CS 318 Principles of
Operating Systems

Fall 2018
Lecture 16: Advanced File Systems
Ryan Huang
=X
Ll
JOHNS HOPKINS

WHITING SCHOOL _ _
of ENGINEERING Slides adapted from Andrea Arpaci-Dusseau’s lecture

11/6/18

Automatically Scalable Computation

Distinguished Lecturer

MARGO SELTZER

University of British Columbia

TUESDAY, NOVEMBER 6, 2018 10:30 AM
Hackerman Hall B-17 E

ABSTRACT: As our computational
infrastructure races gracefully forward
into increasingly parallel multi-core and
clustered systems, our ability to easily
produce software that can successfully
exploit such systems continues to stum-
ble. For years, we've fantasized about
the world in which we'd write simple,
sequential programs, add magic sauce,
and suddenly have scalable, parallel
executions. We're not there. We're not
even close. Professor Seltzer will
present a radical, potentially crazy
approach to automatic scalability,
combining learning, prediction, and
speculation. To date, we've achieved
shockingly good scalability and
reasonable speedup in limited domains,
but the potential is tantalizingly
enormous.

I%;.l’.l JOHNS HOPKINS
y WHITING SCHOOI
of ENGINEERING

BIO: Margo Seltzer is a Canada 150 .
Research Chair and Cheriton Family* -
Chair in Computer Systems at the +.
University of British Columbia.

Her research interests are in systems,

construed quite broadly:

systems for capturing and accessing
provenance, file systems, databases,
transaction processing systems, stor-
age and analysis of graph-structured
data, new architectures for paral-
lelizing execution, and systems that
apply technology to problems in
healthcare. Dr. Seltzer received an
A.B. degree in Applied Mathematics
from Harvard/Radcliffe College and
a Ph. D. in Computer Science from
the University of California,
Berkeley.

11/6/18

An Implementation of a Log-
Structured File System for UNIX

Margo Seltzer — Harvard University
Keith Bostic — University of California, Berkeley
Marshall Kirk McKusick — University of California, Berkeley
Carl Staelin — Hewlett-Packard Laboratories

ABSTRACT

Research results [ROSE91] demonstrate that a log-structured file system (LFS) offers
the potential for dramatically improved write performance, faster recovery time, and faster
file creation and deletion than traditional UNIX file systems. This paper presents a redesign
and implementation of the Sprite [ROSE91] log-structured file system that is more robust and
integrated into the vnode interface [KLEI86]. Measurements show its performance to be
superior to the 4BSD Fast File System (FFS) in a variety of benchmarks and not significantly
less than FFS in any test. Unfortunately, an enhanced version of FFS (with read and write
clustering) [MCVO91] provides comparable and sometimes superior performance to our LFS.
However, LFS can be extended to provide additional functionality such as embedded
transactions and versioning, not easily implemented in traditional file systems.

1. Introduction The log-structured file system, as proposed in

Earl i [OUSTS8], attempts to address both of these prob-

Yy UNIX ﬁllc fyseass 4 gmgll. fixed lems. The fundamental idea of LFS is to improve

block size and o B0 aticmpt to optimize block file system performance by storing all file system
placement [THOM78). They assigned disk y 8 Y

data in a single, continuous log. Such a file system
addresses to new blocks as they were created (preal- : oy » - .
location) and wrote modified blocks back to their - optimized for _Vﬂtlﬂg. because - s.cck . requlred

CS 318 — Lecture 16 — Advanced File Systems

Administrivia

- Thursday is project hacking day
- No class, work on project

- Office hours still hold
 Extra office hour today from 3-4pm

- Lab 3 due Sunday midnight

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 4

File Systems Examples

- BSD Fast File System (FFS)

- What were the problems with the original Unix FS?
- How did FFS solve these problems?

- Log-Structured File system (LFS)
- What was the motivation of LFS?
- How did LFS work?

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 5

Original Unix FS

From Bell Labs by Ken Thompson

Simple and elegant:
Unix disk layout

. Data Blocks (512 bytes)

Components
- Data blocks

- Inodes (directories represented as files)
- Free list
- Superblock. (specifies number of blks in FS, counts of max # of files, pointer to head of free list)

super

Problem: slow
- Only gets 2% of disk maximum (20Kb/sec) even for sequential disk transfers!

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 6

Why So Slow?

* Problem 1: blocks too small (512 bytes)
- File index too large
- Require more indirect blocks
- Transfer rate low (get one block at time)

* Problem 2: unorganized freelist

- Consecutive file blocks not close together
« Pay seek cost for even sequential acces

- Aging: becomes fragmented over time

* Problem 3: poor locality

- inodes far from data blocks
- inodes for directory not close together

L 11

* poor enumeration performance: e.g., “Is”, “grep foo *.c”

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 7

FFS: Fast File System

- Designed by a Berkeley research group for the BSD UNIX
- A classic file systems paper to read: [McKusic]

* Approach:

- measure an state of the art systems

- iIdentify and understand the fundamental problems
» The original FS treats disks like random-access memory!
- get an idea and build a better systems

- ldea: design FS structures and allocation polices to be “disk
aware”

* Next: how FFS fixes the performance problems (to a degree)

11/6/18 CS 318 — Lecture 16 — Advanced File Systems

https://www.cs.jhu.edu/~huang/cs318/fall17/readings/ffs.pdf

Problem 1: Blocks Too Small

100 -~ Space Wasted =—a File Bandwidth

80

g 60 |-

Measurement: E

Q 40

20
- —— ‘ .
5?28 10248 20488 40968 1MB
Block Size
- Bigger block increases bandwidth, but how to deal with wastage (“internal
fragmentation’)?

- Use idea from malloc: split unused portion

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 9

Solution: Fragments

- BSD FFS:
- Has large block size (4096B or 8192B)
- Allow large blocks to be chopped into small ones called “fragments”
- Ensure fragments only used for little files or ends of files

i

file A file B
« Fragment size specified at the time that the file system is created

+ Limit number of fragments per block to 2, 4, or 8

* Pros

- High transfer speed for larger files
- Low wasted space for small files or ends of files

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 10

Fragment Example

Block size: 4096 B
Fragment size: 1024 B

file, size SKB file, size 2KB

/

IS CLEO

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 11

Fragment Example

Block size: 4096 B
Fragment size: 1024 B

file, size 6KB file, size 2KB

append A to first file

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 12

Fragment Example

Block size: 4096 B
Fragment size: 1024 B

file, size 7KB file, size 2KB

o IERORENHNEN

append A to first file
Not allowed to use fragments across multiple blocks!
What to do instead?

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 13

Fragment Example

Block size: 4096 B
Fragment size: 1024 B

file, size 8KB file, size 2KB

ol [L [

append A to first file,
copy to fragments to new block

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 14

Problem 2: Unorganized Freelist

- Leads to random allocation of sequential file blocks overtime

Measurement:

D « New FS: 17.5% of disk bandwidth
5 « Few weeks old: 3% of disk bandwidth

D
5 P

Initial performance good Get worse over time

Y\ ¥\ ¥

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 15

Fixing the Unorganized Freelist

 Periodical compact/defragment disk
- Cons: locks up disk bandwidth during operation

- Keep adjacent free blocks together on freelist
- Cons: costly to maintain

* FFS: bitmap of free blocks

- Each bit indicates whether block is free
- E.g., 1010101111111000001111111000101100

- Easier to find contiguous blocks
- Small, so usually keep entire thing in memory
- Time to find free blocks increases if fewer free blocks

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 16

Using a Bitmap

- Usually keep entire bitmap in memory:
- 4G disk / 4K byte blocks. How big is map?

* Allocate block close to block x?

- Check for blocks near bmap[x/32]
- If disk almost empty, will likely find one near
- As disk becomes full, search becomes more expensive and less effective

- Trade space for time (search time, file access time)

bit | .
B[Pt] inodes | Data ook (s12 byt

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 17

super

Problem 3: Poor Locality

fast
¢ | bit | .
inodes Data Blocks (512 bytes)

whole disk

- How to keep inode close to data block?

11/6/18 CS 318 — Lecture 16 — Advanced File Systems

18

Problem 3: Poor Locality

slow
@ | bit | .
(OX
maps inodes Data Blocks (512 bytes)

0
| |

whole disk

- How to keep inode close to data block?

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 19

Problem 3: Poor Locality

- Example bad layout:

inode

| 0
BHEDEDDONDED BEERBEEEBEE
0 7 8 15

3 2 1
CEEEEEEE BEEEEEEDR
16 23 24 31

- How to keep inode close to data block?

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 20

Problem 3: Poor Locality

slower

super

.
inodes
maps

Data Blocks (512 bytes)
0)

| J
whole disk

- How to keep inode close to data block?

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 21

Problem 3: Poor Locality

slowest

. Data Blocks (512 bytes)
maps

0
|

super

whole disk

- How to keep inode close to data block?

11/6/18 CS 318 — Lecture 16 — Advanced File Systems

22

FFS Solution: Cylinder Group

- Group sets of consecutive cylinders into “cylinder groups”

Cylinder group 1

Cylinder group 2 \

N

\li_/q\\
[
!
| |

|
\\ll

I\ (I

[y
l
| |

/,‘\ /
1))
| !:
|
1\
,\\’/!

- Key: can access any block in a cylinder without performing a seek. Next fastest
place is adjacent cylinder.

- Tries to put everything related in same cylinder group
- Tries to put everything not related in different group

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 23

Clustering in FFS

- Tries to put sequential blocks in adjacent sectors
- (Access one block, probably access next)

L

fil file b
* Tries to keep inode in same ?bylinder as file data:

- (If you look at inode, most likely will look at data too)

- Tries to keep all inodes in a dir in same cylinder group
- Access one name, frequently access many, e.g., “Is -I”

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 24

What Does Disk Layout Look Like Now?

fast fast fast
group 1 group 2 group 3

* How to keep inode close to data block?

- Answer: Use groups across disks
- Strategy: allocate inodes and data blocks in same group
- Each cylinder group basically a mini-Unix file system

* Is it useful to have multiple super blocks?
- Yes, if some (but not all) fail

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 25

FFS Results

- Performance improvements:
- Able to get 20-40% of disk bandwidth for large files
- 10-20x original Unix file system!
- Stable over FS lifetime
- Better small file performance (why?)

* Other enhancements
- Long file names
- Parameterization
- Free space reserve (10%) that only admin can allocate blocks from

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 26

LFS: Log-structured File System

* Motivation

- Faster CPUs: I/O becomes more and more of a bottleneck
- More memory: file cache is effective for reads
- Implication: writes compose most of disk traffic

* Problems with previous FS

- Perform many small writes
« Good performance on large, sequential writes, but many writes are still small, random
- Synchronous operation to avoid data loss

- Depends upon knowledge of disk geometry

- An influential work designed by Mendel Rosenblum (VMWare
co-founder) and John Ousterhout

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 27

LFS Idea

* Insight: treat disk like a tape-drive
- Best performance from disk for sequential access

* File system buffers writes in main memory until “enough” data
- How much is enough?
- Enough to get good sequential bandwidth from disk (MB)
- Unit called a “segment”

- Write buffered data to new segment on disk in a sequential log
- Transfer all updates into a series of sequential writes
- Do not overwrite old data on disk: old copies left behind
- Write both data and metadata in one operation

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 28

Pros And Cons

* Pros
- Always large sequential writes = good performance

- No knowledge of disk geometry
« Assume sequential better than random

- Potential problems
- How do you find data to read?
- What happens to metadata during write?
- What happens when you fill up the disk?

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 29

Read in LFS

« Same basic structures as Unix
- Directories, inodes, indirect blocks, data blocks

- Reading data block implies finding the file’s inode
* Unix FS: inodes kept in array
* LFS: inodes spread around on disk

- Solution: inode map indicates where each inode is stored
- Can keep cached copy in memory
- iInode map written to log with everything else
- Periodically written to known checkpoint location on disk for crash recovery

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 30

Write in LFS

—

- Why do we buffer the write?
- Sequential write alone is not enough
- Disk is constantly rotating!
- Must issue a large number of contiguous writes

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 31

Write in LFS

BUFFER:

DISK:

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 32

Write in LFS

BUFFER:

DISK:

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 33

Write in LFS

BUFFER:

DISK:

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 34

Write in LFS

DISK: SO

NN\ /S

segments

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 35

Data Structures for LFS (attempt 1)

What data structures from FFS can LFS remove?
- allocation structs: data + inode bitmaps

What type of name is much more complicated?
- Inodes are no longer at fixed offset
- Use current offset on disk instead of table index for name
- Note: when update inode, inode number changes!!

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 36

Overwrite Data in LFS - Attempt 1

 Overwrite data in file.txt

22 o1o|55161] o I

t
root inodel
root directory ¢ntri¢
file inode
file data

* How to update Inode 9 to point to new D’ ???

|4

S

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 37

Overwrite Data in LFS - Attempt 1

 Overwrite data in /file.txt
o |56 I

- Can LFS update Inode 9 to point to new D’?
- NO! This would be a random write

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 38

Overwrite Data in LFS - Attempt 1

 Overwrite data in file.txt

12 pirf29) 0| o’ |r9'for’ |2 R

old new

- Must update all structures in sequential order to log

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 39

Attempt 1: Problem w/ Inode Numbers

I2 ‘Dir‘ 19| D ‘D’ II9'|Dr’|12'_
* Problem:

- For every data update, must propagate updates all the way up directory tree to root

* Why?

- When inode copied, its location (inode number) changes

- Solution:
- Keep inode numbers constant; don’t base name on offset

 FFS found inodes with math. How now?

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 40

Data Structures for LFS (attempt 2)

What data structures from FFS can LFS remove?
- allocation structs: data + inode bitmaps

What type of name is much more complicated?
- Inodes are no longer at fixed offset

- Use imap structure to map:
 inode number => most recent inode location on disk

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 41

Where to keep Imap?

table of millions of

entries (4 bytes each) MaP: inode number => inode location on disk

DISK: [uEle ‘SO ‘81 ‘82 ‘83 -
NN\ /S

segments

* Where can imap be stored? Dilemma:

1. imap too large to keep in memory
2. don’t want to perform random writes for imap

- Solution: Write imap in segments
- Keep pointers to pieces of imap in memory

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 42

Solution: Imap in Segments

MEMORY: ptrs to imap pieces
l"ll'l/'/l'l/lj'l\l'l n
oo RN

* Solution:
- Write imap in segments
- Keep pointers to pieces of imap in memory
- Keep recent accesses to imap cached in memory

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 43

Disk Cleaning

- When disk runs low on free space
- Run a disk cleaning process
- Compacts live information to contiguous blocks of disk

* Problem: long-lived data repeatedly copied over time
- Solution: partition disk in to segments

- Group older files into same segment
* Do not clean segments with old files

* Try to run cleaner when disk is not being used

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 44

Next Time...

- Read Chapter 42

11/6/18 CS 318 — Lecture 16 — Advanced File Systems 45

