CS 318 Principles of
Operating Systems

Fall 2017

Lecture 3: Processes

Ryan Huang

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Administrivia

* Homework 1

Lab 0
- Due this Thursday

- GitHub classroom (for Lab1-4)

- Link in Piazza post
- First member creates the team, other members join the team
- Don'’t forget to fill out Google form

9/12/17 CS 318 — Lecture 3 — Processes 2

Recap: Architecture Support for OS

- Manipulating privileged machine state

- Dual-mode operation, protected instructions
- Memory protection: MMU, virtual address

- Generating and handling “events”

- Interrupt, syscal, trap Unexpected Deliberate
- Interrupt controller, IVT

- Fix vs. notify proceed

Exceptions (sync) | fault syscall trap

Interrupts (async) |interrupt software interrupt

- Mechanisms to handle concurrency
- Interrupts, atomic instructions

9/12/17 CS 318 — Lecture 3 — Processes 3

Overview

- Today’s topics are processes and process management

- What are the units of execution?

- How are those units of execution represented in the OS?
- How is work scheduled in the CPU?

- What are the possible execution states of a process?

- How does a process move from one state to another?

9/12/17 CS 318 — Lecture 3 — Processes 4

The Process

* The process is the OS abstraction for execution

- It is the unit of execution

- It is the unit of scheduling

- It is the dynamic execution context of a program
- Sometimes also called a job or a task

* A process is a program in execution

- It defines the sequential, instruction-at-a-time execution of a program
- Programs are static entities with the potential for execution

9/12/17 CS 318 — Lecture 3 — Processes 5

Processes

- Modern OSes run multiple processes simultaneously

top - 20:42:55 up 14 days, 15:45, 14 users, load average: 1.27, 0.35, 0.12 ece Activity Monitor (My Processes)
: 145 total, 2 running, 141 sleeping, 2 stopped, @ zombie v Sl Memory Energy Disk Network Q
5.6 us ’ 55.3 sy, 0.0 ni ’ 0.0 id ’ 35.6 wa ’ 0.0 hi , 0.0 si , 3.5 st Process Name %CPU~ CPUTime Threads Idle Wake Ups PID User
1016149 total, 72288 free, 858408 used, 85444 buff/cache mdworker 5.8 0.42 5 7 20673 ryan
. B Activity Monitor 2.4 2.65 7 6 20670 ryan
@ total, 0 free, 0@ used. 12892 avail Mem screencapture 2o o1 . o 20674 ryan
fel Tweetbot 1.5 49:04.97 8 1 299 ryan
I % TIME+ COMMAND trustd 1.3 4:29.73 8 0 291 ryan
. 58 RdrCEF 1.1 39.21 26 58 20422 ryan
o 0 0 31.1 :11.66 kswapdd D(,-‘ Google Chrome 0.8 45:54.82 41 3 14211 ryan
root 0 114980 2459 26.2 2. :14.53 check-new-relea B IntelliJ IDEA 06 14:26.14 0 73 3516 ryan
ryan (] 54544 8820 2.3 0.9 0:01.24 mosh-server Google Chrome Helper 0.4 1:28.05 14 4 14244 ryan
tomcat 0 2497172 230824 2.0 22.7 :04.46 java cloudd 03 75684 72 T 894 myan
Google Chrome Helper 0.3 1:01.29 12 2 18742 ryan
ryan o 40536 2172 0.7 0.2 0:00.34 tOp Google Chrome Helper 0.3 6:25.88 18 2 15008 ryan
mysql 0 1123396 199620 (/] 0.3 19.6 8:11.12 mysqld 42 Dropbox 0.2 29:26.64 125 3 4183 ryan
root 0 0 0 0 0.3 0.0 0:17.19 kworker/@:2 dcrovatlliccatey 02 HE 2 CR2ORVaD
root 0 314032 15260 9204 S 0.3 1.5 2:07.55 php-fpm7.0 Reroet e I AT
par‘soid @ 937076 28144 0 0.3 2.8 5:30.90 nodejs mdworker 0.1 3.52 4 1 19523 ryan
parsoid 0 1049820 50772 0 0.3 5.0 6:55.52 nodejs B 2";9!6 Chigmelhisiper g~: Z‘gz-;’i 1; ; 1‘1‘223 an
. affeine 3 :08. ryan
QhOSt 0 1255612 71152 0 0.3 7.0 5:16.30 ﬂOdEJS Google Chrome Helper 0.1 2:10.20 17 1 14238 ryan
root ® 119628 179 0 0.0 0.2 2:39.46 systemd Google Chrome Helper 0.1 51.53 13 1 14253 ryan
. Google Chrome Hel 0.0 7.40 13 1 20656 ryan
:ZZ: g @ g g‘g g.g g:g?‘;z tzz;i?gzd/@ r:::g: r‘,h:::i I-::j: 0.0 17.39 13 1 17084 rvan
root 0 0 0.0 0.0 0:00.00 kworker/0:0H System: 3.86% CPU LOAD Threads 2538
root 0 0 0.0 0.0 1:01.94 rcu_sched User: 6.94% Processes: 483
root 0 @S 0.0 0.0 0:00.00 rcu_bh e 89.20% &4
root 0 (/] 0.0 0.0 0:00.00 migration/@

9/12/17 CS 318 — Lecture 3 — Processes 6

Processes

- Modern OSes run multiple processes simultaneously

- Examples (can all run simultaneously):

- gcc file A.c —compiler running on file A
- gcc file B.c —compiler running on file B
- vim — text editor

- firefox — web browser

* Non-examples (implemented as one process):
- Multiple £firefox windows or vim buffers (still one process)

- Why processes?

- Simplicity of programming
- Speed: Higher throughput, lower latency

9/12/17 CS 318 — Lecture 3 — Processes 7

Speed

* Multiple processes can increase CPU utilization
- Overlap one process’s computation with another’s wait
-—> wait for input — wait for input —
gcc
- Multiple processes can reduce latency
- Running A then B requires 100 sec for B to complete

A 80s . B 20s
- Running A and B concurrently makes B finish faster
A .
B

- Ais slower than if it had whole machine to itself, but still < 100 sec unless both A
and B completely CPU-bound

9/12/17 CS 318 — Lecture 3 — Processes 8

Processes Iin the Real World

* Processes and parallelism have been a fact of life

- much longer than OSes have been around...

- e.g., say takes 1 worker 10 months to make 1 widget

- Company may hire 100 workers to make 100 widgets

- Latency for first widget << 1/10 month

- Throughput may be <10 widgets per month (if can’t perfectly parallelize task)

* You will see these effects in you Pintos project group

- May block waiting for partner to complete task

- Takes time to coordinate/explain/understand one another’s code
- Labs won'’t take 1/3 time with three people

- But you will graduate faster than if you took only 1 class at a time

9/12/17 CS 318 — Lecture 3 — Processes 9

A Process’s View of the World

- Each process has own view of machine

- Its own address space
- Its own open files
- Its own virtual CPU (through preemptive multitasking)

* *(char *)0xc000 differentin P1 & P2

- Simplifies programming model
- gcc does not care that firefox is running

- Sometimes want interaction between processes

- Simplest is through files: vim edits file, gcc compiles it
- More complicated: Shell/lcommand, Window manager/app.

9/12/17 CS 318 — Lecture 3 — Processes 10

9/12/17

Kernel’s View of Processes

CS 318 — Lecture 3 — Processes

11

Process Components

- A process contains all state for a program In execution

- An address space

- The code for the executing program

- The data for the executing program

- An execution stack encapsulating the state of procedure calls
- The program counter (PC) indicating the next instruction

- A set of general-purpose registers with current values

- A set of operating system resources
» Open files, network connections, etc.

- A process is nhamed using its process ID (PID)

9/12/17 CS 318 — Lecture 3 — Processes 12

9/12/17

Unix PIDs

top - 20:42:55 up 14 days, 15:45, 14 users, load average: 1.27, 0.35, 0.12
Tasks: 145 total, 2 running, 141 sleeping, 2 stopped, @ zombie

%Cpu(s): 5.6 us, 55.3 sy, 0.0 ni, 0.0 id, 35.6 wa, 0.0 hi, 0.0 si, 3.5 st
KiB Mem : 1016140 total, 72288 free, 858408 used, 85444 buff/cache

KiB Swap: @ total, @ free, 0 used. 12892 avail Mem

S %CPU %MEM COMMAND
o o . : kswapd@
114980 24596 check-new-relea
54544 8820 mosh-server
2497172 230824 java
40536 2172 top
1123396 199620 mysqld
) 0 kworker/0:2
314032 15260 php-fpm7.0
937076 28144 nodejs
1049820 50772 nodejs
1255612 71152 nodejs
119628 1796 systemd
0 kthreadd
ksoftirqd/@
kworker/@:0oH
rcu_sched
rcu_bh
migration/Q

root
root
ryan
tomcat
ryan
mysql
root
root
parsoid
parsoid
ghost
root
root
root
root
root
root
root

o
N
(o)}

wn
S OO0 OO0 NN

(o)

O

N

S

B
SCOOOOONSOOPUISO DN ~N O -

(SEEGSI S B G IEGS IR S IEGS I SSRGS IS B BEGSIS N

[
N
S
SO FRP OO NUIODUINSOS

S
R
S
S
S
S
S
S
S
S
S
S
S
S
S

IS GG I OIS G G B GS B G I AN
SELSEES IS IS B IS IRN G N

SIS

CS 318 — Lecture 3 — Processes

Basic Process Address Space

OXFFFFFFFF
A

SP

&
A

Address _ Heap
Space (Dynamic Memory Alloc)

Static Data
(Data Segment)

Code <~— PC
(Text Segment)

\
0x00000000

9/12/17 CS 318 — Lecture 3 — Processes 14

Implementing Process

Keep a data structure for each process

Process state
- Process Control Block (PCB) > D
- contains all of the info about a process roOCess

User id, etc.

Tracks state of the process

- Running, ready (runnable), waiting, etc. Program counter

* Includes information necessary to run Registers
- Registers, virtual memory mappings, etc.
- Open files (including memory mapped files) Address space
- PCB is also maintained when the process is not running (VM data structs)

* needed to restore the hardware to the same configuration it was in when the
process was switched out

Open files

Various other data about the process

- Credentials (user/group ID), signhal mask, priority, accounting, etc. PCB
- It is a heavyweight abstraction

9/12/17 CS 318 — Lecture 3 — Processes 15

struct

proc

Solaris

/*

* One structure allocated per active process.

It contains all

* data needed about the process while the process may be swapped

Other per-process data (user.h) is also inside the proc structure.

* Lightweight-process data (lwp.h) and the kernel stack may be swapped out.

* out.
*/
typedef struct proc {
/*
* Fields requiring no explicit
*/

struct vnode *p_exec;
struct as *p_as;
struct plock *p_lockp;

kmutex_t p_crlock;
struct cred *p_cred;
/*
* Fields protected by pidlock
*/
int p_swapcnt;
char p_stat;
char p_wcode;
ushort_t p pidflag;
int p_wdata;
pid_t p_ppid;
struct proc *p_link;
struct proc *p_parent;
struct proc *p child;
struct proc *p sibling;
struct proc *p_psibling;
struct proc *p_sibling_ns;
struct proc *p_child_ns;
struct proc *p_next;
struct proc *p_prev;
struct proc *p_nextofkin;
struct proc *p_orphan;
struct proc *p_nextorph;

9/12/17

locking

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

pointer to a.out vnode */

process address space pointer */
ptr to proc struct's mutex lock */
lock for p cred */

process credentials */

number of swapped out lwps */

status of process */

current wait code */

flags protected only by pidlock */
current wait return value */

process id of parent */

forward link */

ptr to parent process */

ptr to first child process */

ptr to next sibling proc on chain */
ptr to prev sibling proc on chain */
prt to siblings with new state */
prt to children with new state */
active chain link next */

active chain link prev */

gets accounting info at exit */

*p_pglink;
struct proc *p ppglink;
struct sess *p_sessp;
struct pid *p pidp;
struct pid *p pgidp;
/*
* Fields protected by p_lock
*/

kcondvar_t p cv;

kcondvar_t p_ flag cv;
kcondvar t p_lwpexit;
kcondvar_t p_holdlwps;

ushort_t p padl;
uint_t p_ flag;

/* flags defined below */
clock_t
clock_t
clock_t

p_utime;
p_stime;
p_cutime;

clock_t p cstime;

caddr_t *p_ segacct;

caddr_t p_brkbase;

size_t p_brksize;

/*
* Per process signal stuff.
*/

k_sigset t p sig;

k_sigset_t p_ignore;
k_sigset_t p_siginfo;

struct sigqueue *p sigqueue;
struct sigghdr *p_sigghdr;
struct sigghdr *p signhdr;
uchar_t p stopsig;

CS 318 — Lecture 3 — Processes

/*
/*
/*
/*

/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

/* process group hash chain link next */

process group hash chain link prev */
session information */

process ID info */

process group ID info */

proc struct's condition variable */

waiting for some lwp to exit */
process is waiting for its lwps */
to to be held. */

unused */

protected while set. */

user time, this process */
system time, this process */

sum of children's user time */
sum of children's system time */
segment accounting info */

base address of heap */

heap size in bytes */

signals pending to this process */
ignore when generated */

gets signal info with signal */
queued siginfo structures */

hdr to sigqueue structure pool */
hdr to signotify structure pool */
jobcontrol stop signal */

16

struct proc (Solaris

/* /*
* Special per-process flag when set will fix misaligned memory * Microstate accounting, resource usage, and real-time profiling
* references. */
/ hrtime t p mstart; / hi-res process start time */
char p_fixalignment; hrtime t p mterm; /* hi-res process termination time */
hrtime t p mlreal; /* elapsed time sum over defunct lwps */
/* hrtime t p_acct[NMSTATES]; /* microstate sum over defunct lwps */
* Per process lwp and kernel thread stuff struct lrusage p_ru; /* lrusage sum over defunct lwps */
/ struct itimerval p_rprof_timer; / ITIMER_REALPROF interval timer */
id t p_lwpid; /* most recently allocated lwpid */ uintptr t p rprof cyclic; /* ITIMER REALPROF cyclic */
int p_lwpcent; /* number of lwps in this process */ uint_t p defunct; /* number of defunct lwps */
int p_lwprent; /* number of not stopped lwps */ /*
int p_lwpwait; /* number of lwps in lwp wait() */ * profiling. A lock is used in the event of multiple lwp's
int p_zombent; /* number of zombie lwps */ * using the same profiling base/size.
int p_zomb_max; /* number of entries in p zomb tid */ */
id t *p zomb_tid; /* array of zombie lwpids */ kmutex_t p_pflock; /* protects user profile arguments */
kthread t *p tlist; /* circular list of threads */ struct prof p prof; /* profile arguments */
/*
* /proc (process filesystem) debugger interface stuff. /*
*/ * The user structure
k_sigset_t p_sigmask; /* mask of traced signals (/proc) */ */
k_fltset t p_ fltmask; /* mask of traced faults (/proc) */ struct user p_ user; /* (see sys/user.h) */
struct vnode *p trace; /* pointer to primary /proc vnode */
struct vnode *p plist; /* list of /proc vnodes for process */ /*
kthread t *p_agenttp; /* thread ptr for /proc agent lwp */ * Doors.
struct watched_area *p_warea; /* list of watched areas */ */
ulong_t p_nwarea; /* number of watched areas */ kthread t *p_server_threads;
struct watched page *p_ wpage; /* remembered watched pages (vfork) */ struct door_node *p _door_list; /* active doors */
int p_nwpage; /* number of watched pages (vfork) */ struct door_node *p unref list;
int p_mapcnt; /* number of active pr_mappage()s */ kcondvar_t p_server_cv;
struct proc *p rlink; /* linked list for server */ char p_unref thread; /* unref thread created */

kcondvar_t p_srwchan cv;
size t p_stksize; /* process stack size in bytes */

9/12/17 CS 318 — Lecture 3 — Processes 17

struct proc (Solaris

/* /*
* Kernel probes * protects unmapping and initilization of robust locks.
*/ */
uchar_t p_tnf flags; kmutex_t p_lcp mutexinitlock;
utrap_handler_t *p_ utraps; /* pointer to user trap handlers */
/* refstr t *p corefile; /* pattern for core file */
* C2 Security (C2_AUDIT)
*/ #if defined(__ia64)
caddr_t p_audit_data; /* per process audit structure */ caddr_t p_upstack; /* base of the upward-growing stack */
kthread_t *p_aslwptp; /* thread ptr representing "aslwp" */ size t p_upstksize; /* size of that stack, in bytes */
#if defined(i386) || defined(_ 1i386) || defined(__ia64) uchar t p_isa; /* which instruction set is utilized */
/* #endif
* LDT support. void *p rce; /* resource control extension data */
*/ struct task *p_ task; /* our containing task */
kmutex_t p_ldtlock; /* protects the following fields */ struct proc *p_taskprev; /* ptr to previous process in task */
struct seg_desc *p_ldt; /* Pointer to private LDT */ struct proc *p tasknext; /* ptr to next process in task */
struct seg_desc p_ldt_desc; /* segment descriptor for private LDT */ int p_lwpdaemon; /* number of TP _DAEMON lwps */
int p_ldtlimit; /* highest selector used */ int p_lwpdwait; /* number of daemons in lwp wait() */
#endif kthread t **p tidhash; /* tid (lwpid) lookup hash table */
size_t p_swrss; /* resident set size before last swap */ struct sc_data *p_schedctl; /* available schedctl structures */
struct aio *p_aio; /* pointer to async I/O struct */ } proc_t;
struct itimer **p itimer; /* interval timers */
k_sigset_t p_notifsigs; /* signals in notification set */
kcondvar_t p_notifcv; /* notif cv to synchronize with aslwp */
timeout_id t p_alarmid; /* alarm's timeout id */
uint_t p_sc_unblocked; /* number of unblocked threads */
struct vnode *p_sc_door; /* scheduler activations door */
caddr_t p_usrstack; /* top of the process stack */
uint_t p_stkprot; /* stack memory protection */
model_t p_model; /* data model determined at exec time */
struct lwpchan data *p lcp; /* lwpchan cache */

9/12/17 CS 318 — Lecture 3 — Processes 18

Process State

* A process has an execution state to indicate what it is doing

- Running: Executing instructions on the CPU

* Itis the process that has control of the CPU
« How many processes can be in the running state simultaneously?

- Ready: Waiting to be assigned to the CPU

« Ready to execute, but another process is executing on the CPU
- Waiting: Waiting for an event, e.g., I/O completion
« It cannot make progress until event is signaled (disk completes)

- As a process executes, it moves from state to state

- Unix “ps”: column indicates execution state
- What state do you think a process is in most of the time?
- How many processes can a system support?

9/12/17 CS 318 — Lecture 3 — Processes 19

9/12/17

Process State Graph

Create
Process

—

I/O Done

Unschedule Schedule
Process Process

/IIO, Page

Fault, etc.

Terminated

Process
Exit

CS 318 — Lecture 3 — Processes

20

State Queues

- How does the OS keep track of processes?

- The OS maintains a collection of queues that represent the state of all
processes in the system

- Typically, the OS has one queue for each state
« Ready, waiting, etc.
- Each PCB is queued on a state queue according to its current state

- As a process changes state, its PCB is unlinked from one queue and linked
into another

9/12/17 CS 318 — Lecture 3 — Processes 21

9/12/17

Ready Queue

State Queues

Firefox PCB X Server PCB Idle PCB

A
Y

A
Y
A
Y

Disk I/0 Queue

Emacs PCB Is PCB

-

-

Y

A
Y

Console Queue

Sleep Queue

There may be many wait queues,
one for each type of wait (disk,
console, timer, network, etc.)

CS 318 — Lecture 3 — Processes

22

Scheduling

* Which process should kernel run?

- if 0 runnable, run idle loop (or halt CPU), if 1 runnable, run it
- if >1 runnable, must make scheduling decision

- Scan process table for first runnable?

- Expensive. Weird priorities (small pids do better)
- Divide into runnable and blocked processes

* FIFO?
- Put threads on back of list, pull them from front: head ¢ § ¢ b > B3 > U4
- Pintos does this—see ready list in thread.c tail ¢ +

* Next class discusses in detail

9/12/17 CS 318 — Lecture 3 — Processes 23

Preemption

When to trigger a process scheduling decision?

- Yield control of CPU

* Voluntarily, e.g., sched yield

» system call, page fault, illegal instruction, etc.
- Preemption

Periodic timer interrupt
- If running process used up quantum, schedule another

Device interrupt

- Disk request completed, or packet arrived on network
- Previously waiting process becomes runnable

Changing running process is called a context switch

- CPU hardware state is changed from one to another
- This can happen 100 or 1000 times a second!

9/12/17 CS 318 — Lecture 3 — Processes 24

9/12/17

Context Switch

process P, operating system process P,

interrupt or system call

executing ﬂ /
5

save state into PCB,
° > idle
reload state from PCB, 1
>idle interrupt or system call executing
A 4 \ l N
save state into PCB,
. > idle
) reload state from PCB,)
executing lﬁ\

CS 318 — Lecture 3 — Processes

25

Context Switch Details

- Very machine dependent. Typical things include:

- Save program counter and integer registers (always)
- Save floating point or other special registers

- Save condition codes

- Change virtual address translations

* Non-negligible cost

- Save/restore floating point registers expensive
« Optimization: only save if process used floating point

- May require flushing TLB (memory translation hardware)
« HW Optimization 1: don’t flush kernel’s own data from TLB
« HW Optimization 2: use tag to avoid flushing any data

- Usually causes more cache misses (switch working sets)

9/12/17 CS 318 — Lecture 3 — Processes 26

9/12/17

User’s (Programmer’s) View of
Processes

CS 318 — Lecture 3 — Processes

27

Creating a Process

* A process is created by another process

- Parent is creator, child is created (Unix: ps “PPID” field)
- What creates the first process (Unix: init (PID 0 or 1))?

- Parent defines resources and privileges for its children

- Unix: Process User ID is inherited — children of your shell execute with your
privileges

- After creating a child
- the parent may either wait for it to finish its task or continue in parallel

9/12/17 CS 318 — Lecture 3 — Processes 28

Process Creation: Windows

* The system call on Windows for creating a process is called,
surprisingly enough, CreateProcess:

(simplified)

 CreateProcess

- Creates and initializes a new PCB

- Creates and initializes a new address space

- Loads the program specified by “prog” into the address space
- Copies “args” into memory allocated in address space

- Initializes the saved hardware context to start execution at main (or wherever
specified in the file)

- Places the PCB on the ready queue

9/12/17 CS 318 — Lecture 3 — Processes 29

B8 Microsoft Windows Dev Center L signin

Home Explore v Docs v Downloads Samples Community Programs Dashboard

Windows desktop applications > Develop > Desktop technologies > System Services > Processes and Threads > Process and Thread
Reference > Process and Thread Functions > CreateProcess

v CreateProcess function

Creates a new process and its primary thread. The new process runs in the security context of the calling process.

If the calling process is impersonating another user, the new process uses the token for the calling process, not the impersonation token. To run the new
process in the security context of the user represented by the impersonation token, use the CreateProcessAsUser or CreateProcessWithLogonW function.

Syntax

3

BOOL WINAPI CreateProcess(

_In_opt_ LPCTSTR lpApplicationName,
_Inout_opt_ LPTSTR 1pCommandLine,
_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
In BOOL bInheritHandles,
In DWORD dwCreationFlags,
_In_opt_ LPVOID lpEnvironment,
_In_opt_ LPCTSTR 1pCurrentDirectory,
In LPSTARTUPINFO lpStartupInfo,

Out LPPROCESS_INFORMATION lpProcessInformation

)s
9/12/17

Process Creation: Unix

* In Unix, processes are created using fork()

* fork()
- Creates and initializes a new PCB
- Creates a new address space

- Initializes the address space with a copy of the entire contents of the address
space of the parent

- Initializes the kernel resources to point to the resources used by parent (e.g., open
files)

- Places the PCB on the ready queue

* Fork returns twice
- Huh?
- Returns the child’s PID to the parent, “0” to the child

9/12/17 CS 318 — Lecture 3 — Processes 31

E Mac Developer Library

0OS X Man Pages

SYNOPSIS
#include <unistd h>

pid t
fork (veid) ;

DESCRIPTION

Fork () causes creaticn of a new process. The new process (child process) is an exa

0
ct

ccpy of the call-

ing process (parent process) except for the fellowing:
. The child process has a unique process ID.

. The child process has a different parent preccess ID (i.e., the prccess ID of the parent
process) .

. The child process has its own copy of the parent's descriptocrs. These descriptors reference
the same underlying objects, sc that, for instance, file pointers in file cbjects are shared
between the child and the parent, sc that an lseek(2) on a descriptor in the child process
can affect a subseguent read or write by the parent. This descripter copying is alsc used by
the shell tec establish standard input and ocutput for newly created processes as well as to
set up pipes.

. The child processes resource utilizations are set to 0; see setrlimit(2).
RETURN VALUES
Upon successful completion, fork() returns a value of 0 to the child process and returns the process ID

cf the child preocess tc the parent process. Otherwise, a value of -1 is returned tco the parent
process, no child preocess is created, and the glcbal variable errnc is set to indicate the error.

ERRORS
Fork() will fzil and no child process will be created if:

[ERGAIN] The system-impcsed limit on the total number of processes under execution would be
e eded. This limit is configuration-dependent.

9/12/17 [EAGAIN] The system-imposed limit MRXUPRC (<sys/param.h>) on the total number cof processes
under execution by a single user would ke exceeded.

9/12/17

#include <stdio.h>
#include <unistd.h>
int main(int argc, char *argv[])
{
char *name = argv[O0];
int child pid = fork();
if (child pid == 0) {
printf("Child of %s is %d\n", name, getpid());
return O;
} else {
printf("My child is %d\n", child pid);
return O;

What does this program print?

CS 318 — Lecture 3 — Processes

33

Example Output

$ gcc -o fork fork.c
$ /ffork
My child is 486

Child of ./fork is 486

9/12/17 CS 318 — Lecture 3 — Processes 34

Duplicating Address Spaces

child_pid = 486 child_pid =0
/ /
PC——| child pid = fork(); child pid = fork(); - PC
if (child_pid == 0) { if (child_pid == 0) {
printf ("child") ; printf ("child");
} else { } else {
printf ("parent") ; printf ("parent") ;
} }
Parent Child

9/12/17 CS 318 — Lecture 3 — Processes 35

9/12/17

PC >

Divergence

child_pid = 486
/

/

child pid = fork();

if (child pid == 0) {
printf ("child") ;

} else {

printf ("parent") ;

Parent

-

child_pid =0
/

/

child pid = fork();

if (child pid == 0) {
printf ("child") ;

} else {

printf ("parent") ;

~—PC

Child

CS 318 — Lecture 3 — Processes

36

$ gcc -o fork fork.c
$ /ffork

My child is 486
Child of ./fork is 486
$ /fork

Child of ./fork is 498

My child is 498

9/12/17

Example Continued

Why is the output in a different order?

CS 318 — Lecture 3 — Processes

37

Process Creation: Unix (2)

- Wait a second. How do we actually start a new program?

int exec(char *prog, char *argv([])
int execve(const char *filename, char *const argv[], char *const envp[])

c exec()

- Stops the current process

- Loads the program “prog” into the process’ address space
- Initializes hardware context and args for the new program
- Places the PCB onto the ready queue

- Note: It does not create a new process

« What does it mean for exec to return?

- Warning: Pintos exec more like combined fork/exec

9/12/17 CS 318 — Lecture 3 — Processes 38

minish.c (simplified)

pid t pid; char **av;
void doexec () {
execvp (av[0], av);
perror (av[0]);
exit (1);
}
/* ... main loop: */
for (;7) |
parse next line of input (&av, stdin);
switch (pid = fork ()) {

case -1:
perror ("fork"); break;
case 0:
doexec ();
default:
waitpid (pid, NULL, 0); break;
}

9/12/17 CS 318 — Lecture 3 — Processes 39

Why fork()?

- Most calls to fork followed by exec
- could also combine into one spawn system call

* Very useful when the child...

- Is cooperating with the parent
- Relies upon the parent’s data to accomplish its task

- Example: Web server

while (1) {
int sock = accept();
if ((child pid = fork()) == 0) {
Handle client request
} else {
Close socket
}
}

9/12/17 CS 318 — Lecture 3 — Processes 40

Why fork()?

- Most calls to fork followed by exec
- could also combine into one spawn system call

* Very useful when the child...

- Is cooperating with the parent
- Relies upon the parent’s data to accomplish its task

- Example: Web server

- Real win is simplicity of interface

- Tons of things you might want to do to child: mampulate file descriptors, set
environment variables, reduce privileges, .

- Yet fork requires no arguments at all

9/12/17 CS 318 — Lecture 3 — Processes 41

redirsh.c (Manipulating file descriptors)

Example: command < input > output 2> errlog

void doexec (void) {

int £d;
if (infile) { /* non-NULL for "command < infile" */

if ((fd = open (infile, O RDONLY)) < 0) {
perror (infile);
exit (1);
}
if (£d != 0) {
dup2 (£fd, 0);
close (fd);
}

}
/* do same for outfile->fd 1, errfile->fd 2

execvp (av[0], av);
perror (av[0]);

exit (1);
} CS 318 — Lecture 3 — Processes 42

*/

9/12/17

Spawning a Process Without fork

* Without fork, needs tons of different options for new process

- Example: Windows CreateProcess system call

* Also CreateProcessAsUser, CreateProcessWithLogonW,
CreateProcessWithTokenw, ...

BOOL WINAPI CreateProcess(
_In opt LPCTSTR lpApplicationName,
_Inout opt LPTSTR lpCommandLine,
_In opt LPSECURITY ATTRIBUTES lpProcessAttributes,
_In opt LPSECURITY ATTRIBUTES lpThreadAttributes,
~In_ BOOL bInheritHandles,
In DWORD dwCreationFlags,
_In opt LPVOID lpEnvironment,
_In opt LPCTSTR lpCurrentDirectory,
In LPSTARTUPINFO lpStartupInfo,

Out LPPROCESS INFORMATION lpProcessInformation
)i

9/12/17 CS 318 — Lecture 3 — Processes 43

Process Creation: Unix (3)

- Why Windows use CreateProcess While Unix uses fork/exec?
- What happens if you run “exec csh” in your shell?
- What happens if you run “exec Is” in your shell? Try it.

* fork () can return an error. Why might this happen?

9/12/17 CS 318 — Lecture 3 — Processes 44

Process Termination

 All good processes must come to an end. But how?
- Unix: exit (int status), Windows: ExitProcess(int status)

- Essentially, free resources and terminate

- Terminate all threads (next lecture)

- Close open files, network connections

- Allocated memory (and VM pages out on disk)

- Remove PCB from kernel data structures, delete

* Note that a process does not need to clean up itself
- Why does the OS have to do it?

9/12/17 CS 318 — Lecture 3 — Processes 45

wait () asecond...

- Often it is convenient to pause until a child process has finished
- Think of executing commands in a shell

* Unixwait(int *wstatus) (Windows: WaitForSingleObject)

- Suspends the current process until any child process ends
- waitpid() suspends until the specified child process ends

 Wait has a return value...what is it?

* Unix: Every process must be “reaped” by a parent

- What happens if a parent process exits before a child?
- What do you think a “zombie” process is?

9/12/17 CS 318 — Lecture 3 — Processes 46

Process Summary

* What are the units of execution?
- Processes

- How are those units of execution represented?
- Process Control Blocks (PCBs)

- How is work scheduled in the CPU?
- Process states, process queues, context switches

- What are the possible execution states of a process?
- Running, ready, waiting

- How does a process move from one state to another?
- Scheduling, 1/0, creation, termination

- How are processes created?
- CreateProcess (NT), fork/exec (Unix)

9/12/17 CS 318 — Lecture 3 — Processes 47

Next time...

- Read Chapters 7, 8
* Lab 0 due

 Lab 1 starts

9/12/17 CS 318 — Lecture 3 — Processes 48

