
CS 318 Principles of 
Operating Systems

Fall 2017

Lecture 4: Scheduling
Ryan Huang



Administrivia

• Lab 0
- Due today
- “Lab 0 – Unlimited Attempts” in Blackboard

• Lab 1 released
- Due in two weeks
- Guoye will do a review session
- If you still don’t have a group, hurry up and let us know soon

• Office hours

9/14/17 CS 318 – Lecture 4 – Scheduling 2



Recap: Processes

• The process is the OS abstraction for execution
- own view of machine

• Process components
- address space, program counter, registers, open files, etc.
- kernel data structure: Process Control Block (PCB)

• Process states and APIs
- state graph and queues
- process creation, deletion, waiting

• Multiple processes 
- overlapping I/O and CPU activities
- context switch

9/14/17 CS 318 – Lecture 4 – Scheduling 3



Scheduling Overview

• The scheduling problem:
- Have 𝐾 jobs ready to run
- Have 𝑁 ≥ 1 CPUs

• Policy: which jobs should we assign to which CPU(s), for how long? 
- we’ll refer to schedulable entities as jobs – could be processes, threads, people, etc.

• Mechanism: context switch, process state queues

9/14/17 CS 318 – Lecture 4 – Scheduling 4



Scheduling Overview

1. Goals of scheduling

2. Textbook scheduling

3. Priority scheduling 

4. Advanced scheduling topics 

9/14/17 CS 318 – Lecture 4 – Scheduling 5



When Do We Schedule CPU? 

• Scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from new/waiting to ready
4. Exits

• Non-preemptive schedules use 1 & 4 only

• Preemptive schedulers run at all four points
9/14/17 CS 318 – Lecture 4 – Scheduling 6



Scheduling Goals
• Scheduling works at two levels in an operating system
- To determine the multiprogramming level – # of jobs loaded into memory

• Moving jobs to/from memory is often called swapping
- To decide what job to run next to guarantee “good service”

• Good service could be one of many different criteria

• Known as long-term and short-term scheduling decisions
- Long-term scheduling happens relatively infrequently

• Significant overhead in swapping a process out to disk
- Short-term scheduling happens relatively frequently

• Want to minimize the overhead of scheduling
• Fast context switches, fast queue manipulation

9/14/17 CS 318 – Lecture 4 – Scheduling 7



Scheduling Criteria

• Why do we care?
-What concrete goals should we have for a scheduling algorithm?

9/14/17 CS 318 – Lecture 4 – Scheduling 8



Scheduling Criteria

• Throughput – # of processes that complete per unit time
- Higher is better

• Turnaround time – time for each process to complete
- Lower is better

• Response time – time from request to first response
- i.e., time spent on ready queue (e.g., key press to echo, not launch to exit)
- Lower is better

• Above criteria are affected by secondary criteria
- CPU utilization – fraction of time CPU doing productive work
- Waiting time – time each process waits in wait queue

9/14/17 CS 318 – Lecture 4 – Scheduling 9



Scheduling Goals

• Scheduling algorithms can have many different goals:
- Job throughput (# jobs/time)
- Turnaround time (Tfinish – Tstart)
- Response time (Avg(Tready): avg time spent on ready queue)
- CPU utilization (%CPU)
-Waiting time (Avg(Twait): avg time spent on wait queues)

• Batch systems
- Strive for job throughput, turnaround time (supercomputers)

• Interactive systems
- Strive to minimize response time for interactive jobs (PC)

9/14/17 CS 318 – Lecture 4 – Scheduling 10



Scheduling “Non-goal”: Starvation

• Starvation is when a process is prevented from making progress 
because some other process has the resource it requires
- Resource could be the CPU, or a lock (recall readers/writers)

• Starvation usually a side effect of the sched. algorithm
- A high priority process always prevents a low priority process from running
- One thread always beats another when acquiring a lock

• Starvation can be a side effect of synchronization
- Constant supply of readers always blocks out writers

9/14/17 CS 318 – Lecture 4 – Scheduling 11



Example: FCFS Scheduling

• Run jobs in order that they arrive
- Called “First-come first-served” (FCFS)
- E.g., Say P1 needs 24 sec, while P2 and P3 need 3.
- Say P2, P3 arrived immediately after P1, get:

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec

• Turnaround Time: P1 : 24, P2 : 27, P3 : 30
- Average TT: (24 + 27 + 30) / 3 = 27

• Can we do better?

9/14/17 CS 318 – Lecture 4 – Scheduling 12

P1 P2 P3

0 24 27 30



FCFS Continued
• Suppose we scheduled P2, P3, then P1
- Would get:

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec

• Turnaround Time: P1 : 30, P2 : 3, P3 : 6
- Average TT: (30 + 3 + 6) / 3 = 13 – much less than 27

• Lesson: scheduling algorithm can reduce TT
- Minimizing waiting time can improve RT and TT

• Can a scheduling algorithm improve throughput?
- Yes, if jobs require both computation and I/O

9/14/17 CS 318 – Lecture 4 – Scheduling 13

P1P2 P3

0 3 6 30



View CPU and I/O devices the same

• CPU is one of several devices needed by users’ jobs
- CPU runs compute jobs, Disk drive runs disk jobs, etc.
- With network, part of job may run on remote CPU

• Scheduling 1-CPU system with n	I/O devices like scheduling 
asymmetric (n	+	1)-CPU multiprocessor
- Result: all I/O devices + CPU busy è (n	+	1)-fold throughput gain!

• Example: disk-bound grep + CPU-bound matrix multiply
- Overlap them just right? throughput will be almost doubled

9/14/17 CS 318 – Lecture 4 – Scheduling 14

wait for disk wait for disk wait for diskgrep
matrix
multiply

wait for CPU



FCFS Convoy Effect

9/14/17 CS 318 – Lecture 4 – Scheduling 15

image source: http://web.cs.ucla.edu/classes/fall14/cs111/scribe/7a/convoy_effect.png



FCFS Convoy Effect

9/14/17 CS 318 – Lecture 4 – Scheduling 16



FCFS Convoy Effect

• CPU-bound jobs will hold CPU until exit or I/O
- Long periods where no I/O requests issued, and CPU held
- Result: poor I/O device utilization

• Example: one CPU-bound job, many I/O bound
- CPU-bound job runs (I/O devices idle)
- Eventually, CPU-bound job blocks
- I/O-bound jobs run, but each quickly blocks on I/O
- CPU-bound job unblocks, runs again
- All I/O requests complete, but CPU-bound job still hogs CPU
- I/O devices sit idle since I/O-bound jobs can’t issue next requests

• Simple hack: run process whose I/O completed
- What is a potential problem?

• I/O-bound jobs can starve CPU-bound one

9/14/17 CS 318 – Lecture 4 – Scheduling 17

CPU burst

Instruction 
stream

I/O burst

I/O burst

CPU burst

CPU burst

I/O burst

CPU burst

I/O burst



Shortest Job First (SJF)

• Shortest Job First (SJF)
- Choose the job with the smallest expected CPU burst

• Person with smallest number of items to buy
- Provably optimal minimum average waiting time (AWT)

9/14/17 CS 318 – Lecture 4 – Scheduling 18

AWT = (0+8+(8+4))/3 = 6.67

AWT = (0+4+(4+8))/3 = 5.33

AWT = (0+4+(4+2))/3 = 3.33

AWT = (0+2+(2+4))/3 = 2.67



Shortest Job First (SJF)

• Two schemes
- Non-preemptive – once CPU given to the process it cannot be preempted 

until completes its CPU burst
- Preemptive – if a new process arrives with CPU burst length less than 

remaining time of current executing process, preempt
• Known as the Shortest-Remaining-Time-First or SRTF

9/14/17 CS 318 – Lecture 4 – Scheduling 19



Examples

• Non-preemptive 

• Preemptive

9/14/17 CS 318 – Lecture 4 – Scheduling 20

What is the AWT?



SJF Limitations

• Problems
- Impossible to know size of CPU burst

• Like choosing person in line without looking inside basket/cart 
- How can you make a reasonable guess?

• Estimate CPU burst length based on past
• e.g., exponentially weighted average

- Doesn’t always minimize average TT
• Only minimizes waiting time
• Example where turnaround time might be suboptimal?

- Can potentially lead to unfairness or starvation

9/14/17 CS 318 – Lecture 4 – Scheduling 21



Round Robin (RR)

• Solution to fairness and starvation
- Each job is given a time slice called a quantum
- Preempt job after duration of quantum
- When preempted, move to back of FIFO queue

• Advantages:
- Fair allocation of CPU across jobs
- Low average waiting time when job lengths vary
- Good for responsiveness if small number of jobs

• Disadvantages?

9/14/17 CS 318 – Lecture 4 – Scheduling 22



RR Disadvantages

• Context switches are frequent and need to be very fast

• Varying sized jobs are good ...what about same-sized jobs?

• Assume 2 jobs of time=100 each:

• Even if context switches were free...
- What would average turnaround time be with RR?
- How does that compare to FCFS?

9/14/17 CS 318 – Lecture 4 – Scheduling 23



Time Quantum 

• How to pick quantum?
-Want much larger than context switch cost
- Majority of bursts should be less than quantum
- But not so large system reverts to FCFS

• Typical values: 1–100 msec

9/14/17 CS 318 – Lecture 4 – Scheduling 24



Scheduling Overview

1. Goals of scheduling

2. Textbook scheduling

3. Priority scheduling 

4. Advanced scheduling topics 

9/14/17 CS 318 – Lecture 4 – Scheduling 25



Priority Scheduling

• Priority Scheduling
- Associate a numeric priority with each process

• E.g., smaller number means higher priority (Unix/BSD)
• Or smaller number means lower priority (Pintos)

- Give CPU to the process with highest priority
• Airline check-in for first class passengers
• Can be done preemptively or non-preemptively

- Can implement SJF, priority = 1/(expected CPU burst)

• Problem: starvation – low priority jobs can wait indefinitely

• Solution?
- “Age” processes

• Increase priority as a function of waiting time
• Decrease priority as a function of CPU consumption

9/14/17 CS 318 – Lecture 4 – Scheduling 26



Combining Algorithms

• Scheduling algorithms can be combined
- Have multiple queues
- Use a different algorithm for each queue
- Move processes among queues

• Example: Multiple-level feedback queues (MLFQ)
- Multiple queues representing different job types

• Interactive, CPU-bound, batch, system, etc.
- Queues have priorities, jobs on same queue scheduled RR

9/14/17 CS 318 – Lecture 4 – Scheduling 27



MLFQ in BSD

• Every runnable process on one of 32 run queues
- Kernel runs process on highest-priority non-empty queue
- Round-robins among processes on same queue

• Process priorities dynamically computed
- Processes moved between queues to reflect priority changes

• Idea: Favor interactive jobs that use less CPU

9/14/17 CS 318 – Lecture 4 – Scheduling 28



Process Priority

• p_nice – user-settable weighting factor

• p_estcpu – per-process estimated CPU usage
- Incremented whenever timer interrupt found process running
- Decayed every second while process runnable

- Load is sampled average of length of run queue plus short-term sleep queue 
over last minute

• Run queue determined by p_usrpri/4

9/14/17 CS 318 – Lecture 4 – Scheduling 29

𝑝_𝑒𝑠𝑡𝑐𝑝𝑢 ← 	
2	 ∗ 𝑙𝑜𝑎𝑑

2 ∗ 𝑙𝑜𝑎𝑑 + 1 ∗ 𝑝_𝑒𝑠𝑡𝑐𝑝𝑢 + 𝑝_𝑛𝑖𝑐𝑒

𝑝_𝑢𝑠𝑟𝑝𝑟𝑖 ← 50 +
𝑝_𝑒𝑠𝑡𝑐𝑝𝑢

4 + 2 ∗ 𝑝_𝑛𝑖𝑐𝑒



Sleeping Process Increases Priority

• p_estcpu not updated while asleep
- Instead p_slptime keeps count of sleep time

• When process becomes runnable

- Approximates decay ignoring nice and past loads
• Description based on “The Design and Implementation of the 

4.4BSD Operating System”

9/14/17 CS 318 – Lecture 4 – Scheduling 30

𝑝_𝑒𝑠𝑡𝑐𝑝𝑢 ← 	
2	 ∗ 𝑙𝑜𝑎𝑑

2 ∗ 𝑙𝑜𝑎𝑑 + 1

?_@A?BCDE
∗ 𝑝_𝑒𝑠𝑡𝑐𝑝𝑢



Pintos Notes

• Same basic idea for second half of Lab 1
- But 64 priorities, not 128
- Higher numbers mean higher priority
- Okay to have only one run queue if you prefer (less efficient, but we won’t 

deduct points for it)

• Have to negate priority equation:

9/14/17 CS 318 – Lecture 4 – Scheduling 31

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 63 −
𝑟𝑒𝑐𝑒𝑛𝑡_𝑐𝑝𝑢

4 − 2 ∗ 𝑛𝑖𝑐𝑒



Priority Inversion

• Two tasks: H at high priority, L at low priority
- L acquires lock l for exclusive use of a shared resource R
- If H tries to acquire l, blocked until L release resource R
- M enters system at medium priority, preempts L

• L unable to release R in time
• H unable to run, despite having higher priority than M

• A famous example: Mars PathFinder failure in 1997
- low-priority data gathering task and a medium-priority communications task 

prevented the critical bus management task from running

9/14/17 CS 318 – Lecture 4 – Scheduling 32



Priority Donation

• Say higher number = higher priority (like Pintos)

• Example 1: L (prio 2), M (prio 4), H (prio 8)
- L holds lock l
- M waits on l, L’s priority raised to L1 = max(M; L) = 4
- Then H waits on l, L’s priority raised to max(H; L1) = 8

• Example 2: Same L,M,H as above
- L holds lock l, M holds lock l2
- M waits on l, L’s priority now L1 = 4 (as before)
- Then H waits on l2. M’s priority goes to M1 = max(H;M) = 8, and L’s priority 

raised to max(M1; L1) = 8

9/14/17 CS 318 – Lecture 4 – Scheduling 33



Scheduling Overview

1. Goals of scheduling

2. Textbook scheduling

3. Priority scheduling 

4. Advanced scheduling topics 

9/14/17 CS 318 – Lecture 4 – Scheduling 34



Multiprocessor Scheduling Issues
• Must decide on more than which processes to run
- Must decide on which CPU to run which process

• Moving between CPUs has costs
- More cache misses, depending on arch. more TLB misses too

• Affinity scheduling—try to keep process/thread on same CPU

- But also prevent load imbalances
- Do cost-benefit analysis when deciding to migrate...affinity can also be harmful, particularly when 

tail latency is critical
9/14/17 CS 318 – Lecture 4 – Scheduling 35



Multiprocessor Scheduling (cont)

• Want related processes/threads scheduled together
- Good if threads access same resources (e.g., cached files)
- Even more important if threads communicate often, otherwise must context 

switch to communicate

• Gang scheduling—schedule all CPUs synchronously
-With synchronized quanta, easier to schedule related processes/threads 

together

9/14/17 CS 318 – Lecture 4 – Scheduling 36



Real-time Scheduling 

• Two categories:
- Soft real time—miss deadline and CD will sound funny
- Hard real time—miss deadline and plane will crash

• System must handle periodic and aperiodic events
- E.g., processes A, B, C must be scheduled every 100, 200, 500 msec, 

require 50, 30, 100 msec respectively
- Schedulable if ∑ L?M

?ENCOP
�
� ≤ 1

• Variety of scheduling strategies
- E.g., first deadline first (works if schedulable, otherwise fails spectacularly)

9/14/17 CS 318 – Lecture 4 – Scheduling 37



Scheduling Summary

• Scheduling algorithm determines which process runs, quantum, priority…

• Many potential goals of scheduling algorithms
- Utilization, throughput, wait time, response time, etc.

• Various algorithms to meet these goals
- FCFS/FIFO, SJF, RR, Priority

• Can combine algorithms
- Multiple-level feedback queues

• Advanced topics
- affinity scheduling, gang scheduling, real-time scheduling

9/14/17 CS 318 – Lecture 4 – Scheduling 38



Next Time

• Read Chapter 26, 27

9/14/17 CS 318 – Lecture 4 – Scheduling 39


