
CS 318 Principles of 
Operating Systems

Fall 2018

Lecture 16: Advanced File Systems
Ryan Huang

Slides adapted from Andrea Arpaci-Dusseau’s lecture 



11/6/18 CS 318 – Lecture 16 – Advanced File Systems 2



11/6/18 CS 318 – Lecture 16 – Advanced File Systems 3



Administrivia
• Thursday is project hacking day

� No class, work on project
� Office hours still hold

• Extra office hour today from 3-4pm 

• Lab 3 due Sunday midnight

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 4



File Systems Examples
• BSD Fast File System (FFS)

� What were the problems with the original Unix FS?
� How did FFS solve these problems?

• Log-Structured File system (LFS)
� What was the motivation of LFS?
� How did LFS work?

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 5



Original Unix FS
• From Bell Labs by Ken Thompson

• Simple and elegant:

• Components
� Data blocks
� Inodes (directories represented as files)
� Free list
� Superblock. (specifies number of blks in FS, counts of max # of files, pointer to head of free list)

• Problem: slow
� Only gets 2% of disk maximum (20Kb/sec) even for sequential disk transfers!

Data Blocks (512 bytes)

su
pe

r

inodes

Unix disk layout

free
list

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 6



Why So Slow?
• Problem 1: blocks too small (512 bytes)

� File index too large
� Require more indirect blocks
� Transfer rate low (get one block at time)

• Problem 2: unorganized freelist
� Consecutive file blocks not close together

• Pay seek cost for even sequential acces
� Aging: becomes fragmented over time

• Problem 3: poor locality
� inodes far from data blocks
� inodes for directory not close together

• poor enumeration performance: e.g., “ls”, “grep foo *.c” 

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 7



FFS: Fast File System
• Designed by a Berkeley research group for the BSD UNIX

� A classic file systems paper to read: [McKusic]

• Approach:
� measure an state of the art systems
� identify and understand the fundamental problems

• The original FS treats disks like random-access memory!
� get an idea and build a better systems

• Idea: design FS structures and allocation polices to be “disk 
aware”
• Next: how FFS fixes the performance problems (to a degree)

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 8

https://www.cs.jhu.edu/~huang/cs318/fall17/readings/ffs.pdf


Problem 1: Blocks Too Small

• Bigger block increases bandwidth, but how to deal with wastage (“internal 
fragmentation”)?
� Use idea from malloc: split unused portion

Measurement:

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 9



Solution: Fragments
• BSD FFS:

� Has large block size (4096B or 8192B)
� Allow large blocks to be chopped into small ones called “fragments”
� Ensure fragments only used for little files or ends of files

• Fragment size specified at the time that the file system is created
• Limit number of fragments per block to 2, 4, or 8

• Pros
� High transfer speed for larger files
� Low wasted space for small files or ends of files 

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 10

file A file B



Fragment Example

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 11

AAAA

file, size 5KB file, size 2KB

B A B

Block size: 4096 B
Fragment size: 1024 B



Fragment Example

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 12

AAAA

file, size 6KB file, size 2KB

B A B A

Block size: 4096 B
Fragment size: 1024 B

append A to first file



Fragment Example

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 13

AAAA

file, size 7KB file, size 2KB

B A B A A

append A to first file
Not allowed to use fragments across multiple blocks!

What to do instead?

Block size: 4096 B
Fragment size: 1024 B



Fragment Example

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 14

AAAA AAAA

file, size 8KB file, size 2KB

B B

Block size: 4096 B
Fragment size: 1024 B

append A to first file, 
copy to fragments to new block



Problem 2: Unorganized Freelist
• Leads to random allocation of sequential file blocks overtime

Get worse over timeInitial performance good

Measurement:
• New FS: 17.5% of disk bandwidth
• Few weeks old: 3% of disk bandwidth

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 15



Fixing the Unorganized Freelist
• Periodical compact/defragment disk

� Cons: locks up disk bandwidth during operation

• Keep adjacent free blocks together on freelist
� Cons: costly to maintain

• FFS: bitmap of free blocks
� Each bit indicates whether block is free

• E.g., 1010101111111000001111111000101100
� Easier to find contiguous blocks
� Small, so usually keep entire thing in memory
� Time to find free blocks increases if fewer free blocks

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 16



Using a Bitmap
• Usually keep entire bitmap in memory:

� 4G disk / 4K byte blocks. How big is map?

• Allocate block close to block x?
� Check for blocks near bmap[x/32]
� If disk almost empty, will likely find one near
� As disk becomes full, search becomes more expensive and less effective

• Trade space for time (search time, file access time)

Data Blocks (512 bytes)

su
pe

r

inodesbit
maps

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 17



Problem 3: Poor Locality

• How to keep inode close to data block?

Data Blocks (512 bytes)

su
pe

r

inodesbit
maps

0 N

whole disk

fast

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 18



Problem 3: Poor Locality

• How to keep inode close to data block?

Data Blocks (512 bytes)

su
pe

r

inodesbit
maps

0 N

whole disk

slow

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 19



Problem 3: Poor Locality
• Example bad layout:

• How to keep inode close to data block?

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

S i d I I I I I

0

123

inode

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 20



Problem 3: Poor Locality

• How to keep inode close to data block?

Data Blocks (512 bytes)

su
pe

r

inodesbit
maps

0 N

whole disk

slower

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 21



Problem 3: Poor Locality

• How to keep inode close to data block?

Data Blocks (512 bytes)

su
pe

r

inodesbit
maps

0 N

whole disk

slowest

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 22



FFS Solution: Cylinder Group
• Group sets of consecutive cylinders into “cylinder groups”

� Key: can access any block in a cylinder without performing a seek. Next fastest 
place is adjacent cylinder.

� Tries to put everything related in same cylinder group
� Tries to put everything not related in different group

Cylinder group 1

Cylinder group 2

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 23



Clustering in FFS
• Tries to put sequential blocks in adjacent sectors

� (Access one block, probably access next)

• Tries to keep inode in same cylinder as file data:
� (If you look at inode, most likely will look at data too)

• Tries to keep all inodes in a dir in same cylinder group
� Access one name, frequently access many, e.g., “ls -l”

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 24



What Does Disk Layout Look Like Now?

• How to keep inode close to data block?
� Answer: Use groups across disks
� Strategy: allocate inodes and data blocks in same group
� Each cylinder group basically a mini-Unix file system

• Is it useful to have multiple super blocks?
� Yes, if some (but not all) fail

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

fast fast fast

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 25



FFS Results
• Performance improvements:

� Able to get 20-40% of disk bandwidth for large files
� 10-20x original Unix file system!
� Stable over FS lifetime
� Better small file performance (why?)

• Other enhancements
� Long file names
� Parameterization
� Free space reserve (10%) that only admin can allocate blocks from

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 26



LFS: Log-structured File System
• Motivation

� Faster CPUs: I/O becomes more and more of a bottleneck
� More memory: file cache is effective for reads
� Implication: writes compose most of disk traffic

• Problems with previous FS
� Perform many small writes

• Good performance on large, sequential writes, but many writes are still small, random
� Synchronous operation to avoid data loss
� Depends upon knowledge of disk geometry

• An influential work designed by Mendel Rosenblum (VMWare 
co-founder) and John Ousterhout

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 27



LFS Idea
• Insight: treat disk like a tape-drive

� Best performance from disk for sequential access

• File system buffers writes in main memory until “enough” data
� How much is enough? 
� Enough to get good sequential bandwidth from disk (MB)
� Unit called a “segment”

• Write buffered data to new segment on disk in a sequential log
� Transfer all updates into a series of sequential writes
� Do not overwrite old data on disk: old copies left behind
� Write both data and metadata in one operation

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 28



Pros And Cons
• Pros

� Always large sequential writes à good performance
� No knowledge of disk geometry 

• Assume sequential better than random

• Potential problems
� How do you find data to read?
� What happens to metadata during write?
� What happens when you fill up the disk?

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 29



Read in LFS
• Same basic structures as Unix

� Directories, inodes, indirect blocks, data blocks
� Reading data block implies finding the file’s inode

• Unix FS: inodes kept in array
• LFS: inodes spread around on disk

• Solution: inode map indicates where each inode is stored
� Can keep cached copy in memory
� inode map written to log with everything else
� Periodically written to known checkpoint location on disk for crash recovery

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 30



Write in LFS

• Why do we buffer the write?
� Sequential write alone is not enough
� Disk is constantly rotating!
� Must issue a large number of contiguous writes

buffer:

disk:

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 31



Write in LFS

buffer:

disk:

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 32



Write in LFS

buffer:

disk:

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 33



Write in LFS

buffer:

disk:

buffer:

disk:

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 34



S1

Write in LFS

S0 S3S2

segments

buffer:

disk:

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 35



Data Structures for LFS (attempt 1)

What data structures from FFS can LFS remove?
� allocation structs: data + inode bitmaps

What type of name is much more complicated?
� Inodes are no longer at fixed offset
� Use current offset on disk instead of table index for name
� Note: when update inode, inode number changes!!

S1S0 S3S2

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 36



Overwrite Data in LFS – Attempt 1
• Overwrite data in  /file.txt

• How to update Inode 9 to point to new D’ ???

D’I2 Dir I9 D

root inode

file inode
file data

root directory entries

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 37



Overwrite Data in LFS – Attempt 1
• Overwrite data in  /file.txt

• Can LFS update Inode 9 to point to new D’?
� NO!  This would be a random write

D’I2 Dir I9 D

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 38



Overwrite Data in LFS – Attempt 1
• Overwrite data in  /file.txt

• Must update all structures in sequential order to log

I2'Dr’I9'D’I2 Dir I9 D

old new

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 39



Attempt 1: Problem w/ Inode Numbers

• Problem: 
� For every data update, must propagate updates all the way up directory tree to root

• Why?
� When inode copied, its location (inode number) changes

• Solution:
� Keep inode numbers constant;  don’t base name on offset

• FFS found inodes with math.  How now?

I2'Dr’I9'D’I2 Dir I9 D

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 40



Data Structures for LFS (attempt 2)

What data structures from FFS can LFS remove?
� allocation structs: data + inode bitmaps

What type of name is much more complicated?
� Inodes are no longer at fixed offset
� Use imap structure to map:

• inode number => most recent inode location on disk

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 41



Where to keep Imap?

• Where can imap be stored? Dilemma:
1. imap too large to keep in memory
2. don’t want to perform random writes for imap

• Solution: Write imap in segments
� Keep pointers to pieces of imap in memory

imap S1S0disk: S3S2

table of millions of
entries (4 bytes each) imap: inode number => inode location on disk

segments

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 42



Solution: Imap in Segments

• Solution:
� Write imap in segments
� Keep pointers to pieces of imap in memory
� Keep recent accesses to imap cached in memory

S1S0disk: S3S2

ptrs to imap piecesmemory:

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 43



Disk Cleaning
• When disk runs low on free space

� Run a disk cleaning process
� Compacts live information to contiguous blocks of disk

• Problem: long-lived data repeatedly copied over time 
� Solution: partition disk in to segments
� Group older files into same segment

• Do not clean segments with old files

• Try to run cleaner when disk is not being used

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 44



Next Time…
• Read Chapter 42

11/6/18 CS 318 – Lecture 16 – Advanced File Systems 45


