
CS 318 Principles of
Operating Systems

Fall 2019

Midterm Review
Prof. Ryan Huang

Midterm

• October 22th Tuesday 1:30-2:45 pm at classroom

• Covers material before virtual memory

• Based upon lecture material, homeworks, and project
- Make sure you do the homeworks to practice

• One 8.5’’x11” double-sided sheet of notes

• Obligatory: do not cheat
- Do not copy from your neighbors
- No one involved will be happy, particularly the teaching staff

10/17/19 CS 318 – Midterm Review 2

Arch Support for OSes

• Types of architecture support
- Manipulating privileged machine state
- Generating and handling events

10/17/19 CS 318 – Midterm Review 3

Privileged Instructions

• What are privileged instructions?
- Who gets to execute them?
- How does the CPU know whether they can be executed?
- Difference between user and kernel mode

• Why do they need to be privileged?

• What do they manipulate?
- Protected control registers
- Memory management
- I/O devices

10/17/19 CS 318 – Midterm Review 4

Events

• Events

• What are faults, and how are they handled?

• What are system calls, and how are they handled?

• What are interrupts, and how are they handled?
- How do I/O devices use interrupts?

• What is the difference between exceptions and interrupts?

10/17/19 CS 318 – Midterm Review 5

Unexpected Deliberate
Exceptions (sync) fault syscall trap
Interrupts (async) interrupt software interrupt

Processes

• What is a process?

• What resource does it virtualize?

• What is the difference between a process and a program?

• What is contained in a process?

10/17/19 CS 318 – Midterm Review 6

Process Data Structures

• Process Control Blocks (PCBs)
- What information does it contain?
- How is it used in a context switch?

• State queues
- What are process states?
- What is the process state graph?
- When does a process change state?
- How does the OS use queues to keep track of processes?

10/17/19 CS 318 – Midterm Review 7

Process Manipulation

• What does CreateProcess on NT do?

• What does fork() on Unix do?
- What does it mean for it to “return twice”?

• What does exec() on Unix do?
- How is it different from fork?

• How are fork and exec used to implement shells?

• Why fork()?

10/17/19 CS 318 – Midterm Review 8

Threads

• What is a thread?
- What is the difference between a thread and a process?
- How are they related?

• Why are threads useful?

• What is the difference between user-level and kernel-level

threads?
- What are the advantages/disadvantages of one over another?

10/17/19 CS 318 – Midterm Review 9

Thread Implementation

• How are threads managed by the run-time system?
- Thread control blocks, thread queues
- How is this different from process management?

• What operations do threads support?
- create, yield, sleep, etc.
- What does thread yield do?

• What is a context switch?

• What is the difference between non-preemptive scheduling and
preemptive thread scheduling?
- Voluntary and involuntary context switches

10/17/19 CS 318 – Midterm Review 10

Synchronization

• Why do we need synchronization?
- Coordinate access to shared data structures
- Coordinate thread/process execution

• What can happen to shared data structures if synchronization is not
used?
- Race condition
- Corruption
- Bank account example

• When are resources shared?
- Global variables, static objects
- Heap objects

10/17/19 CS 318 – Midterm Review 11

Concurrent Programs

• Our goal is to write concurrent programs…

Resource get_resource() {
while (buffer array is empty)

wait(not_empty);
Get resource R from buffer array;
signal(not_full);
return R;

}
} // end monitor

Monitor bounded_buffer {
Resource buffer[N];
// Variables for indexing buffer
// monitor invariant involves these vars
Condition not_full; // space in buffer
Condition not_empty; // value in buffer

void put_resource (Resource R) {
while (buffer array is full)

wait(not_full);
Add R to buffer array;
signal(not_empty);

}

10/17/19 CS 318 – Midterm Review 12

Concurrent Programs

Resource get_resource() {
while (buffer array is empty)

wait(not_empty);
Get resource R from buffer array;
signal(not_full);
return R;

}

Need mutual
exclusion for critical

sections

Need mechanisms for
coordinating threads

10/17/19 CS 318 – Midterm Review 13

Mutual Exclusion

lock.acquire();

…

lock.release();

Need mutual
exclusion for critical

sections

Interrupts enabled, other
threads can run (just not in

this critical section)

10/17/19 CS 318 – Midterm Review 14

Mutual Exclusion

lock.acquire();

…

lock.release();Also need mutual exclusion; disable
interrupts, or use spinlocks with special

hardware instructions

void acquire () {
// Disable interrupts
// Enable interrupts

}

10/17/19 CS 318 – Midterm Review 15

Mutual Exclusion
• What is mutual exclusion?
• What is a critical section?

- What guarantees do critical sections provide?
- What are the requirements of critical sections?

• Mutual exclusion (safety)
• Progress (liveness)
• Bounded waiting (no starvation: liveness)
• Performance

• How does mutual exclusion relate to critical sections?
• What are the mechanisms for building critical sections?

- Locks, semaphores, monitors, condition variables

10/17/19 CS 318 – Midterm Review 16

Locks
• What does Acquire do?
• What does Release do?
• What does it mean for Acquire/Release to be atomic?
• How can locks be implemented?

- Spinlocks
- Disable/enable interrupts
- Blocking

• How does test-and-set work?
- What kind of lock does it implement?

• What are the limitations of using spinlocks, interrupts?
- Inefficient, interrupts turned off too long

10/17/19 CS 318 – Midterm Review 17

Semaphores

• What is a semaphore?
- What does Wait/P/Decrement do?
- What does Signal/V/Increment do?
- How does a semaphore differ from a lock?
- What is the difference between a binary semaphore and a counting semaphore?

• When do threads block on semaphores?

• When are they woken up again?

• Using semaphores to solve synchronization problems
- Readers/Writers problem
- Bounded Buffers problem

10/17/19 CS 318 – Midterm Review 18

Monitors

10/17/19 CS 318 – Midterm Review 19

• What is a monitor?
- Shared data
- Procedures
- Synchronization

• In what way does a monitor provide mutual exclusion?
- To what extent is it provided?

• How does a monitor differ from a semaphore?

• How does a monitor differ from a lock?

• What kind of support do monitors require?
- Language, run-time support

Condition Variables

• What is a condition variable used for?
- Coordinating the execution of threads
- Not mutual exclusion

• Operations
- What are the semantics of Wait?
- What are the semantics of Signal?
- What are the semantics of Broadcast?

• How are condition variables different from semaphores?

10/17/19 CS 318 – Midterm Review 20

Implementing Monitors

• What does the implementation of a monitor look like?
- Shared data
- Procedures
- A lock for mutual exclusion to procedures (w/ a queue)
- Queues for the condition variables

• What is the difference between Hoare and Mesa monitors?
- Semantics of signal (whether the woken up waiter gets to run immediately or

not)
- What are their tradeoffs?
- What does Java provide?

10/17/19 CS 318 – Midterm Review 21

Locks and Condition Vars

• Condition variables are also used without monitors in
conjunction with locks

• A monitor ≈ a module whose state includes a C/V and a lock

• Why must cond_wait both release mutex_t & sleep?

10/17/19 CS 318 – Midterm Review 22

Scheduling

• What kinds of scheduling is there?
- Long-term scheduling
- Short-term scheduling

• Components
- Scheduler (dispatcher)

• When does scheduling happen?
- Job changes state (e.g., waiting to running)
- Interrupt, exception
- Job creation, termination

10/17/19 CS 318 – Midterm Review 23

Scheduling Goals

• Goals
- Maximize CPU utilization
- Maximize job throughput
- Minimize turnaround time
- Minimize waiting time
- Minimize response time

• What is the goal of a batch system?

• What is the goal of an interactive system?

10/17/19 CS 318 – Midterm Review 24

Starvation

• Starvation
- Indefinite denial of a resource (CPU, lock)

• Causes
- Side effect of scheduling
- Side effect of synchronization

• Operating systems try to prevent starvation

10/17/19 CS 318 – Midterm Review 25

Scheduling Algorithms

• What are the properties, advantages and disadvantages of the
following scheduling algorithms?
- First Come First Serve (FCFS)/First In First Out (FIFO)
- Shortest Job First (SJF)

• Preemptive: Shortest-Remaining-Time-First (SRTF)
- Priority
- Round Robin
- Multilevel feedback queues

• What scheduling algorithm does Unix use? Why?

10/17/19 CS 318 – Midterm Review 26

Deadlock

• Deadlock happens when processes are waiting on each other and
cannot make progress

• What are the conditions for deadlock?
- Mutual exclusion
- Hold and wait
- No preemption
- Circular wait

• How to visualize, represent abstractly?
- Resource allocation graph (RAG)
- Waits for graph (WFG)

10/17/19 CS 318 – Midterm Review 27

Deadlock Approaches

• Dealing with deadlock
- Ignore it
- Prevent it (prevent one of the four conditions)
- Avoid it (have tight control over resource allocation)
- Detect and recover from it

• What is the Banker’s algorithm?
- Which of the four approaches above does it implement?

10/17/19 CS 318 – Midterm Review 28

• What is the range of possible values for x? Why?

Race Conditions

int x = 0;
int i, j;

void AddToX() {
for (i = 0; i < 100; i++) x++;

}

void SubFromX() {
for (j = 0; j < 100; j++) x--;

}

10/17/19 CS 318 – Midterm Review 29

Synchronization
Class Event {

…
void Signal () {

…
}
void Wait () {

…
}

}

10/17/19 CS 318 – Midterm Review 30

• Event synchronization (e.g., Win32)

• Event::Wait blocks if and only if Event is unsignaled

• Event::Signal makes Event signaled, wakes up blocked threads

• Once signaled, an Event remains signaled until deleted

• Use locks and condition variables

Synchronization

• Use synchronization primitives (locks, semaphores, monitor,
condition variables, etc.) to solve synchronization problems

10/17/19 CS 318 – Midterm Review 31

