
CS 318 Principles of
Operating Systems

Fall 2017

Lecture 2: Architecture Support for OS
Ryan Huang

Administrivia

• Lab 0
- Due 09/14, done individually

• Project groups
- Fill out Google form (link in Piazza post)
- Just need one per group
- Fill out even if you are working alone

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 2

Why Start With Hardware?

• OS functionality depends upon the architectural features of H/W
- Key goals of an OS are to enforce protection and resource sharing
- If done well, applications can be oblivious to HW details

• Architectural support can greatly simplify or complicate OS tasks
- Early PC operating systems (DOS, MacOS) lacked virtual memory in part because

the architecture did not support it
- Early Sun 1 computers used two M68000 CPUs to implement virtual memory

(M68000 did not have VM hardware support)

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 3

vim Chrome iTunesGCC
OS

Hardware

Architectural Features for OS

• Features that directly support the OS include
- Bootstrapping (Lab 0)
- Protection (kernel/user mode)
- Protected instructions
- Memory protection
- System calls
- Interrupts and exceptions
- Timer (clock)
- I/O control and operation
- Synchronization

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 4

Types of Arch Support

• Manipulating privileged machine state
- Protected instructions
- Manipulate device registers, TLB entries, etc.

• Generating and handling “events”
- Interrupts, exceptions, system calls, etc.
- Respond to external events
- CPU requires software intervention to handle fault or trap

• Mechanisms to handle concurrency
- Interrupts, atomic instructions

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 5

A Motherboard (Intel DH87MC)

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 6

PCI slots

PCI-express

DRAM

Processor socket

Intel H87 Platform
Controller Hub

SATA
connectors

Source: Intel® Desktop Board DH87MC
Technical Product Specification

RJ45, DVI, HDMI, USB, …
Battery

Power Connector

Super I/O controller CPU fan

Audio
Speaker

Typical PC System Architecture

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 7
diagram source: wikipedia

Thought Experiment: A World of Anarchy

• Any program in the system can…
- Directly access I/O devices
- Write anywhere in memory
- Read content from any memory address
- Execute machine halt instruction

• Do you trust such system?
- use Facebook
- run Banking app

• Challenge: protection
- How to execute code with restricted privilege

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 8

Thought Experiment: A Solution

• How can we implement execution with limited privilege?
- Execute each program instruction through a simulator (OS)
- If the instruction is permitted, do the instruction
- Otherwise, stop the process
- Basic model in Javascript and other interpreted languages

• How do we go faster?
- Most instructions are perfectly safe!
- Run the unprivileged code directly on the CPU
- Do the check in h/w

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 9

H/W Support: Dual-Mode Operation in CPU

• User mode
- Limited privileges
- Only those granted by the operating system kernel

• Kernel mode
- Execution with the full privileges of the hardware
- Read/write to any memory, access any I/O device, read/write any disk sector,

send/read any packet

• On the x86, mode stored in EFLAGS register

• On the MIPS, mode in the status register

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 10

A Simple Model of a CPU

• Basic operation
- Fetch next instruction à Decode instruction à Execute

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 11

New PC Program
Counter

CPU
Instructions
Fetch and
Execute

opcode

Select PC

Branch Address

add/subtract,
read/write memory,
call function, branch…

A CPU with Dual-Mode Operation

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 12

New PC
Handler PC

Program
Counter

CPU
Instructions
Fetch and
Execute

opcode

Select PC

New Mode
Mode

Select
Mode

Branch Address

Check if a instruction is
allowed to be executed

Change mode upon
certain instructions

Protected Instructions

• A subset of instructions restricted to use only by the OS
- Known as protected (privileged) instructions

• Only the operating system can …
- Directly access I/O devices (disks, printers, etc.)

• Security, fairness (why?)
- Manipulate memory management state

• Page table pointers, page protection, TLB management, etc.
- Manipulate protected control registers

• Kernel mode, interrupt level
- Halt instruction (why?)

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 13

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 14

Beyond Dual-Mode Operations

• (Modern) CPU may provide more than 2 privilege levels
- Called hierarchical protection domains or protection rings

• higher-privilege rings can access lower-privilege operations and data
- x86 supports four levels:

• ring 0 = kernel mode, ring 3 = user mode
- Multics provides 8 levels of privilege
- Even seen in mobile devices

• ARMv7 processors in modern smartphones have 8 different protection levels

• Why?
- Protect the OS from itself (software engineering)
- reserved for vendor, e.g., virtualization

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 15

Memory Protection

• Why?
- OS must be able to protect programs from each other
- OS must protect itself from user programs

• May or may not protect user programs from OS
- Raises question of whether programs should trust the OS
- Untrusted operating systems? (Intel SGX)

• Memory management hardware (MMU) provides the mechanisms
- Base and limit registers
- Page table pointers, page protection, segmentation, TLB
- Manipulating the hardware uses protected (privileged) operations

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 16

Simple Memory Protection

• Memory access bounds check

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 17

Bound

Physical
Memory

Base

Base+
Bound

Raise
Exception

Physical
Address

Processor

Base

Simple Memory Protection

• Memory access bounds check

• Problem
- Inflexible:

• fix allocation, difficult to expand head and stack
- Memory sharing
- Memory fragmentation
- Physical memory

• require changes to mem instructions each time the program is loaded

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 18

Bound

Physical
Memory

Base

Base+
Bound

Raise
Exception

Physical
Address

Processor

Base

Idea: Virtual Address

• Programs refer to memory by virtual addresses
- start from 0
- illusion of “owning” the entire memory address space

• The virtual address is translated to physical address
- upon each memory access
- done in hardware using a table
- table setup by the OS

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 19

Idea: Virtual Address

• Programs refer to memory by virtual
addresses
- start from 0
- illusion of “owning” the entire memory

address space

• The virtual address is translated to
physical address
- upon each memory access
- done in hardware using a table
- table setup by the OS

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 20

Physical
Memory

Virtual Addresses
(Process Layout)

Stack

Heap

Data

Code

Heap

Data

Code

Stack

Types of Arch Support

• Manipulating privileged machine state
- Protected instructions
- Manipulate device registers, TLB entries, etc.

• Generating and handling “events”
- Interrupts, exceptions, system calls, etc.
- Respond to external events
- CPU requires software intervention to handle fault or trap

• Mechanisms to handle concurrency
- Interrupts, atomic instructions

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 21

OS Control Flow

• After OS booting, all entry to kernel is a result of some event
- event immediately stops current execution
- changes mode to kernel mode
- invoke a piece of code to handle event (event handler)

• When the processor receives an event of a given type, it
- transfers control to handler within the OS
- handler saves program state (PC, regs, etc.)
- handler executes core functionality

• e.g., writing data to disk
- handler restores program state, returns to program

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 22

Events

• An event is an “unnatural” change in control flow
- Events immediately stop current execution
- Changes mode, context (machine state), or both

• The kernel defines a handler for each event type
- The specific types of events are defined by the architecture

• e.g., timer event, I/O interrupt, system call trap
- In effect, the operating system is one big event handler

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 23

Event: Interrupt vs. Exceptions

• Two kinds of events, interrupts and exceptions

• Interrupts are caused by an external event (asynchronous)
- Device finishes I/O, timer expires, etc.

• Exceptions are caused by executing instructions (synchronous)
- CPU requires software intervention to handle a fault or trap
- e.g., the x86 INT instruction
- e.g., a page fault, write to a read-only page
- a deliberate exception is a “trap”, unexpected is a “fault”

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 24

Interrupts

• Interrupts signal asynchronous events
- Indicates some device needs services
- I/O hardware interrupts
- Software and hardware timers

• Why?
- A computer is more than CPU

• keyboard, disk, printer, camera, etc.
- These devices occasionally need attention

• but can’t predict when

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 25

Possible Solution: Polling

• CPU periodically checks if each device needs service
❌ takes CPU time when there are no events pending
❌ can reduce checking overhead but at the expense of longer response time
✅ can be efficient if events arrive rapidly

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 26

“ Polling is like picking up your phone every few seconds to see if you have a call…”

“ Interrupts are like waiting for the phone to ring.”

Interrupt Hardware

• I/O devices have (unique or shared) Interrupt Request Lines (IRQs)

• IRQs are mapped by special hardware to interrupt vectors, and passed to the CPU

• This hardware is called a Programmable Interrupt Controller (PIC)

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 27

x86
CPU

Master
PIC

(8259)

Slave
PIC

(8259) INTR

Programmable Interval-TimerKeyboard Controller

Real-Time Clock

Legacy PC Design
(for single-proc

systems)

SCSI Disk

Ethernet

IRQs

slide source: Erich Nahum

The “Interrupt Controller”
• PIC: Programmable Interrupt Controller (8259A)
- Responsible for telling the CPU when and which device wishes to ‘interrupt’
- Has 16 wires to devices (IRQ0 – IRQ15)

• PIC translates IRQs to vector number
- Vector number is signaled over INTR line
- In Pintos:

• IRQ0...15 are delivered to interrupt vectors 32...47 (src/threads/interrupt.c)

• Interrupts can have varying priorities
- PIC also needs to prioritize multiple requests

• Possible to “mask” (disable) interrupts at PIC or CPU

slide source: Erich Nahum9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 28

Putting It All Together

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 29

PIC CPU

Memory Bus

INTR

0

N

IRQs

IDT0

255

handler

idtr

Mask points

vector

slide source: Erich Nahum

Setup by OS

An Interrupt Illustrated

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 30

User Process

Device
raise interrupt

clear interrupt

Save caller state

Kernel
boundary

User Mode
Mode bit = 1

Kernel Mode
Mode bit = 0

Trap
Mode bit = 0

Device driver Restore caller state

Resume Process

Return
Mode bit = 1

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

Interrupt Vector Table (IVT)

• A data structure to associate interrupt requests with handlers
- each entry is called an interrupt vector (specifies the address of the handler)
- architecture-specific implementation

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 31

Interrupt
Vector

Processor
Register

h a n d l e T i m e r I n t e r r u p t () {
 . . .
}

h a n d l e D i v i d e B y Z e r o () {
 . . .
}

h a n d l e S y s t e m C a l l () {
 . . .
}

Interrupt Vector Table (IVT)

• A data structure to associate interrupt requests with handlers
- each entry is called an interrupt vector (specifies the address of the handler)
- architecture-specific implementation

• In x86 called Interrupt Descriptor Table (IDT)
- supports 256 interrupts, so the IDT contains 256 entries
- each entry specifies the address of the handler plus some flags
- programmed by the OS

• In Pintos: make_intr_gate (src/threads/interrupt.c)

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 32

I/O Control

• I/O issues
- Initiating an I/O
- Completing an I/O

• Initiating an I/O
- Special instructions
- Memory-mapped I/O

• Device registers mapped into address space
• Writing to address sends data to I/O device

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 33

I/O Completion

• Interrupts are the basis for asynchronous I/O
- OS initiates I/O
- Device operates independently of rest of machine
- Device sends an interrupt signal to CPU when done
- OS maintains a vector table containing a list of addresses of kernel routines

to handle various events
- CPU looks up kernel address indexed by interrupt number, context switches

to routine

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 34

I/O Example
1. Ethernet receives packet, writes packet into memory

2. Ethernet signals an interrupt

3. CPU stops current operation, switches to kernel mode, saves machine state
(PC, mode, etc.) on kernel stack

4. CPU reads address from vector table indexed by interrupt number, branches to
address (Ethernet device driver)

5. Ethernet device driver processes packet (reads descriptors to find packet in
memory)

6. Upon completion, restores saved state from stack

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 35

Timer

• The timer is critical for an operating system

• It is the fallback mechanism for OS to reclaim control over the machine
- Timer is set to generate an interrupt after a period of time

• Setting timer is a privileged instruction
- When timer expires, generates an interrupt
- Handled by kernel, which controls resumption context

• Basis for OS scheduler (more later…)

• Prevents infinite loops
- OS can always regain control from erroneous or malicious programs that try to hog CPU

• Also used for time-based functions (e.g., sleep())

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 36

Event: Interrupt vs. Exceptions

• Two kinds of events, interrupts and exceptions

• Interrupts are caused by an external event (asynchronous)
- Device finishes I/O, timer expires, etc.

• Exceptions are caused by executing instructions (synchronous)
- CPU requires software intervention to handle a fault or trap
- e.g., the x86 INT instruction
- e.g., a page fault, write to a read-only page
- a deliberate exception is a “trap”, unexpected is a “fault”

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 37

Deliberate Exception: Trap

• A trap is an intentional software-generated exception
- the main mechanism for programs to interact with the OS
- On x86, programs use the int instruction to cause a trap
- On ARM, SVC instruction

• Handler for trap is defined in interrupt vector table
- Kernel chooses one vector for representing system call trap
- e.g., int $0x80 is used to in Linux to make system calls
- Pintos uses int $0x30 for system call trap

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 38

System Call Trap
• For a user program to “call” OS service
- Known as crossing the protection boundary, or protected control transfer

• The system call instruction
- Causes an exception, which vectors to a kernel handler
- Passes a parameter determining the system routine to call

- Saves caller state (PC, regs, mode) so it can be restored
- Returning from system call restores this state

• Requires architectural support to:
- Restore saved state, reset mode, resume execution

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 39

movl $20, %eax # Get PID of current process
int $0x80 # Invoke system call!
Now %eax holds the PID of the current process

System Call

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 40

Kernel mode

Firefox: read()

User mode

read() kernel routine

Trap to
kernel mode,

save state

Trap handler

Find read
handler in

vector table

Restore state,
return to user
level, resume

execution

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 41

System Call Questions

• What would happen if the kernel did not save state?

• What if the kernel executes a system call?

• What if a user program returns from a system call?

• How to reference kernel objects as arguments or results to/from syscalls?
- A naming issue
- Use integer object handles or descriptors

• E.g., Unix file descriptors, Windows HANDLEs
• Only meaningful as parameters to other system calls

- Also called capabilities (more later when we do protection)
- Why not use kernel addresses to name kernel objects?

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 42

Unexpected Exception: Faults

• Hardware detects and reports “exceptional” conditions
- Page fault, unaligned access, divide by zero

• Upon exception, hardware “faults” (verb)
- Must save state (PC, regs, mode, etc.) so that the faulting process can be restarted

• Modern OSes use VM faults for many functions
- Debugging, end-of-stack, garbage collection, copy-on-write

• Fault exceptions are a performance optimization
- Could detect faults by inserting extra instructions into code (at a significant

performance penalty)

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 43

Handling Faults

• Some faults are handled by “fixing”…
- “Fix” the exceptional condition and return to the faulting context
- Page faults cause the OS to place the missing page into memory
- Fault handler resets PC of faulting context to re-execute instruction that

caused the page fault

• Some faults are handled by notifying the process
- Fault handler changes the saved context to transfer control to a user-mode

handler on return from fault
- Handler must be registered with OS
- Unix signals or Win user-mode Async Procedure Calls (APCs)

• SIGALRM, SIGHUP, SIGTERM, SIGSEGV, etc.

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 44

Handling Faults (2)

• Kernel may handle unrecoverable faults by killing the process
- Program fault with no registered handler
- Halt process, write process state to file, destroy process
- In Unix, the default action for many signals (e.g., SIGSEGV)

• What about faults in the kernel?
- Dereference NULL, divide by zero, undefined instruction
- These faults considered fatal, operating system crashes
- Unix panic, Windows “Blue screen of death”

• Kernel is halted, state dumped to a core file, machine locked up

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 45

Types of Arch Support

• Manipulating privileged machine state
- Protected instructions
- Manipulate device registers, TLB entries, etc.

• Generating and handling “events”
- Interrupts, exceptions, system calls, etc.
- Respond to external events
- CPU requires software intervention to handle fault or trap

• Mechanisms to handle concurrency
- Interrupts, atomic instructions

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 46

Synchronization

• Interrupts cause difficult problems
- An interrupt can occur at any time
- A handler can execute that interferes with code that was interrupted

• OS must be able to synchronize concurrent execution

• Need to guarantee that short instruction sequences execute atomically
- Disable interrupts – turn off interrupts before sequence, execute sequence, turn

interrupts back on
- Special atomic instructions – read/modify/write a memory address, test and

conditionally set a bit based upon previous value
• XCHG instruction on x86

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 47

Summary

• Protection
- User/kernel modes
- Protected instructions

• Interrupts
- Timer, I/O

• System calls
- Used by user-level processes to access OS functions
- Access what is “in” the OS

• Exceptions
- Unexpected event during execution (e.g., divide by zero)

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 48

Unexpected Deliberate
Exceptions (sync) fault syscall trap
Interrupts (async) interrupt software interrupt

Next Time…

• Read Chapters 4-6 (Processes)

• Homework #1

• Lab 0

9/7/17 CS 318 – Lecture 2 – Architecture Support for OS 49

