
CS 318 Principles of
Operating Systems

Fall 2018

Lecture 7: Semaphores and Monitors
Ryan Huang

Slides adapted from Geoff Voelker’s lectures

Administrivia

• HW2 is out
� Do the exercise to check your understanding on lecture 3-5

• Lab 1
� Due this Friday midnight
� If you decide to use late hours, email cs318-staff@cs.jhu.edu
� Reminder about cheating policy

9/27/18 CS 318 – Lecture 5 – Thread 2

Higher-Level Synchronization
• We looked at using locks to provide mutual exclusion
• Locks work, but they have limited semantics

� Just provide mutual exclusion
• Instead, we want synchronization mechanisms that

� Block waiters, leave interrupts enabled in critical sections
� Provide semantics beyond mutual exclusion

• Look at two common high-level mechanisms
� Semaphores: binary (mutex) and counting
� Monitors: mutexes and condition variables

• Use them to solve common synchronization problems

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 3

Semaphores
• An abstract data type to provide mutual exclusion to critical sections

� Described by Dijkstra in the “THE” system in 1968
• Semaphores can also be used as atomic counters

� More later
• Semaphores are “integers” that support two operations:

� Semaphore::P(): decrement, block until semaphore is open
• after the Dutch word “Proberen” (to try), also Wait()

� Semaphore::V(): increment, allow another thread to enter
• after the Dutch word “Verhogen” (increment), also Signal()

� That's it! No other operations – not even just reading its value
• Semaphore safety property: the semaphore value is always greater

than or equal to 0

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 4

Blocking in Semaphores

• Associated with each semaphore is a queue of waiting processes

• When P() is called by a thread:
� If semaphore is open, thread continues
� If semaphore is closed, thread blocks on queue

• Then V() opens the semaphore:
� If a thread is waiting on the queue, the thread is unblocked
� If no threads are waiting on the queue, the signal is remembered for the next thread

• In other words, V() has “history” (c.f., condition vars later)
• This “history” is a counter

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 5

Semaphore Types

• Semaphores come in two types

• Mutex semaphore (or binary semaphore)
� Represents single access to a resource
� Guarantees mutual exclusion to a critical section

• Counting semaphore (or general semaphore)
� Represents a resource with many units available, or a resource that allows

certain kinds of unsynchronized concurrent access (e.g., reading)
� Multiple threads can pass the semaphore
� Number of threads determined by the semaphore “count”

• mutex has count = 1, counting has count = N

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 6

• Use is similar to our locks, but semantics are different

Using Semaphores

struct Semaphore {
int value;
Queue q;

} S;
withdraw (account, amount) {

wait(S);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
signal(S);
return balance;

}

wait(S);
balance = get_balance(account);
balance = balance – amount;

wait(S);

put_balance(account, balance);
signal(S);

wait(S);

…
signal(S);

…
signal(S);

Threads
block

It is undefined which
thread runs after a signal

critical
section

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 7

• To reference current thread: thread_current()

• thread_block() assumes interrupts are disabled
� Note that interrupts are disabled only to enter/leave critical section
� How can it sleep with interrupts disabled?

Semaphores in Pintos
void sema_down(struct semaphore *sema)
{

enum intr_level old_level;
old_level = intr_disable();
while (sema->value == 0) {

list_push_back(&sema->waiters,
&thread_current()->elem);

thread_block();
}
sema->value--;
intr_set_level(old_level);

}

void sema_up(struct semaphore *sema)
{

enum intr_level old_level;
old_level = intr_disable();
if (!list_empty (&sema->waiters))

thread_unblock(list_entry(
list_pop_front(&sema->waiters),

struct thread, elem));
sema->value++;
intr_set_level(old_level);

}

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 8

Interrupts Disabled During Context Switch

sema_down() {
Disable interrupts;
while(value == 0) {

add current thread to waiters;
thread_block();

}
value--;
Enable interrupts;

}

thread_yield() {
Disable interrupts;
add current thread to ready_list;
schedule(); // context switch
Enable interrupts;

}

[sema_down]
Disable interrupts;
while(value == 0) {

add current thread to waiters;
thread_block();

}

[thread_yield]
(Returns from schedule())
Enable interrupts;

[thread_yield]
Disable interrupts;
add current thread to ready_list;
schedule();

[thread_yield]
(Returns from schedule())
Enable interrupts;

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 9

Using Semaphores

• We’ve looked at a simple example for using synchronization
� Mutual exclusion while accessing a bank account

• Now we’re going to use semaphores to look at more interesting

examples
� Readers/Writers
� Bounded Buffers

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 10

Readers/Writers Problem
• Readers/Writers Problem:

� An object is shared among several threads
� Some threads only read the object, others only write it
� We can allow multiple readers but only one writer

• Let #" be the number of readers, ## be the number of writers
• Safety:

• How can we use semaphores to implement this protocol?
• Use three variables

� int readcount – number of threads reading object
� Semaphore mutex – control access to readcount
� Semaphore w_or_r – exclusive writing or reading

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 11

∧ ((#" > 0) ⇒ (## = 0))(#" ≥ 0) ∧ (0 ≤ ## ≤ 1)

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex = 1;
// exclusive writer or reader
Semaphore w_or_r = 1;

writer {
wait(w_or_r); // lock out readers
Write;
signal(w_or_r);// up for grabs

}

Readers/Writers

reader {
wait(mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)

wait(w_or_r);// synch w/ writers
signal(mutex); // unlock readcount
Read;
wait(mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(w_or_r); // up for grabs
signal(mutex); // unlock readcount

}

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 12

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex = 1;
// exclusive writer or reader
Semaphore w_or_r = 1;

writer {
wait(w_or_r); // lock out readers
Write;
signal(w_or_r);// up for grabs

}

Readers/Writers

reader {
wait(mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)

wait(w_or_r);// synch w/ writers
signal(mutex); // unlock readcount
Read;
wait(mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(w_or_r); // up for grabs
signal(mutex); // unlock readcount

}

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 13

Semaphores in Pintos

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 14

void sema_down(struct semaphore *sema)
{

enum intr_level old_level;
old_level = intr_disable();
while (sema->value == 0) {

list_push_back(&sema->waiters,
&thread_current()->elem);

thread_block();
}
sema->value--;
intr_set_level(old_level);

}

void sema_up(struct semaphore *sema)
{

enum intr_level old_level;
old_level = intr_disable();
if (!list_empty (&sema->waiters))

thread_unblock(list_entry(
list_pop_front(&sema->waiters),…));

sema->value++;
intr_set_level(old_level);

}

reader {
wait(mutex);
…
signal(mutex);
Read;
wait(mutex);
…

}

Readers/Writers Notes
• w_or_r provides mutex between readers and writers

� writer wait/signal, reader wait/signal when readcount goes from 0 to 1 or from 1 to 0.

• If a writer is writing, where will readers be waiting?

• Once a writer exits, all readers can fall through
� Which reader gets to go first?
� Is it guaranteed that all readers will fall through?

• If readers and writers are waiting, and a writer exits, who goes first?

• Why do readers use mutex?

• Why don't writers use mutex?

• What if the signal is above “if (readcount == 1)”?

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 15

Bounded Buffer
• Problem: There is a set of resource buffers shared by producer and consumer threads

� Producer inserts resources into the buffer set
• Output, disk blocks, memory pages, processes, etc.

� Consumer removes resources from the buffer set
• Whatever is generated by the producer

• Producer and consumer execute at different rates
� No serialization of one behind the other
� Tasks are independent (easier to think about)
� The buffer set allows each to run without explicit handoff

• Safety:
� Sequence of consumed values is prefix of sequence of produced values
� If nc is number consumed, np number produced, and N the size of the buffer, then 0 £ np - nc £ N

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 16

Bounded Buffer (2)

• 0 £ np - nc £ N and 0 £ (nc - np) + N £ N

• Use three semaphores:
� empty – count of empty buffers

• Counting semaphore
• empty = (nc - np) + N

� full – count of full buffers
• Counting semaphore
• np - nc = full

� mutex – mutual exclusion to shared set of buffers
• Binary semaphore

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 17

producer {
while (1) {

Produce new resource;
wait(empty); // wait for empty buffer
wait(mutex); // lock buffer list
Add resource to an empty buffer;
signal(mutex); // unlock buffer list
signal(full); // note a full buffer

}
}

Bounded Buffer (3)

consumer {
while (1) {

wait(full); // wait for a full buffer
wait(mutex); // lock buffer list
Remove resource from a full buffer;
signal(mutex); // unlock buffer list
signal(empty); // note an empty buffer
Consume resource;

}
}

Semaphore mutex = 1; // mutual exclusion to shared set of buffers
Semaphore empty = N; // count of empty buffers (all empty to start)
Semaphore full = 0; // count of full buffers (none full to start)

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 18

Bounded Buffer (4)

• Why need the mutex at all?

• Where are the critical sections?

• What has to hold for deadlock to occur?
� empty = 0 and full = 0
� (nc - np) + N = 0 and np - nc = 0
� N = 0

• What happens if operations on mutex and full/empty are switched around?
� The pattern of signal/wait on full/empty is a common construct often called an interlock

• Producer-Consumer and Bounded Buffer are classic sync. problems

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 19

• Are there any problems that can be solved with counting
semaphores that cannot be solved with mutex semaphores?

• Does it matter which thread is unblocked by a signal operation?
� Hint: consider the following three threads sharing a semaphore mutex that is

initially 1:

Semaphore Questions

while (1) {
wait(mutex);
// in critical
// section
signal(mutex);

}

while (1) {
wait(mutex);
// in critical
// section
signal(mutex);

}

while (1) {
wait(mutex);
// in critical
// section
signal(mutex);

}

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 20

Semaphore Summary
• Semaphores can be used to solve any of the traditional

synchronization problems

• However, they have some drawbacks
� They are essentially shared global variables

• Can potentially be accessed anywhere in program
� No connection between the semaphore and the data being controlled by the

semaphore
� Used both for critical sections (mutual exclusion) and coordination (scheduling)

• Note that I had to use comments in the code to distinguish
� No control or guarantee of proper usage

• Sometimes hard to use and prone to bugs
� Another approach: Use programming language support

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 21

Monitors
• A monitor is a programming language construct that controls access

to shared data
� Synchronization code added by compiler, enforced at runtime
� Why is this an advantage?

• A monitor is a module that encapsulates
� Shared data structures
� Procedures that operate on the shared data structures
� Synchronization between concurrent threads that invoke the procedures

• A monitor protects its data from unstructured access
• It guarantees that threads accessing its data through its procedures

interact only in legitimate ways

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 22

Monitor Semantics

• A monitor guarantees mutual exclusion
� Only one thread can execute any monitor procedure at any time (the thread

is “in the monitor”)
� If a second thread invokes a monitor procedure when a first thread is already

executing one, it blocks
• So the monitor has to have a wait queue…

� If a thread within a monitor blocks, another one can enter

• What are the implications in terms of parallelism in a monitor?

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 23

• Hey, that was easy!

• But what if a thread wants to wait inside the monitor?
� Such as “mutex(empty)” by reader in bounded buffer?

Account Example

Monitor account {
double balance;

double withdraw(amount) {
balance = balance – amount;
return balance;

}
}

withdraw(amount)
balance = balance – amount;

withdraw(amount)

return balance (and exit)

withdraw(amount)

balance = balance – amount
return balance;

balance = balance – amount;
return balance;

Threads
block

waiting
to get
into

monitor

When first thread exits, another can
enter. Which one is undefined.

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 24

• A monitor invariant is a safety property associated with the
monitor, expressed over the monitored variables. It holds
whenever a thread enters or exits the monitor.
• A condition variable is associated with a condition needed for a

thread to make progress once it is in the monitor.
� alternative: busy waiting, bad

Monitors, Monitor Invariants and Condition
Variables

Monitor M {
... monitored variables
Condition c;

void enterMonitor (...) {
if (extra property not true) wait(c); waits outside of the monitor's mutex
do what you have to do
if (extra property true) signal(c); brings in one thread waiting on condition

}
9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 25

Condition Variables

• Condition variables support three operations:
� Wait – release monitor lock, wait for C/V to be signaled

• So condition variables have wait queues, too
� Signal – wakeup one waiting thread
� Broadcast – wakeup all waiting threads

• Condition variables are not boolean objects
� if (condition_variable) then … does not make sense
� if (num_resources == 0) then wait(resources_available) does
� An example will make this more clear

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 26

Monitor Bounded Buffer

Monitor bounded_buffer {
Resource buffer[N];
// Variables for indexing buffer
// monitor invariant involves these vars
Condition not_full; // space in buffer
Condition not_empty; // value in buffer

void put_resource (Resource R) {
while (buffer array is full)

wait(not_full);
Add R to buffer array;
signal(not_empty);

}

Resource get_resource() {
while (buffer array is empty)

wait(not_empty);
Get resource R from buffer array;
signal(not_full);
return R;

}
} // end monitor

� What happens if no threads are waiting when signal is called?

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 27

Monitor Queues

Monitor bounded_buffer {

Condition not_full;
…other variables…
Condition not_empty;

void put_resource() {
…wait(not_full)…
…signal(not_empty)…

}
Resource get_resource() {
…

}
}

Waiting to enter

Waiting on condition variables

Executing inside the monitor

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 28

Condition Vars != Semaphores

• Condition variables != semaphores
� Although their operations have the same names, they have entirely different

semantics (such is life, worse yet to come)
� However, they each can be used to implement the other

• Access to the monitor is controlled by a lock
� wait() blocks the calling thread, and gives up the lock

• To call wait, the thread has to be in the monitor (hence has lock)
• Semaphore::wait just blocks the thread on the queue

� signal() causes a waiting thread to wake up
• If there is no waiting thread, the signal is lost
• Semaphore::signal increases the semaphore count, allowing future entry even if no

thread is waiting
• Condition variables have no history

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 29

Signal Semantics
• There are two flavors of monitors that differ in the scheduling

semantics of signal()
� Hoare monitors (original)

• signal() immediately switches from the caller to a waiting thread
• The condition that the waiter was anticipating is guaranteed to hold when waiter executes
• Signaler must restore monitor invariants before signaling

� Mesa monitors (Mesa, Java)
• signal() places a waiter on the ready queue, but signaler continues inside monitor
• Condition is not necessarily true when waiter runs again

• Returning from wait() is only a hint that something changed
• Must recheck conditional case

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 30

Hoare vs. Mesa Monitors

• Hoare
if (empty)

wait(condition);

• Mesa
while (empty)

wait(condition);

• Tradeoffs
� Mesa monitors easier to use, more efficient

• Fewer context switches, easy to support broadcast
� Hoare monitors leave less to chance

• Easier to reason about the program

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 31

Monitor Readers and Writers

Using Mesa monitor semantics.

• Will have four methods: StartRead, StartWrite, EndRead and EndWrite

• Monitored data: nr (number of readers) and nw (number of writers) with the
monitor invariant

(nr ≥ 0) ∧ (0 ≤ nw ≤ 1) ∧ ((nr > 0) ⇒ (nw = 0))

• Two conditions:
� canRead: nw = 0
� canWrite: (nr = 0) ∧ (nw = 0)

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 32

• Write with just wait()
� Will be safe, maybe not live – why?

Monitor Readers and Writers

Monitor RW {
int nr = 0, nw = 0;
Condition canRead, canWrite;

void StartRead () {
while (nw != 0) do wait(canRead);
nr++;

}

void EndRead () {
nr--;

}

void StartWrite {
while (nr != 0 || nw != 0) do wait(canWrite);
nw++;

}

void EndWrite () {
nw--;

}
} // end monitor

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 33

• add signal() and broadcast()

Monitor Readers and Writers

Monitor RW {
int nr = 0, nw = 0;
Condition canRead, canWrite;

void StartRead () {
while (nw != 0) do wait(canRead);
nr++;

}

void EndRead () {
nr--;
if (nr == 0) signal(canWrite);

}

void StartWrite () {
while (nr != 0 || nw != 0) do wait(canWrite);
nw++;

}

void EndWrite () {
nw--;
broadcast(canRead);
signal(canWrite);

}
} // end monitor

can we put a signal here?

can we put a signal here?

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 34

Monitor Readers and Writers

• Is there any priority between readers and writers?

• What if you wanted to ensure that a waiting writer would have
priority over new readers?

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 35

Condition Vars & Locks

• C/Vs are also used without monitors in conjunction with locks
� void cond_init (cond_t *, ...);
� void cond_wait (cond_t *c, mutex_t *m);

• Atomically unlock m and sleep until c signaled
• Then re-acquire m and resume executing

� void cond_signal (cond_t *c);
� void cond_broadcast (cond_t *c);

• - Wake one/all threads waiting on c

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 36

Condition Vars & Locks

• C/Vs are also used without monitors in conjunction with locks

• A monitor ≈ a module whose state includes a C/V and a lock
� Difference is syntactic; with monitors, compiler adds the code

• It is “just as if” each procedure in the module calls acquire() on
entry and release() on exit
� But can be done anywhere in procedure, at finer granularity

• With condition variables, the module methods may wait and signal
on independent conditions

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 37

Condition Vars & Locks

• Why must cond_wait both release mutex_t & sleep?
� void cond_wait(cond_t *c, mutex_t *m);

• Why not separate mutexes and condition variables?

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 38

while (count == BUFFER_SIZE) {
mutex_unlock(&mutex);
cond_wait(¬_full);
mutex_lock(&mutex);

}

Condition Vars & Locks

• Why must cond_wait both release mutex_t & sleep?
� void cond_wait(cond_t *c, mutex_t *m);

• Why not separate mutexes and condition variables?

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 39

while (count == BUFFER_SIZE) {
mutex_unlock(&mutex);

cond_wait(¬_full);
mutex_lock(&mutex);

}

mutex_lock(&mutex);
... count--;
cond_signal(¬_full);

Consumer

Producer

Using Cond Vars & Locks

• Alternation of two threads (ping-pong)

• Each executes the following:
Lock lock;
Condition cond;

void ping_pong () {
acquire(lock);
while (1) {

printf(“ping or pong\n”);
signal(cond, lock);
wait(cond, lock);

}
release(lock);

}

Must acquire lock before you can wait
(similar to needing interrupts disabled
to call thread_block in Pintos)

Wait atomically releases lock
and blocks until signal()

Wait atomically acquires lock
before it returns

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 40

Monitors and Java

• A lock and condition variable are in every Java object
� No explicit classes for locks or condition variables

• Every object is/has a monitor
� At most one thread can be inside an object’s monitor
� A thread enters an object’s monitor by

• Executing a method declared “synchronized”
• Can mix synchronized/unsynchronized methods in same class

• Executing the body of a “synchronized” statement
• Supports finer-grained locking than an entire procedure
• Identical to the Modula-2 “LOCK (m) DO” construct

� The compiler generates code to acquire the object’s lock at the start of the method
and release it just before returning
• The lock itself is implicit, programmers do not worry about it

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 41

Monitors and Java

• Every object can be treated as a condition variable
� Half of Object’s methods are for synchronization!

• Take a look at the Java Object class:
� Object.wait(*) is Condition::wait()
� Object.notify() is Condition::signal()
� Object.notifyAll() is Condition::broadcast()

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 42

Summary
• Semaphores

� wait()/signal() implement blocking mutual exclusion
� Also used as atomic counters (counting semaphores)
� Can be inconvenient to use

• Monitors
� Synchronizes execution within procedures that manipulate encapsulated

data shared among procedures
• Only one thread can execute within a monitor at a time

� Relies upon high-level language support
• Condition variables

� Used by threads as a synchronization point to wait for events
� Inside monitors, or outside with locks

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 43

Next Time…

• Read Chapter 32

9/27/18 CS 318 – Lecture 7 – Semaphores and Monitors 44

