
CS 318 Principles of
Operating Systems

Fall 2018

Lecture 9: Virtual Memory
Ryan Huang

Slides adapted from Geoff Voelker’s and David Mazières’ lectures

Administrivia
• Lab 2 out

� Does not depend on Lab 1:
• You can either build on your lab1 submission: git checkout -b lab2-handin
• Or start from beginning: git checkout -b lab2-handin 213ffab

� Content mostly about syscalls
• Only requires very basic knowledge about Virtual Memory (Lab 3 is on VM), start now

� Due Thursday 10/18 11:59 pm

• Lab 2 review session
� Wednesday (10/03) from 3:30pm to 5:00pm in Malone G33/G35

• Homework 3 out
� Exercises to practice with synchronization lectures

10/2/18 CS 318 – Lecture 8 – Deadlock 2

Memory Management

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 3

Next few lectures are going to cover memory management

• Goals of memory management
� To provide a convenient abstraction for programming
� To allocate scarce memory resources among competing processes to maximize

performance with minimal overhead

• Mechanisms
� Physical and virtual addressing (1)
� Techniques: partitioning, paging, segmentation (1)
� Page table management, TLBs, VM tricks (2)

• Policies
� Page replacement algorithms (3)

Lecture Overview

• Virtual memory warm-up

• Survey techniques for implementing virtual memory
� Fixed and variable partitioning
� Paging
� Segmentation

• Focus on hardware support and lookup procedure
� Next lecture we’ll go into sharing, protection, efficient implementations, and

other VM tricks and features

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 4

Virtual Memory

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 5

• The abstraction that the OS provides for managing memory
� VM enables a program to execute with less physical memory than it “needs”

• Can also run on a machine with “too much” physical memory
� Many programs do not need all of their code and data at once (or ever) – no

need to allocate memory for it
� OS will adjust memory allocation to a process based upon its behavior
� VM requires hardware support and OS management algorithms to pull it off

• Let’s go back to the beginning…

In the beginning…

• Rewind to the days of “second-generation” computers
� Programs use physical addresses directly
� OS loads job, runs it, unloads it

• Multiprogramming changes all of this
� Want multiple processes in memory at once

• Consider multiprogramming on physical memory
� What happens if pintos needs to expand?
� If vim needs more memory than is on the machine?
� If pintos has an error and writes to address 0x7100?
� When does gcc have to know it will run at 0x4000?
� What if vim isn’t using its memory?

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 6

firefox

vim

gcc

pintos

0x0000

0x3000

0x4000

0x7000

0x9000

Issues in Sharing Physical Memory

• Protection
� A bug in one process can corrupt memory in another
� Must somehow prevent process A from trashing B’s memory
� Also prevent A from even observing B’s memory (ssh-agent)

• Transparency
� A process shouldn’t require particular physical memory bits
� Yet processes often require large amounts of contiguous memory (for stack, large

data structures, etc.)

• Resource exhaustion
� Programmers typically assume machine has “enough” memory
� Sum of sizes of all processes often greater than physical memory

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 7

Virtual Memory Goals

• Give each program its own virtual address space
� At runtime, Memory-Management Unit (MMU) relocates each load/store
� Application doesn’t see physical memory addresses

• Enforce protection
� Prevent one app from messing with another’s memory

• And allow programs to see more memory than exists
� Somehow relocate some memory accesses to disk

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 8

kernel

load MMU
memory

Virtual address
0x30408

Yes: phy. addr
0x92408

Is address
legal?

Virtual Memory Goals

• Give each program its own virtual address space
� At runtime, Memory-Management Unit (MMU) relocates each load/store
� Application doesn’t see physical memory addresses

• Enforce protection
� Prevent one app from messing with another’s memory

• And allow programs to see more memory than exists
� Somehow relocate some memory accesses to disk

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 9

kernel

load MMU
memory

Virtual address
0x30408

Is address
legal?

Is address
legal?

No: to fault handler

Virtual Memory Advantages

• Can re-locate program while running
� Run partially in memory, partially on disk

• Most of a process’s memory may be idle (80/20 rule)
� Write idle parts to disk until needed
� Let other processes use memory of idle part
� Like CPU virtualization: when process not using CPU, switch (Not using a

memory region? switch it to another process)

• Challenge: VM = extra layer, could be slow

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 10

Idea 1: Load-time Linking

• Linker patches addresses of symbols like printf

• Idea: link when process executed, not at compile time
� Determine where process will reside in memory
� Adjust all references within program (using addition)

• Problems?

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 11

kernel

call 0x5200

…
…

call 0x2200

…
…

static a.out

0x1000

0x3000
0x4000

0x6000

Idea 1: Load-time Linking

• Linker patches addresses of symbols like printf

• Idea: link when process executed, not at compile time
� Determine where process will reside in memory
� Adjust all references within program (using addition)

• Problems?
� How to enforce protection?
� How to move once already in memory? (consider data pointers)
� What if no contiguous free region fits program?

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 12

kernel

call 0x5200

…
…

call 0x2200

…
…

static a.out

0x1000

0x3000
0x4000

0x6000

Idea 2: Base + Bound Register

• Two special privileged registers: base and bound

• On each load/store/jump:
� Physical address = virtual address + base
� Check 0 ≤ virtual address < bound, else trap to kernel

• How to move process in memory?

• What happens on context switch?

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 13

kernel

call 0x5200

…
…

call 0x2200

…
…

static a.out

0x1000

0x3000
0x4000

0x6000

Idea 2: Base + Bound Register

• Two special privileged registers: base and bound

• On each load/store/jump:

• How to move process in memory?
� Change base register

• What happens on context switch?
� OS must re-load base and bound register

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 14

kernel

call 0x5200

…
…

call 0x2200

…
…

static a.out

0x1000

0x3000
0x4000

0x6000

Definitions

• Programs load/store to virtual addresses

• Actual memory uses physical addresses

• VM Hardware is Memory Management Unit (MMU)

� Usually part of CPU
• Configured through privileged instructions (e.g., load bound reg)

� Translates from virtual to physical addresses
� Gives per-process view of memory called address space

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 15

MMU memoryCPU

virtual
address

physical
address

Base + Bound Trade-offs

• Advantages
� Cheap in terms of hardware: only two registers
� Cheap in terms of cycles: do add and compare in parallel
� Examples: Cray-1 used this scheme

• Disadvantages

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 16

Base + Bound Trade-offs

• Advantages
� Cheap in terms of hardware: only two registers
� Cheap in terms of cycles: do add and compare in parallel
� Examples: Cray-1 used this scheme

• Disadvantages
� Growing a process is expensive or impossible
� No way to share code or data (E.g., two copies of bochs,

both running pintos)

• One solution: Multiple segments
� E.g., separate code, stack, data segments
� Possibly multiple data segments

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 17

free space

pintos1

gcc

pintos2

Segmentation

• Let processes have many base/bound regs
� Address space built from many segments
� Can share/protect memory at segment granularity

• Must specify segment as part of virtual address

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 18

text r/o

stack

data

gcc

Segmentation Mechanics

• Each process has a segment table

• Each VA indicates a segment and offset:
� Top bits of addr select segment, low bits select offset
� x86 stores segment #s in registers (CS, DS, SS, ES, FS, GS)

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 19

Virtual Address
3 128

offset base len flag

0x1000 512 r

seg#

<

no

+ mem

0x1000
128

0x1080

Segmentation Example

Segment Base Bound RW
0 0x4000 0x6ff 10
1 0x0000 0x4ff 11
2 0x3000 0xfff 11
3 00

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 20

Virtual Addr

0x4000

0x3000

0x2000

0x1500

0x1000

0x0700

0x0000

Phys Addr

0x4700

0x4000

0x3000

0x0500

0x0000

• 2-bit segment number (1st digit), 12 bit offset (last 3)
� Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?

Segmentation Trade-offs

• Advantages
� Multiple segments per process
� Can easily share memory! (how?)
� Don’t need entire process in memory

• Disadvantages
� Requires translation hardware, which could limit performance
� Segments not completely transparent to program (e.g., default segment

faster or uses shorter instruction)
� n byte segment needs n contiguous bytes of physical memory
� Makes fragmentation a real problem.

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 21

Fragmentation

• Fragmentation ⇒ Inability to use free memory

• Over time:
� Variable-sized pieces = many small holes (external fragmentation)
� Fixed-sized pieces = no external holes, but force internal waste (internal

fragmentation)

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 22

Alternatives to Hardware MMU

• Language-level protection (Java)
� Single address space for different modules
� Language enforces isolation
� Singularity OS [1] does this

• Software fault isolation
� Instrument compiler output
� Checks before every store operation prevents modules from trashing each other
� Google Native Client [2] does this

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 23

[1]: https://www.microsoft.com/en-us/research/wp-content/uploads/2005/10/tr-2005-135.pdf
[2]: https://developer.chrome.com/native-client

https://www.microsoft.com/en-us/research/wp-content/uploads/2005/10/tr-2005-135.pdf
https://developer.chrome.com/native-client

Paging

• Divide memory up into fixed-size pages
� Eliminates external fragmentation

• Map virtual pages to physical pages
� Each process has separate mapping

• Allow OS to gain control on certain operations
� Read-only pages trap to OS on write
� Invalid pages trap to OS on read or write
� OS can change mapping and resume application

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 24

Virtual Memory

Page 0

Page 1

Page 2

Page N-1

Physical Memory

Paging Trade-offs

• Eliminates external fragmentation

• Simplifies allocation, free, and backing storage (swap)

• Average internal fragmentation of .5 pages per “segment”
10/2/18 CS 318 – Lecture 9 – Virtual Memory I 25

gcc

emacs

internal frag

Paging Data Structures

• Pages are fixed size, e.g., 4K
� Virtual address has two parts: virtual page number and offset
� Least significant 12 (!"#$4&) bits of address are page offset
� Most significant bits are page number

• Page tables
� Map virtual page number (VPN) to physical page number (PPN)

• VPN is the index into the table that determines PPN
• PPN also called page frame number

� Also includes bits for protection, validity, etc.
� One page table entry (PTE) per page in virtual address space

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 26

• Page table entries control mapping
� The Modify bit says whether or not the page has been written

• It is set when a write to the page occurs
� The Reference bit says whether the page has been accessed

• It is set when a read or write to the page occurs
� The Valid bit says whether or not the PTE can be used

• It is checked each time the virtual address is used
� The Protection bits say what operations are allowed on page

• Read, write, execute
� The Physical page number (PPN) determines physical page

Page Table Entries (PTEs)

R VM Prot Physical Page Number
1 1 1 2 20

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 27

Physical Memory

Physical Address
Page Table

Page Lookups

Page frame

Virtual Address

Page frame Offset

Page number Offset

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 28

Paging Example

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 29

• Pages are 4K
� VPN is 20 bits (220 VPNs), offset is 12 bits

• Virtual address is 0x7468
� Virtual page is 0x7, offset is 0x468

• Page table entry 0x7 contains 0x2
� Physical page number is 0x2
� Seventh virtual page is at address 0x2000 (2nd physical page)

• Physical address = 0x2000 + 0x468 = 0x2468

x86 Paging

• Paging enabled by bits in a control register (%cr0)
� Only privileged OS code can manipulate control registers

• Normally 4KB pages

• %cr3: points to 4KB page directory
� See pagedir_activate() in Pintos userprog/pagedir.c

• Page directory: 1024 PDEs (page directory entries)
� Each contains physical address of a page table
� Page table: 1024 PTEs (page table entries)
� Each contains physical address of virtual 4K page
� Page table covers 4 MB of virtual mem

• See old Intel manual for simplest explanation

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 30

x86 Page Translation

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 31

x86 Page Directory Entry

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 32

x86 Page Table Entry

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 33

Paging Advantages

• Easy to allocate memory
� Memory comes from a free list of fixed size chunks
� Allocating a page is just removing it from the list
� External fragmentation not a problem

• Easy to swap out chunks of a program
� All chunks are the same size
� Use valid bit to detect references to swapped pages
� Pages are a convenient multiple of the disk block size

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 34

Paging Limitations

• Can still have internal fragmentation
� Process may not use memory in multiples of a page

• Memory reference overhead
� 2 or more references per address lookup (page table, then memory)
� Solution – use a hardware cache of lookups (more later)

• Memory required to hold page table can be significant
� Need one PTE per page
� 32 bit address space w/ 4KB pages = 220 PTEs
� 4 bytes/PTE = 4MB/page table
� 25 processes = 100MB just for page tables!
� Solution – page the page tables (more later)

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 35

x86 Paging and Segmentation

• x86 architecture supports both paging and segmentation
� Segment register base + pointer val = linear address
� Page translation happens on linear addresses

• Two levels of protection and translation check
� Segmentation model has four privilege levels (CPL 0–3)
� Paging only two, so 0–2 = kernel, 3 = user

• Why do you want both paging and segmentation?

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 36

Why Want Both Paging and Segmentation?

• Short answer: You don’t – just adds overhead
� Most OSes use “flat mode” – set base = 0, bounds = 0xffffffff in all

segment registers, then forget about it
� x86-64 architecture removes much segmentation support

• Long answer: Has some fringe/incidental uses
� Use segments for logically related units + pages to partition segments into

fixed size chunks
• Tend to be complex

� VMware runs guest OS in CPL 1 to trap stack faults

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 37

Where Does the OS Live in Memory?

• In its own address space?
� Can’t do this on most hardware (e.g., syscall instruction won’t switch address spaces)
� Also would make it harder to parse syscall arguments passed as pointers

• So in the same address space as process
� Use protection bits to prohibit user code from writing kernel
� Recent Spectre and Meltdown CPU attacks force OSes to reconsider this [1]

• Typically all kernel text, most data at same VA in every address space
� On x86, must manually set up page tables for this

• Questions to ponder
� Does the kernel have to use VAs during its execution as well?
� If so, how can OS setup page tables for processes?

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 38
[1]: https://lwn.net/Articles/743265/

https://lwn.net/Articles/743265/

Pintos Virtual Memory Layout

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 39

Summary

• Virtual memory
� Processes use virtual addresses
� OS + hardware translates virtual address into physical addresses

• Various techniques
� Fixed partitions – easy to use, but internal fragmentation
� Variable partitions – more efficient, but external fragmentation
� Paging – use small, fixed size chunks, efficient for OS
� Segmentation – manage in chunks from user’s perspective
� Combine paging and segmentation – not really needed

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 40

Next time…

• Chapters 19, 20

10/2/18 CS 318 – Lecture 9 – Virtual Memory I 41

