p_signhdr; /* hdr to signotify structure pool */

uchar_t p_stopsig; /* jobcontrol stop signal */

09/10/19 CS 318 – Lecture 3 – Processes 19

struct proc (Solaris) (2)
/*

* Microstate accounting, resource usage, and real-time profiling
*/

hrtime_t p_mstart; /* hi-res process start time */
hrtime_t p_mterm; /* hi-res process termination time */

hrtime_t p_mlreal; /* elapsed time sum over defunct lwps */
hrtime_t p_acct[NMSTATES]; /* microstate sum over defunct lwps */

struct lrusage p_ru; /* lrusage sum over defunct lwps */
struct itimerval p_rprof_timer; /* ITIMER_REALPROF interval timer */

uintptr_t p_rprof_cyclic; /* ITIMER_REALPROF cyclic */
uint_t p_defunct; /* number of defunct lwps */

/*
* profiling. A lock is used in the event of multiple lwp's

* using the same profiling base/size.

*/
kmutex_t p_pflock; /* protects user profile arguments */

struct prof p_prof; /* profile arguments */

/*
* The user structure

*/
struct user p_user; /* (see sys/user.h) */

/*

* Doors.
*/

kthread_t *p_server_threads;
struct door_node *p_door_list; /* active doors */

struct door_node *p_unref_list;
kcondvar_t p_server_cv;

char p_unref_thread; /* unref thread created */

09/10/19 CS 318 – Lecture 3 – Processes 20

/*

* Special per-process flag when set will fix misaligned memory
* references.

*/
char p_fixalignment;

/*

* Per process lwp and kernel thread stuff
*/

id_t p_lwpid; /* most recently allocated lwpid */
int p_lwpcnt; /* number of lwps in this process */

int p_lwprcnt; /* number of not stopped lwps */
int p_lwpwait; /* number of lwps in lwp_wait() */

int p_zombcnt; /* number of zombie lwps */

int p_zomb_max; /* number of entries in p_zomb_tid */
id_t *p_zomb_tid; /* array of zombie lwpids */

kthread_t *p_tlist; /* circular list of threads */
/*

* /proc (process filesystem) debugger interface stuff.
*/

k_sigset_t p_sigmask; /* mask of traced signals (/proc) */
k_fltset_t p_fltmask; /* mask of traced faults (/proc) */

struct vnode *p_trace; /* pointer to primary /proc vnode */
struct vnode *p_plist; /* list of /proc vnodes for process */

kthread_t *p_agenttp; /* thread ptr for /proc agent lwp */
struct watched_area *p_warea; /* list of watched areas */

ulong_t p_nwarea; /* number of watched areas */
struct watched_page *p_wpage; /* remembered watched pages (vfork) */

int p_nwpage; /* number of watched pages (vfork) */
int p_mapcnt; /* number of active pr_mappage()s */

struct proc *p_rlink; /* linked list for server */
kcondvar_t p_srwchan_cv;

size_t p_stksize; /* process stack size in bytes */

struct proc (Solaris) (3)
/*

* protects unmapping and initilization of robust locks.
*/

kmutex_t p_lcp_mutexinitlock;
utrap_handler_t *p_utraps; /* pointer to user trap handlers */

refstr_t *p_corefile; /* pattern for core file */

#if defined(__ia64)
caddr_t p_upstack; /* base of the upward-growing stack */

size_t p_upstksize; /* size of that stack, in bytes */
uchar_t p_isa; /* which instruction set is utilized */

#endif
void *p_rce; /* resource control extension data */

struct task *p_task; /* our containing task */

struct proc *p_taskprev; /* ptr to previous process in task */
struct proc *p_tasknext; /* ptr to next process in task */

int p_lwpdaemon; /* number of TP_DAEMON lwps */
int p_lwpdwait; /* number of daemons in lwp_wait() */

kthread_t **p_tidhash; /* tid (lwpid) lookup hash table */
struct sc_data *p_schedctl; /* available schedctl structures */

} proc_t;

09/10/19 CS 318 – Lecture 3 – Processes 21

/*
* Kernel probes

*/
uchar_t p_tnf_flags;

/*

* C2 Security (C2_AUDIT)
*/

caddr_t p_audit_data; /* per process audit structure */
kthread_t *p_aslwptp; /* thread ptr representing "aslwp" */

#if defined(i386) || defined(__i386) || defined(__ia64)
/*

* LDT support.

*/
kmutex_t p_ldtlock; /* protects the following fields */

struct seg_desc *p_ldt; /* Pointer to private LDT */
struct seg_desc p_ldt_desc; /* segment descriptor for private LDT */

int p_ldtlimit; /* highest selector used */
#endif

size_t p_swrss; /* resident set size before last swap */
struct aio *p_aio; /* pointer to async I/O struct */

struct itimer **p_itimer; /* interval timers */
k_sigset_t p_notifsigs; /* signals in notification set */

kcondvar_t p_notifcv; /* notif cv to synchronize with aslwp */
timeout_id_t p_alarmid; /* alarm's timeout id */

uint_t p_sc_unblocked; /* number of unblocked threads */
struct vnode *p_sc_door; /* scheduler activations door */

caddr_t p_usrstack; /* top of the process stack */
uint_t p_stkprot; /* stack memory protection */

model_t p_model; /* data model determined at exec time */
struct lwpchan_data *p_lcp; /* lwpchan cache */

Process State

• A process has an execution state to indicate what it is doing
- Running: Executing instructions on the CPU

• It is the process that has control of the CPU
• How many processes can be in the running state simultaneously?

- Ready: Waiting to be assigned to the CPU
• Ready to execute, but another process is executing on the CPU

- Waiting: Waiting for an event, e.g., I/O completion
• It cannot make progress until event is signaled (disk completes)

• As a process executes, it moves from state to state
- Unix ps: STAT column indicates execution state
- What state do you think a process is in most of the time?
- How many processes can a system support?

09/10/19 CS 318 – Lecture 3 – Processes 22

Process State Graph

New Ready

Running

Waiting

Terminated

Create
Process

Process
Exit

I/O wait,
etc.

I/O Done

Schedule
ProcessInterrupt

09/10/19 CS 318 – Lecture 3 – Processes 23

State Queues

• How does the OS keep track of processes?

• Naïve approach: process list
- How to find out processes in the ready state?

• Iterate through the list
- Problem: slow!

• Improvement: partition list based on states
- OS maintains a collection of queues that represent the state of all processes
- Typically, one queue for each state: ready, waiting, etc.
- Each PCB is queued on a state queue according to its current state
- As a process changes state, its PCB is moved from one queue into another

09/10/19 CS 318 – Lecture 3 – Processes 24

State Queues

Firefox PCB X Server PCB Idle PCB

Vim PCB

Ready Queue

Disk I/O Queue

Console Queue

Sleep Queue
.

.

.

ls PCB

There may be many wait queues, one for each
type of wait (disk, console, timer, network, etc.)

09/10/19 CS 318 – Lecture 3 – Processes 25

Scheduling

• Which process should kernel run?
- if 0 runnable, run idle loop (or halt CPU), if 1 runnable, run it
- if >1 runnable, must make scheduling decision

• Scan process table for first runnable?
- Expensive. Weird priorities (small pids do better)
- Divide into runnable and blocked processes

• FIFO?
- Put threads on back of list, pull them from front:
- Pintos does this—see ready_list in thread.c

• Priority?

• Next class discusses in detail

09/10/19 CS 318 – Lecture 3 – Processes 26

Preemption
• When to trigger a process scheduling decision?

- Yield control of CPU
• voluntarily, e.g., sched_yield
• system call, page fault, illegal instruction, etc.

- Preemption

• Periodic timer interrupt
- If running process used up quantum, schedule another

• Device interrupt
- Disk request completed, or packet arrived on network
- Previously waiting process becomes runnable

• Changing running process is called a context switch
- CPU hardware state is changed from one to another
- This can happen 100 or 1000 times a second!

09/10/19 CS 318 – Lecture 3 – Processes 27

Context Switch

09/10/19 CS 318 – Lecture 3 – Processes 28

Context Switch Details

• Very machine dependent. Typical things include:
- Save program counter and integer registers (always)
- Save floating point or other special registers
- Save condition codes
- Change virtual address translations

• Non-negligible cost
- Save/restore floating point registers expensive

• Optimization: only save if process used floating point
- May require flushing TLB (memory translation hardware)

• Usually causes more cache misses (switch working sets)

09/10/19 CS 318 – Lecture 3 – Processes 29

User’s (Programmer’s) View of
Processes

09/10/19 CS 318 – Lecture 3 – Processes 30

Creating a Process

• A process is created by another process
- Parent is creator, child is created (Unix: ps “PPID” field)
- What creates the first process (Unix: init (PID 0 or 1))?

• Parent defines resources and privileges for its children
- Unix: Process User ID is inherited – children of your shell execute with your

privileges
• After creating a child

- the parent may either wait for it to finish its task or continue in parallel

09/10/19 CS 318 – Lecture 3 – Processes 31

Process Creation: Windows
• The system call on Windows for creating a process is called,

surprisingly enough, CreateProcess:
BOOL CreateProcess(char *prog, char *args) (simplified)

• CreateProcess
- Creates and initializes a new PCB
- Creates and initializes a new address space
- Loads the program specified by “prog” into the address space
- Copies “args” into memory allocated in address space
- Initializes the saved hardware context to start execution at main (or wherever

specified in the file)
- Places the PCB on the ready queue

09/10/19 CS 318 – Lecture 3 – Processes 32

09/10/19 CS 318 – Lecture 3 – Processes 33

Process Creation: Unix
• In Unix, processes are created using fork()

int fork()

• fork()
- Creates and initializes a new PCB
- Creates a new address space
- Initializes the address space with a copy of the entire contents of the address

space of the parent
- Initializes the kernel resources to point to the resources used by parent (e.g., open

files)
- Places the PCB on the ready queue

• Fork returns twice
- Huh?
- Returns the child’s PID to the parent, “0” to the child

09/10/19 CS 318 – Lecture 3 – Processes 34

09/10/19 CS 318 – Lecture 3 – Processes 35

fork()

09/10/19 CS 318 – Lecture 3 – Processes 36

What does this program print?

#include <stdio.h>
#include <unistd.h>
int main(int argc, char *argv[])
{
char *name = argv[0];
int child_pid = fork();
if (child_pid == 0) {
printf("Child of %s is %d\n", name, getpid());
return 0;

} else {
printf("My child is %d\n", child_pid);
return 0;

}
}

Example Output

$ gcc -o fork fork.c

$./fork

My child is 486

Child of ./fork is 486

09/10/19 CS 318 – Lecture 3 – Processes 37

Duplicating Address Spaces

child_pid = fork();

if (child_pid == 0) {

printf("child");

} else {

printf("parent");

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

printf("child");

} else {

printf("parent");

}

PC

child_pid = 486 child_pid = 0

PC

09/10/19 CS 318 – Lecture 3 – Processes 38

The hardware contexts stored in the PCBs of the two processes will be
identical, meaning the EIP register will point to the same instruction

Divergence

child_pid = fork();

if (child_pid == 0) {

printf("child");

} else {

printf("parent");

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

printf("child");

} else {

printf("parent");

}

PC

child_pid = 486 child_pid = 0

PC

09/10/19 CS 318 – Lecture 3 – Processes 39

Example Continued
$ gcc -o fork fork.c

$./fork

My child is 486

Child of ./fork is 486

$./fork

Child of ./fork is 498

My child is 498

Why is the output in a different order?

09/10/19 CS 318 – Lecture 3 – Processes 40

Process Creation: Unix (2)

• Wait a second. How do we actually start a new program?
int exec(char *prog, char *argv[])
int execve(const char *filename, char *const argv[], char *const envp[])

• exec()
- Stops the current process
- Loads the program “prog” into the process’ address space
- Initializes hardware context and args for the new program
- Places the PCB onto the ready queue
- Note: It does not create a new process

• What does it mean for exec to return?

• Warning: Pintos exec more like combined fork/exec

09/10/19 CS 318 – Lecture 3 – Processes 41

Manipulating File Descriptors

• int dup2 (int oldfd, int newfd)
- Closes newfd, if it was a valid descriptor
- Makes newfd an exact copy of oldfd
- Two file descriptors will share same offset

• (lseek on one will affect both)

• int fcntl (int fd, int cmd, …/* arg */)
- fcntl(fd, F_SETFD, FD_CLOEXEC)

• Makes file descriptor non-inheritable by spawned programs

• Example: redirsh.c
- Loop that reads a command and executes it
- Recognizes command < input > output 2> errlog

09/10/19 CS 318 – Lecture 3 – Processes 42

redirsh.c

09/10/19 CS 318 – Lecture 3 – Processes 43

void doexec (void) {
int fd;
if (infile) { /* non-NULL for "command < infile" */
if ((fd = open (infile, O_RDONLY)) < 0) {
perror (infile);
exit (1);

}
if (fd != 0) {
dup2 (fd, 0);
close (fd);

}
}
/* ... do same for outfile→fd 1, errfile→fd 2 ... */
execvp (av[0], av);
perror (av[0]);
exit (1);

}

Example: command < input > output 2> errlog

2

2: https://www.cs.jhu.edu/~huang/cs318/fall18/code/redirsh.c

https://www.cs.jhu.edu/~huang/cs318/fall18/code/redirsh.c

Pipes

• int pipe (int fds[2])
- Returns two file descriptors in fds[0] and fds[1]
- Data written to fds[1] will be returned by read on fds[0]
- When last copy of fds[1] closed, fds[0] will return EOF
- Returns 0 on success, -1 on error

• Operations on pipes
- read/write/close – as with files
- When fds[1] closed, read(fds[0]) returns 0 bytes
- When fds[0] closed, write(fds[1]):

• Kills process with SIGPIPE
• Or if signal ignored, fails with EPIPE

• Example: pipesh.c
- Sets up pipeline command1 | command2 | command3 ...

09/10/19 CS 318 – Lecture 3 – Processes 44

Why fork()?

• Most calls to fork followed by exec
- could also combine into one spawn system call

• Very useful when the child…
- Is cooperating with the parent
- Relies upon the parent’s data to accomplish its task

• Example: web server

09/10/19 CS 318 – Lecture 3 – Processes 45

while (1) {
int sock = accept();
if ((child_pid = fork()) == 0) {
// Handle client request

} else {
// Close socket

}
}

Why fork()?

• Most calls to fork followed by exec
- could also combine into one spawn system call

• Very useful when the child…
- Is cooperating with the parent
- Relies upon the parent’s data to accomplish its task

• Example: web server

• Example: shell

09/10/19 CS 318 – Lecture 3 – Processes 46

minish.c (simplified)

09/10/19 CS 318 – Lecture 3 – Processes 47

pid_t pid; char **av;
void doexec () {
execvp (av[0], av);
perror (av[0]);
exit (1);

}
/* ... main loop: */
for (;;) {
parse_next_line_of_input (&av, stdin);
switch (pid = fork ()) {
case -1:
perror ("fork"); break;

case 0:
doexec ();

default:
waitpid (pid, NULL, 0); break;

}
}

1

1: https://www.cs.jhu.edu/~huang/cs318/fall18/code/minish.c

https://www.cs.jhu.edu/~huang/cs318/fall18/code/minish.c

Why fork()?

• Most calls to fork followed by exec
- could also combine into one spawn system call

• Very useful when the child…
- Is cooperating with the parent
- Relies upon the parent’s data to accomplish its task

• Example: Web server

• Real win is simplicity of interface
- Tons of things you might want to do to child: manipulate file descriptors, set

environment variables, reduce privileges, ...
- Yet fork requires no arguments at all

09/10/19 CS 318 – Lecture 3 – Processes 48

Spawning a Process Without fork

• Without fork, needs tons of different options for new process
- Example: Windows CreateProcess system call

• Also CreateProcessAsUser, CreateProcessWithLogonW,
CreateProcessWithTokenW, ...

09/10/19 CS 318 – Lecture 3 – Processes 49

BOOL WINAPI CreateProcess(
_In_opt_ LPCTSTR lpApplicationName,
_Inout_opt_ LPTSTR lpCommandLine,
_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
In BOOL bInheritHandles,
In DWORD dwCreationFlags,
_In_opt_ LPVOID lpEnvironment,
_In_opt_ LPCTSTR lpCurrentDirectory,
In LPSTARTUPINFO lpStartupInfo,
Out LPPROCESS_INFORMATION lpProcessInformation

);

Process Creation: Unix (3)

• Why Windows use CreateProcess while Unix uses fork/exec?

• What happens if you run “exec csh” in your shell?

• What happens if you run “exec ls” in your shell? Try it.

• fork() can return an error. Why might this happen?

09/10/19 CS 318 – Lecture 3 – Processes 50

The Microsoft “Response”

• “A fork() in the road”
- Andrew Baumann (Microsoft Research), Jonathan Appavoo, Orran Krieger

(Boston University), Timothy Roscoe (ETH Zurich)
- In Proceedings of HotOS 2019
- Paper link (optional read)

• Controversial argument against fork()
- Mainly from security perspective

09/10/19 CS 318 – Lecture 3 – Processes 51

…Take it with a grain of salt!

http://hotos19.sigops.org/program.html
https://cs.jhu.edu/~huang/cs318/fall19/readings/fork-hotos19.pdf

Process Termination

• All good processes must come to an end. But how?
- Unix: exit(int status), Windows: ExitProcess(int status)

• Essentially, free resources and terminate
- Terminate all threads (next lecture)
- Close open files, network connections
- Allocated memory (and VM pages out on disk)
- Remove PCB from kernel data structures, delete

• Note that a process does not need to clean up itself
- Why does the OS have to do it?

09/10/19 CS 318 – Lecture 3 – Processes 52

wait() a second…

• Often it is convenient to pause until a child process has finished
- Think of executing commands in a shell

• Unix wait(int *wstatus) (Windows: WaitForSingleObject)
- Suspends the current process until any child process ends
- waitpid() suspends until the specified child process ends

• wait() has a return value…what is it?

• Unix: Every process must be “reaped” by a parent
- What happens if a parent process exits before a child?
- What do you think a “zombie” process is?

09/10/19 CS 318 – Lecture 3 – Processes 53

Process Summary
• What are the units of execution?

- Processes
• How are those units of execution represented?

- Process Control Blocks (PCBs)
• How is work scheduled in the CPU?

- Process states, process queues, context switches
• What are the possible execution states of a process?

- Running, ready, waiting
• How does a process move from one state to another?

- Scheduling, I/O, creation, termination
• How are processes created?

- CreateProcess (NT), fork/exec (Unix)

09/10/19 CS 318 – Lecture 3 – Processes 54

Next time…

• Read Chapters 7, 8

• Lab 0 due

• Lab 1 starts

09/10/19 CS 318 – Lecture 3 – Processes 55

