
CS 318 Principles of
Operating Systems

Fall 2018

Lecture 10: Virtual Memory II
Ryan Huang

Slides adapted from Geoff Voelker’s lectures

Administrivia

• Next Tuesday project hacking day
� No class
� My office hour is cancelled

• email me to setup an appointment if needed

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 2

Lecture Overview

Today we’ll cover more paging mechanisms:

• Optimizations
� Managing page tables (space)
� Efficient translations (TLBs) (time)
� Demand paged virtual memory (space)

• Recap address translation

• Advanced Functionality
� Sharing memory
� Copy on Write
� Mapped files

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 3

Physical Memory

Physical Address
Page Table

Recap: Virtual Address Lookup in Page Table

Page frame

Virtual Address

Page frame Offset

Page number Offset

10/4/18 CS 318 – Lecture 9 – Virtual Memory I 4

Recap: Paging Example

10/4/18 CS 318 – Lecture 9 – Virtual Memory I 5

• Pages are 4K
� VPN is 20 bits (220 VPNs), offset is 12 bits

• Virtual address is 0x7468
� Virtual page is 0x7, offset is 0x468

• Page table entry 0x7 contains 0x2
� Physical page number is 0x2
� Seventh virtual page is at address 0x2000 (2nd physical page)

• Physical address = 0x2000 + 0x468 = 0x2468

Virtual Address

VPN Offset
0111231

Managing Page Tables
• Size of the page table for a 32-bit address space w/ 4K pages

� 232 / 212 × 4 B = 4MB
� This is far far too much overhead for each process

• How can we reduce this overhead?
� Observation: only need to map the portion of the address space actually being used

(tiny fraction of entire addr space)

• How do we only map what is being used?
� Can dynamically extend page table…
� Does not work if addr space is sparse (internal fragmentation)

• Use another level of indirection: two-level page tables

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 6

Two-Level Page Tables
• Two-level page tables

� Virtual addresses (VAs) have three parts:
• Master page number, secondary page number, and offset

� Master page table maps VAs to secondary page table
� Secondary page table maps page number to physical page
� Offset indicates where in physical page address is located

• Example
� 4K pages, 4 bytes/PTE
� How many bits in offset? 4K = 12 bits
� Want master page table in one page: 4K/4 bytes = 1K entries
� Hence, 1K secondary page tables. How many bits?
� Master (1K) = 10, offset = 12, inner = 32 – 10 – 12 = 10 bits

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 7

Physical Memory

Two-Level Page Tables

Page table

Secondary
Virtual Address

Master Page Table

Physical Address

Offset

Page frame

Secondary Page Table

Master page number

Page frame Offset

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 8

Page Table Evolution

Virtual Address
Space

Page 0

Page 1

Page 2

Page N-1

Physical MemoryLinear (Flat)
Page Table

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 9

Page Table Evolution

Virtual Address
Space

Page 0

Page 1

Page 2

Page N-1

Physical Memory
Hierarchical
Page Table

Secondary

Master

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 10

Page Table Evolution

Virtual Address
Space

Page 0

Page 1

Page 2

Page N-1

Physical Memory
Hierarchical
Page Table

Secondary

Master

Unmapped

Not Needed

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 11

Addressing Page Tables
Where do we store page tables (which address space)?

• Physical memory
� Easy to address, no translation required
� But, allocated page tables consume memory for lifetime of VAS

• Virtual memory (OS virtual address space)
� Cold (unused) page table pages can be paged out to disk
� But, addressing page tables requires translation
� How do we stop recursion?
� Do not page the outer page table (called wiring)

• If we’re going to page the page tables, might as well page the entire OS address
space, too
� Need to wire special code and data (fault, interrupt handlers)

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 12

x86 Page Translation

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 13

1024 PDEs

1024 PTEs

Efficient Translations

• Our original page table already doubled the cost of memory access
� One lookup into the page table, another to fetch the data

• Now two-level page tables triple the cost!
� Two lookups into the page tables, a third to fetch the data
� Worse, 64-bit architectures support 4-level page tables
� And this assumes the page table is in memory

• How can we use paging but also reduce lookup cost?
� Cache translations in hardware
� Translation Lookaside Buffer (TLB)
� TLB managed by Memory Management Unit (MMU)

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 14

TLBs
• Translation Lookaside Buffers

� Translate virtual page #s into PTEs (not physical addrs)
� Can be done in a single machine cycle

• TLBs implemented in hardware
� Typically 4-way to fully associative cache (all entries looked up in parallel)
� Cache tags are virtual page numbers
� Cache values are PTEs (entries from page tables)
� With PTE + offset, can directly calculate physical address

• TLBs exploit locality
� Processes only use a handful of pages at a time

• 32-128 entries/pages (128-512K)
• Only need those pages to be “mapped”

� Hit rates are therefore very important

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 15

TLBs

CPU

TLB

DRAM

Cache of PTEs

Typical Details:
Small (Just 32-128 PTEs)

Separate Instruction and Data TLBs
Two-level (256-512 combined I/D)

Full Page Table
in Memory

Virtual
Addresses

Physical
Addresses

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 16

Managing TLBs
• Address translations for most instructions are handled using

the TLB
� >99% of translations, but there are misses (TLB miss)…

• Who places translations into the TLB (loads the TLB)?
� Hardware (Memory Management Unit) [x86]

• Knows where page tables are in main memory
• OS maintains tables, HW accesses them directly
• Tables have to be in HW-defined format (inflexible)

� Software loaded TLB (OS) [MIPS, Alpha, Sparc, PowerPC]
• TLB faults to the OS, OS finds appropriate PTE, loads it in TLB
• Must be fast (but still 20-200 cycles)
• CPU ISA has instructions for manipulating TLB
• Tables can be in any format convenient for OS (flexible)

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 17

Managing TLBs (2)

• OS ensures that TLB and page tables are consistent
� When it changes the protection bits of a PTE, it needs to invalidate the PTE if

it is in the TLB

• Reload TLB on a process context switch
� Invalidate all entries
� Why? What is one way to fix it?

• When the TLB misses and a new PTE has to be loaded, a
cached PTE must be evicted
� Choosing PTE to evict is called the TLB replacement policy
� Implemented in hardware, often simple (e.g., Last-Not-Used)

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 18

Paged Virtual Memory

• Pages can be moved between memory and disk
� Use disk to simulate larger virtual than physical mem
� This process is called paging in/out

Virtual Memory Physical Memory

vim

gcc

Disk

Page out

Page in

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 19

Paged Virtual Memory
• Pages can be moved between memory and disk

� Use disk to simulate larger virtual than physical mem
� This process is called paging in/out

• Paging process over time
� Initially, pages are allocated from memory
� When memory fills up, allocating a page requires some other page to be evicted
� Evicted pages go to disk (where? the swap file/backing store)
� Done by the OS, and transparent to the application

• Extreme design: demand paging
� Paging in a page from disk into memory only if an attempt is made to access it
� Main memory becomes a cache for disk

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 20

Page Faults
• What happens when a process accesses a page is evicted?

1. When the OS evicts a page, it sets the PTE as invalid and stores the location
of the page in the swap file in the PTE

2. When a process accesses the page, the invalid PTE causes a trap (page fault)
3. The trap will run the OS page fault handler
4. Handler uses the invalid PTE to locate page in swap file
5. Reads page into a physical frame, updates PTE to point to it
6. Restarts process

• But where does it put it? Have to evict something else
� OS usually keeps a pool of free pages around so that allocations do not

always cause evictions

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 21

Page Fault & Paging

disk

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 22

Address Translation Redux

• We started this topic with the high-level problem of translating
virtual addresses into physical addresses

• We’ve covered all of the pieces
� Virtual and physical addresses
� Virtual pages and physical page frames
� Page tables and page table entries (PTEs), protection
� TLBs
� Demand paging

• Now let’s put it together, bottom to top

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 23

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 24

Baby Steps

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 25

The Common Case

• Situation: Process is executing on the CPU, and it issues a read to an address
� What kind of address is it? Virtual or physical?

• The read goes to the TLB in the MMU
1. TLB does a lookup using the page number of the address
2. Common case is that the page number matches, returning a page table entry (PTE) for the mapping

for this address
3. TLB validates that the PTE protection allows reads (in this example)
4. PTE specifies which physical frame holds the page
5. MMU combines the physical frame and offset into a physical address
6. MMU then reads from that physical address, returns value to CPU

• Note: This is all done by the hardware

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 26

TLB Misses

• At this point, two other things can happen
1. TLB does not have a PTE mapping this virtual address
2. PTE in TLB, but memory access violates PTE protection bits

• We’ll consider each in turn

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 27

Reloading the TLB

• If the TLB does not have mapping, two possibilities:
1. MMU loads PTE from page table in memory

• Hardware managed TLB, OS not involved in this step
• OS has already set up the page tables so that the hardware can access it directly

2. Trap to the OS
• Software managed TLB, OS intervenes at this point
• OS does lookup in page table, loads PTE into TLB
• OS returns from exception, TLB continues

• A machine will only support one method or the other

• At this point, there is a PTE for the address in the TLB

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 28

TLB Misses (2)
Note that:
• Page table lookup (by HW or OS) can cause a recursive fault if

page table is paged out
� Assuming page tables are in OS virtual address space
� Not a problem if tables are in physical memory
� Yes, this is a complicated situation

• When TLB has PTE, it restarts translation
� Common case is that the PTE refers to a valid page in memory

• These faults are handled quickly, just read PTE from the page table in memory and load into TLB
� Uncommon case is that TLB faults again on PTE because of PTE protection

bits (e.g., page is invalid)
• Becomes a page fault…

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 29

Page Faults

• PTE can indicate a protection fault
� Read/write/execute – operation not permitted on page
� Invalid – virtual page not allocated, or page not in physical memory

• TLB traps to the OS (software takes over)
� R/W/E – OS usually will send fault back up to process, or might be playing

games (e.g., copy on write, mapped files)
� Invalid

• Virtual page not allocated in address space
• OS sends fault to process (e.g., segmentation fault)

• Page not in physical memory
• OS allocates frame, reads from disk, maps PTE to physical frame

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 30

Address Translation: Putting It All Together

TLB Lookup

Page Table
Walk

Page Fault
(OS loads page)

Update
TLB

Protection
Check

Protection
Fault

virtual address

hitmiss

Page in memory
Page not in memory

Physical
address
(to cache)

permitted

SEGFAULT

software
hardware or software
hardware

denied

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 31

Advanced Functionality
• Now we’re going to look at some advanced functionality that

the OS can provide applications using virtual memory tricks
� Shared memory
� Copy on Write
� Mapped files

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 32

Sharing

• Private virtual address spaces protect applications from each other
� Usually exactly what we want

• But this makes it difficult to share data (have to copy)
� Parents and children in a forking Web server or proxy will want to share an in-

memory cache without copying

• We can use shared memory to allow processes to share data using
direct memory references
� Both processes see updates to the shared memory segment

• Process B can immediately read an update by process A
� How are we going to coordinate access to shared data?

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 33

Sharing (2)
• How can we implement sharing using page tables?

� Have PTEs in both tables map to the same physical frame
� Each PTE can have different protection values
� Must update both PTEs when page becomes invalid

• Can map shared memory at same or different virtual addresses in
each process’ address space
� Different: Flexible (no address space conflicts), but pointers inside the shared

memory segment are invalid (Why?)
� Same: Less flexible, but shared pointers are valid (Why?)

• What happens if a pointer inside the shared segment references an
address outside the segment?

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 34

Isolation: No Sharing

Virtual Address
Space #1 Physical Memory

Virtual Address
Space #2

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 35

Sharing Pages

Virtual Address
Space #1 Physical Memory

Virtual Address
Space #2

PTEs Point to Same
Physical Page

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 36

Copy on Write

• OSes spend a lot of time copying data
� System call arguments between user/kernel space
� Entire address spaces to implement fork()

• Use Copy on Write (CoW) to defer large copies as long as
possible, hoping to avoid them altogether
� Instead of copying pages, create shared mappings of parent pages in child

virtual address space
� Shared pages are protected as read-only in parent and child

• Reads happen as usual
• Writes generate a protection fault, trap to OS, copy page, change page mapping in client page

table, restart write instruction
� How does this help fork()?

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 37

Copy on Write: Before Fork

Parent Virtual
Address Space Physical Memory

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 38

Copy on Write: Fork

Parent Virtual
Address Space Physical Memory

Child Virtual
Address Space

Read-Only
Mappings

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 39

Copy on Write: On A Write

Parent Virtual
Address Space Physical Memory

Child Virtual
Address Space

Now Read-Write
& Private

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 40

Mapped Files

• Mapped files enable processes to do file I/O using loads and stores
� Instead of “open, read into buffer, operate on buffer, …”

• Bind a file to a virtual memory region (mmap() in Unix)
� PTEs map virtual addresses to physical frames holding file data
� Virtual address base + N refers to offset N in file

• Initially, all pages mapped to file are invalid
� OS reads a page from file when invalid page is accessed
� OS writes a page to file when evicted, or region unmapped
� If page is not dirty (has not been written to), no write needed

• Another use of the dirty bit in PTE

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 41

Mapped Files

Virtual Address
Space

Mapped File

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 42

Mapped Files (2)
• File is essentially backing store for that region of the virtual

address space (instead of using the swap file)
� Virtual address space not backed by “real” files also called Anonymous VM

• Advantages
� Uniform access for files and memory (just use pointers)
� Less copying (why?)

• Drawbacks
� Process has less control over data movement

• OS handles faults transparently
� Does not generalize to streamed I/O (pipes, sockets, etc.)

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 43

Summary
Paging mechanisms:

• Optimizations
� Managing page tables (space)
� Efficient translations (TLBs) (time)
� Demand paged virtual memory (space)

• Recap address translation

• Advanced Functionality
� Sharing memory
� Copy on Write
� Mapped files

Next time: Paging policies

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 44

Next time…

• Chapters 21-23

10/4/18 CS 318 – Lecture 10 – Virtual Memory II 45

