
CS 318 Principles of
Operating Systems

Fall 2019

Lecture 21: System Reliability
Prof. Ryan Huang

Teaser
• Civil Engineering

- Bridges don’t fall

12/3/19 CS 318 – Lecture 21 – System Reliability 2

12/3/19 CS 318 – Lecture 21 – System Reliability 3

Teaser
• Civil Engineering

- Bridges don’t fall

• Mechanical Engineering
- Cars don’t break

12/3/19 CS 318 – Lecture 21 – System Reliability 4

12/3/19 CS 318 – Lecture 21 – System Reliability 5

Teaser
• Civil Engineering

- Bridges don’t fall

• Mechanical Engineering
- Cars don’t break

• Electrical Engineering
- City lights don’t go off

12/3/19 CS 318 – Lecture 21 – System Reliability 6

12/3/19 CS 318 – Lecture 21 – System Reliability 7

Teaser
• Civil Engineering

- Bridges don’t fall

• Mechanical Engineering
- Cars don’t break

• Electrical Engineering
- City lights don’t go off

• Software Engineering

12/3/19 CS 318 – Lecture 21 – System Reliability 8

?

12/3/19 CS 318 – Lecture 21 – System Reliability 9

Why Is Reliable Software Hard?
• Human factor

- To err is human
- Software requirements change
- Human beings use software in ways unexpected by designers

• Technical factor
- Software is complex:

• Exploding software state and set of possible behaviors
• Hard to check all behaviors

- Execution environment contains nondeterminisms
- Construction approach is not rigorous

12/3/19 CS 318 – Lecture 21 – System Reliability 10

Why Is Reliable Software Hard?

12/3/19 CS 318 – Lecture 21 – System Reliability 11

Why Is Reliable Software Hard?
• A QA engineer walks into a bar.

• He orders a beer

• He orders 0 beer

• He orders 999999999 beers

• He order a lizard, -1 beer, a ueicbksjdhd

• First real customer walks in
- and asks where the bathroom is, the bar bursts into flames, killing everyone.

12/3/19 CS 318 – Lecture 21 – System Reliability 12

What Is Software Reliability?
• Reliability is the probability that a software operates without

failure in a given period of time in a specific environment
- What is a failure?
- 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 – 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐹𝑎𝑖𝑙𝑢𝑟𝑒)
- Can be expressed as failure rate 𝜆
- Mean Time Between Failure (MTBF, 1/𝜆) is often reported

• MTBF = 2000 hours => 𝜆 = 0.0005/hour

• One important metric about software quality
- Other metrics: efficiency, security, usability, maintainability, etc.

12/3/19 CS 318 – Lecture 21 – System Reliability 13

Why Is Software Reliability Important?

• “Software is eating the world”
• Cost of software failure is high

- Bugs in radiation-therapy Therac 25 caused tragedies of multiple deaths

12/3/19 CS 318 – Lecture 21 – System Reliability 14

Software Reliability vs. Hardware Reliability
• The failure rate of a system usually depends on time

- Hard disk’s failure rate in its fifth year > the rate in the first year

12/3/19 CS 318 – Lecture 21 – System Reliability 15

The bathtub curve

Burn
In

Useful
Life

Wear
Out

Time

Fa
ilu

re
 R

at
e

𝜆

Infant
mortality
failure

Software Reliability vs. Hardware Reliability
• The failure rate of a system usually depends on time

- Hard disk’s failure rate in its fifth year > the rate in the first year

• Hardware typically exhibit the bathtub curve, but software don’t
- Why?
- Hardware faults are mostly physical faults
- Software faults are design/implementation faults

• Hard to visualize, classify, detect, and correct
• Related to human factors, which we often don’t understand well

- Software does not need “manufacturing”
• Its quality does not change much once it’s deployed

12/3/19 CS 318 – Lecture 21 – System Reliability 16

What’s The “Bathtub Curve” For Software?
• What is the one major reason software fails?

- Upgrades!

12/3/19 CS 318 – Lecture 21 – System Reliability 17

???Test/
Debug

Useful
Life

Time

Fa
ilu

re
 R

at
e

𝜆

up
gr

ad
in

g

up
gr

ad
in

g

up
gr

ad
in

g

up
gr

ad
in

g

Legacy
Software!

Real-World System Failure Rates: Facebook

12/3/19 CS 318 – Lecture 21 – System Reliability 18

“Fail at Scale” [ACM Queue]

Why Do Systems Fail?
• Hardware factors

- Power loss
- Disk wears out
- CPU random bit flip
- Memory corruption
- Room temperature too hot

• Software factors
- Bugs
- Configuration errors

• Human factors
- Human errors (e.g., rm –rf /)

12/3/19 CS 318 – Lecture 21 – System Reliability 19

Why Do Systems Fail?
• A pioneer paper by Jim Gray:

- Study the commercial Tandem systems

12/3/19 CS 318 – Lecture 21 – System Reliability 20

Why Do Systems Fail?
• A pioneer paper by Jim Gray:

- Study the commercial Tandem systems
- Found that administration and software errors

are the major contributors to failures
- Proposed software fault-tolerance techniques:

process-pair and transactions

• Many papers followed up
- Why do internet services fail, and what can be

done about it? [USITS ’03]
- Why Does a Cloud-Scale Service Fail Despite

Fault-Tolerance?

12/3/19 CS 318 – Lecture 21 – System Reliability 21

Bugs
• The origin of “bug” is literally a bug

- Coined by U.S. Navy Admiral and computer science pioneer, Grace Hopper
- A moth got into a mechanical relay of Mark II supercomputer, jamming the

system.

12/3/19 CS 318 – Lecture 21 – System Reliability 22

Bugs in Programmers’ Eyes
• Programmer’s language translation guide

12/3/19 23

What programmers say What programmers mean

Horrible hack Horrible hack that I didn’t write

Temporary workaround Horrible hack that I wrote

It’s broken There are bugs in your code

It has a few issues There are bugs in my code

Obscure Someone else’s code doesn’t have comments

Self-documenting My code doesn’t have comments

I can read this Perl script I wrote this Perl script

I can’t read this Perl script I didn’t write this Perl script

Bad structure Someone else’s code is badly organized

Complex structure My code is badly organized

Bug The absence of a feature I like

Out of scope The absence of a feature I don’t like

Clean solution It works and I understand it

What programmers say What programmers mean

We need to rewrite it It works but I don’t understand it

Emacs is better than Vim It’s too peaceful here, let’s start a flame war

Vim is better than Emacs It’s too peaceful here, let’s start a flame war

IMHO You are wrong

Legacy code It works but no one knows how

^X^Cquit^\[ESC][ESC]^C I don’t know how to quit Vim

That can’t be done It can be done, but it's boring and I don't want to do it

No problem, people do this all
the time. It's an easy fix.

You might be the most idiotic person I've ever
encountered

Put that bug in the backlog
with low priority

Let's agree: nobody ever mention it again and ppl who
do, will be shot

These test environments are
too brittle

Works on my machine. Have you tried re-starting
yours?

Proof-of-Concept What I wrote

Perfect solution How sales & marketing are promoting itCS 318 – Lecture 21 – System Reliability

What Can Be Done About It?
• Bug detection

- Find bugs by analyzing source or binary code

• Testing
- Expose bugs by running software

• Failure isolation
- Mitigate damage of bugs at runtime

• Diagnosis
- Troubleshoot a bug after it has exhibited some symptom

• Fix
- Patch the software to remove the bug

12/3/19 CS 318 – Lecture 21 – System Reliability 24

Life of A Bug and Reliability Efforts

12/3/19 CS 318 – Lecture 21 – System Reliability 25

🐞

Code
with bug

🐞
🐞

Bug
Detection Testing

Runtime
Fault Isolation Diagnosis Fix

🐞🐞
🐞 🐞

Development

Verification

Bug Detection – Static Analysis
• Takes source code of a software, walk through the code flow

structure, analyze program behavior, check rules
- Some basic questions:

• Where does the source of a variable come from
• How does the value propagate through the function
• What places use the value

- Different flavors: intra-procedural, inter-procedural, data-flow, control-flow,
field-sensitive, etc.

• Relies on compiler techniques
- Usually work on intermediate representation in static single assignment

(SSA) form
- Popular tools: LLVM, Frama-C, Soot, FindBugs

12/3/19 CS 318 – Lecture 21 – System Reliability 26

Bad News: No Silver Bullet
• No Perfect Static Analysis Method Exists

- Why?
- the general problem of finding all possible run-time errors in an arbitrary

program is undecidable: reducible to the halting problem

• Each method makes trade-off between soundness and
completeness
- A sound static analysis over-approximates the behaviors of the program

• guaranteed to identify all violations
• but may report false positives

- A complete static analysis under-approximates the behaviors of the program
• every reported violation is a true violation
• But no guarantee that all violations will be reported

12/3/19 CS 318 – Lecture 21 – System Reliability 27

What Correctness Rule Should a System Obey?
• A hard question, depends on specific systems

- Often need domain specific knowledge and experience
- Rules are often undocumented or specified in ad hoc manner
- Manually discovering these rules is a daunting task

• E.g., discovering such rules in Linux with millions of lines of code

• Bugs as Deviant Behavior: A General Approach to Inferring
Errors in Systems Code [SOSP ’01]
- Core insight: programmers have certain “beliefs” which are implied by the

code they write.
• int a = *p; ➔ p should be a non-null pointer
• unlock(l); ➔ l was locked

- You can extract rules from the code rather than from programmers

12/3/19 CS 318 – Lecture 21 – System Reliability 28

Bugs as Deviant Behavior (1)
• Some beliefs are “MUST” beliefs

- p should be a non-null pointer

• Some beliefs are “MAY” beliefs
- spin_lock(l) is followed by spin_unlock(l), could be just a coincidence

• For “MUST” beliefs, any contradiction is an error

• For “MAY” beliefs, an deviation is a probable error
- Statistical approach to rank error probability

• 999 out of 1000 times, spin_lock(l) is followed by spin_unlock(l) likely a true belief

• Key benefit: no prior knowledge of truth is required
- If two beliefs contradict, one is an error, even though you don’t know which one

12/3/19 CS 318 – Lecture 21 – System Reliability 29

Bugs as Deviant Behavior (2)
• Define some generic rule templates

- <a> must be paired with

• Keep a belief set for a program element
- Update belief set as the analysis proceeds

• Example:

12/3/19 CS 318 – Lecture 21 – System Reliability 30

if (card == NULL) {
printk(KERN_ERR "capidrv-%d: ... %d!\n",

card->contrnr, id);
}

/* Linux 2.4.1:drivers/isdn/avmb1/capidrv.c: */

belief: card is null

belief: card is non-null
Contradiction!

Bugs as Deviant Behavior (2)
• Define some generic rule templates

- <a> must be paired with

• Keep a belief set for a program element
- Update belief set as the analysis proceeds

• Example:

12/3/19 CS 318 – Lecture 21 – System Reliability 31

int mxser_write(struct tty_struct *tty, ...) {
struct mxser_struct *info = tty->driver_data;
unsigned long flags;
if (!tty || !info->xmit_buf)
return (0);

}

/* Linux 2.4.7:drivers/char/mxser.c */

belief: tty is non-null

belief: tty is null
Contradiction!

Bug Detection – Symbolic Execution
• Testing feeds a program with concrete data

- Downside: limited code coverage, some code paths are not explored

• Symbolic execution: feed a program with symbolic value
- Computation is based on symbolic values
- Output is expressed as a function of symbolic value
- Can generate a specific concrete input based on the symbolic expression

• Testing input generation

12/3/19 CS 318 – Lecture 21 – System Reliability 32

Symbolic Execution
• SE engine maintains a symbolic state 𝜹 and a symbolic path

constraint 𝑃𝐶
- 𝛿 maps variable to symbolic expressions, initially empty
- 𝑃𝐶 is a qualifier-free first-order formula over symbolic expression, initially true

• 𝜹 and PC	are updated as program executes
- at every assignment 𝑣 = 𝑒, update 𝛿 by mapping 𝑣 to 𝛿(𝑒)
- at every conditional statement if (e) S1 else S2, 𝑃𝐶 is updated to 𝑃𝐶 ∧ 𝛿 𝑒

(“then” branch), and a new 𝑃𝐶′ = 𝑃𝐶 ∧ ¬𝛿 𝑒 (“else” branch)
- execution continues along a path if the associated 𝑃𝐶 is satisfiable

• Representative tool: KLEE
- KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex

Systems Programs [OSDI ’08]

12/3/19 CS 318 – Lecture 21 – System Reliability 33

Symbolic Execution Example
• Example code snippet to be symbolically executed

12/3/19 CS 318 – Lecture 21 – System Reliability 34

int twice (int v) {
return 2∗v;

}
void testme (int x, int y) {
z = twice (y);
if (z == x) {
if (x > y+10)
ERROR;

}
}
int main() {
x = sym input();
y = sym input();
testme (x, y);

}

2*y == x

x = 0
y = 1

x = 2
y = 1

x = 30
y = 15

x>y+10

truefalse

truefalse

ERROR

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

𝛿 = 𝑥 ↦ 𝑥0, 𝑦 ↦ 𝑦0, 𝑧 ↦ 2𝑦0

𝛿 = {𝑥 ↦ 𝑥0}
𝛿 = 𝑥 ↦ 𝑥0, 𝑦 ↦ 𝑦0
𝛿 = 𝑥 ↦ 𝑥0, 𝑦 ↦ 𝑦0

PC: 𝑥0 == 2𝑦0 PC′: 𝑥0 ≠ 2𝑦0

PCII: 𝑥0 == 2𝑦0 ∧ 𝑥0 > 𝑦0 + 10

Debugging
• “Debugging is like being the detective in a crime movie…

• …where you are also the murderer”

12/3/19 CS 318 – Lecture 21 – System Reliability 35

Huang’s Rule of Thumb on Debugging
• All bugs are obvious, after you debug them

• Some bugs are “stupid”, but stupid bugs ≠ easy bugs

12/3/19 CS 318 – Lecture 21 – System Reliability 36

Troubleshooting
time / severity

Bug stupidity

reality

expected

Bug complexity

Huang’s Rule of Thumb on Debugging
• All bugs are obvious, after you debug them
• Some bugs are “stupid”, but stupid bugs ≠ easy bugs

- After some point, the more time you spend on troubleshooting an issue, the
more stupid the bug turns out to be
• one-off error, int vs. unsigned int, > vs. >=

- Example:
• https://azure.microsoft.com/en-us/blog/summary-of-windows-azure-service-disruption-

on-feb-29th-2012/

• The more bugs you debug in a system, the deeper you
understand about that system
- Also why companies’ new engineer training task is often debugging

12/3/19 CS 318 – Lecture 21 – System Reliability 37

https://azure.microsoft.com/en-us/blog/summary-of-windows-azure-service-disruption-on-feb-29th-2012/

Debugging
• Ad-hoc: printf, systematic tool: gdb

- examine program state, e.g., if a branch is taken, value of a variable
- compare the state with expected behavior
- if it deviates from the expected, how does it become like this

• Challenge 1: debugger may not be available
- e.g., distributed system

• Challenge 2: hard to reproduce an issue in production
- e.g., no core dump generated

• Challenge 3: root cause is far away from the failure site
- e.g., why is this pointer becoming a null pointer?

12/3/19 CS 318 – Lecture 21 – System Reliability 38

Logging: Source of Clues in Debugging
• Logging is an instrumental aid for debugging

- Often the only clues left in the crime scene (production environment)

• That’s why the quality of logs is important
- Trade-offs among information, overhead, importance
- Log20: Fully Automated Optimal Placement of Log Printing Statements under

Specified Overhead Threshold [SOSP ‘17]
- Be Conservative: Enhancing Failure Diagnosis with Proactive Logging [OSDI ‘12]
- Improving Software Diagnosability via Log Enhancement [ASPLOS ‘11]

• Deducing information from logs is an art
- “The Science of Deduction”
- SherLog: Error Diagnosis by Connecting Clues from Run-time Logs [ASPLOS ‘10]

12/3/19 CS 318 – Lecture 21 – System Reliability 39

Debugging In the Large
• How would Microsoft developers debug a Windows problem?

- OS is already deployed to customer computer
- Debug symbols not enabled at customer site
- Hard to convince customer to run a debugger

• Windows Error Reporting (WER) [Paper]

12/3/19 CS 318 – Lecture 21 – System Reliability 40

https://www.sigops.org/sosp/sosp09/papers/glerum-sosp09.pdf

Debugging In the Large
• How would Microsoft developers debug a Windows problem?

- OS is already deployed to customer computer
- Debug symbols not enabled at customer site
- Hard to convince customer to run a debugger

• Windows Error Reporting (WER) [Paper]
- A distributed system to collect Windows crash log from computers worldwide
- If a fix for the error exists, WER provides customer with the fix link
- WER aggregates error reports and performs automatic diagnosis if possible

12/3/19 CS 318 – Lecture 21 – System Reliability 41

https://www.sigops.org/sosp/sosp09/papers/glerum-sosp09.pdf

Other Interesting Topics
• Bug fixing

- Bug fixes can become bug again
• The fixes are only workaround or the other parts of software changes

• System verification
- Passing testing and static analysis tools does not mean the software is bug-free
- How can we prove that a software is correct under all circumstances

• Configuration errors
- Not just code bug or hardware issue, human error!

• Failure detection
- Production software does not always simply crash, often exhibit gray failure

• Failure isolation

• Fault tolerance

12/3/19 CS 318 – Lecture 21 – System Reliability 42

If You Are Interested In Knowing More…
• https://www.cs.jhu.edu/~huang/pubs.html

• We should talk J

12/3/19 CS 318 – Lecture 21 – System Reliability 43

https://www.cs.jhu.edu/~huang/pubs.html

Next Time…
• Final review

12/3/19 CS 318 – Lecture 21 – System Reliability 44

