CS 318 Principles of
Operating Systems

Fall 2017

Lecture 21: Mobile Systems

Ryan Huang

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Users & Groups

7N\ System Preferences is trying to unlock Users &
Groups preferences.

Enter an administrator’s name and password to ssword...
allow this.

User Name: rootI

Password:

Apply the security update immedidately!
Contacts Card: Open...

Allow user to administer this computer
itions

v | Enable parental controls | Open Parental Controls...

Administrivia

- Lab 4 deadline one week away
- Groups of 2 students receive 2-day extra late hour

- Groups of 3 students with 1 318 section student receive 1-day
extra late-hour

- Please, please don’t cheat

- Homework 5 is released

11/30/17 CS 318 — Lecture 21 — Mobile Systems 4

Mobile Devices Become Ubiquitous

nexus

i

Google Nexus 6P

NETWORK
DISPLAY

PLATFORM

MEMORY
CAMERA

SOUND

COMMS

FEATURES

BATTERY

Technology
Type

Size
Resolution
Multitouch
Protection
(o1
Chipset
CPU

GPU

Card slot
Internal
Primary
Features

Video
Secondary
Alert types
Loudspeaker
3.5mm jack
WLAN
Bluetooth
GPS

NFC

Radio

USB
Sensors
Messaging
Browser
Java

GSM/CDMA/HSPA/LTE EXPAND ¥

AMOLED capacitive touchscreen, 16M colors

5.7 inches (~71.4% screen-to-body ratio)

1440 x 2560 pixels (~518 ppi pixel density)

Yes

Corning Gorilla Glass 4, oleophobic coating

Android OS, v6.0 (Marshmallow)

Qualcomm MSM8994 Snapdragon 810

Quad-core 1.55 GHz Cortex-A53 & Quad-core 2.0 GHz Cortex-A57
Adreno 430

No

32/64/128 GB, 3 GB RAM

12.3 MP, /2.0, laser autofocus, dual-LED (dual tone) flash, check quality

1/2.3' sensor size, 1.55um pixel size, geo-tagging, touch focus, face detection,
HDR, panorama

2160p@30fps, 720p@240fps, check quality

8 MP, f/2.4, 1080p@30fps

Vibration; MP3, WAV ringtones

Yes, with front stereo speakers

Yes

Wi-Fi 802.11 a/b/g/n/ac, dual-band, Wi-Fi Direct, DLNA, hotspot
v4.2, A2DP, LE

Yes, with A-GPS, GLONASS

Yes

No

v2.0, Type-C 1.0 reversible connector

Fingerprint, accelerometer, gyro, proximity, compass, barometer
SMS(threaded view), MMS, Email, Push Mail, IM

HTML5

No

- Fast charging

- Active noise cancellation with dedicated mics
- MP4/H.264 player

- MP3/WAV/eAAC+ player

- Photo/video editor

- Document editor

Non-removable Li-Po 3450 mAh battery

History of Mobile OS (1)

- Early “smart” devices are PDAs (touchscreen, Internet)

- Symbian, first modern mobile OS
- released in 2000
- run in Ericsson R380, the first ‘smartphone’ (mobile phone + PDA)
- only support proprietary programs

R
sO8EY

o O O

o O ©

11/30/17 CS 318 — Lecture 21 — Mobile Systems 6

History of Mobile OS (2)

- Many smartphone and mobile OSes followed up

- Kyocera 6035 running Palm OS (2001)
* 8 MB non-expandable memory

- Windows CE (2002)

- Blackberry (2002)

« was a prominent vendor
* known for secure communications

- Moto Q (2005)
- Nokia N70 (2005)

« 2-megapixel camera, bluetooth
« 32 MB memory

« Symbian OS

« Java games

11/30/17 CS 318 — Lecture 21 — Mobile Systems 7

One More Thing...

=%

iPod Phone Internet

* Introduction of iPhone (2007)
- revolutionize the smartphone industry
- 4GB flash memory, 128 MB DRAM, multi-touch interface
- runs iOS, initially only proprietary apps
- App Store opened in 2008, allow third party apps

11/30/17 CS 318 — Lecture 21 — Mobile Systems 8

Android — An Unexpected Rival of iPhone

* Android Inc. founded by Andy Rubin et al. in 2003

- original goal is to develop an OS for digital camera
- shift focus on Android as a mobile OS

* The startup had a rough time [Story]
- run out of cash, landlord threatens to kick them out
- later bought by Google
- no carrier wants to support it except for T-Mobile

- while preparing public launch of Android, iPhone was
released

[To
* Android 1.0 released in 2008 (HTC G1) -

* Today: ~88% of mobile OS market
- i0S ~11%

11/30/17 CS 318 — Lecture 21 — Mobile Systems 9

Android Releases

Alpha Beta Cupcake Donut Eclair Froyo Gingerbread Honeycomb Ice Cream Jelly Bean KitKat Lolipop ~ Marshmallow Nougat Oreo

09/2008 02/2009 04/2009 09/2009 10/2009 05/2010 12/2010 02/2011 San/dwich 08/2012 09/2013 06/2014 10/2015 08/2016 08/2017
10/2011

11/30/17 CS 318 — Lecture 21 — Mobile Systems

Why Are Mobile OSes Interesting”?

- They are running in every mobile device as an essential part of
people’s daily life, even for non-technical users

- In many developing countries, the only computing device a person has is a
phone

* Mobile OSes and traditional OSes share the same core
abstractions but also have many unique designs

- Comparing and contrasting helps you understand the whole OS design space

- You will be surprised to see that some concepts in distributed systems can be
applied in mobile OS as well

- It will make you a more efficient mobile user and developer

11/30/17 CS 318 — Lecture 21 — Mobile Systems 11

Why Are Mobile OSes Interesting”?

SinErEENREEREISE
EH EonfEctioness Enakbaak

VRILEUIME
THE PEBWER USER'S VIEW

Jonathan Levin

11/30/17

Android Internals::Power User's View

: E

Available from these sellers.

Top customer reviews

Yoy YrYrvr As an an Android app developer 99% of the time ...
By Boris Farber on August 3, 2015
Format: Paperback Verified Purchase

As an an Android app developer 99% of the time you do not need the material written there. However the 1% bug will come,
and as we know it comes usually in the most unexpected time followed by extreme pressure.

While tracking that 1% bug you will thank yourself for having this book handy. While chasing the bug you will appreciate the
clear picture and the solid flow of the Android architecture the book gives, neither spending a second on fluff, nor stating the
obvious.

By getting this clear picture you will be able to grasp where your app is wrong and what is the system behaviour. This will save
your day and build your reputation as an Android expert.

For me the most important material presented in the book was around Android vs Linux, File Systems, Framework Service

Architecture and Security. You don't know when that 1% bug will come, but the knowledge from the book will definitely help
to sort it out.

CS 318 — Lecture 21 — Mobile Systems 12

Design Considerations for Mobile OS

- Resources are very constrained
- Limited memory
- Limited storage
- Limited battery life
- Limited processing power
- Limited network bandwidth
- Limited size

- User perception are important

- Latency outweighs throughput
» Users will be frustrated if an app takes several seconds to launch

- Environment are frequently changing
- The whole point about being mobile
- Cellular signals from strong to weak and then back to strong

11/30/17 CS 318 — Lecture 21 — Mobile Systems 13

Process Management in Mobile OS (1)

* In desktop/server: an application = a process

* Not true in modern mobile OSes like Android
- When you see an app present to you, doesn’t mean an actual process is running
- Multiple apps might share processes
- An app might make use of multiple processes

- When you “close” an app, the process might be still running
« Why?
» “all applications are running all of the time”

- Different user-application interaction patterns
- Check Facebook for 1 min, switch to Reminder for 10s, Check Facebook again
- Server: launch a job, waits for result

11/30/17 CS 318 — Lecture 21 — Mobile Systems 14

Process Management in Mobile OS (2)

- Example: Android app Activity lifecycle

=

onCreate()
onStart() +-—— onRestart()
¢ A
User navigates onResume()

to the activity

I Another activity comes

into the foreground
°9 User returns

v to the activity

Apps with higher priority
need memory onPause()
|

The activity is
no longer visible

User navigates
‘ to the activity

)

onStop()
|

The activity is finishing or
being destroyed by the system

v

onDestroy()

.
11/30/17 Activity CS 318 — Lecture 21 — Mobile Systems 15
shut down

Process Management in Mobile OS (3)

- Multitasking is a luxury in mobile OS

- Early versions of iOS don’t allow multi-tasking
* Not because the CPU doesn’t support it
« Because of battery life and limited memory

- Only one app runs in the foreground, all other user apps are suspended
- OS'’s tasks are multi-tasked because they are assumed to be well-behaving

- Starting with iI0S 4, the OS APlIs allow multi-tasking in apps
« But only available for a limited number of app types

- Different philosophies among mobile OSes

- Android gives more freedom to developers: apps are allowed to run in background
« Define Service class, e.g., to periodically fetch tweets
* When system runs low in memory, kill an app
« But what to do when user re-launches the app?

11/30/17 CS 318 — Lecture 21 — Mobile Systems 16

Memory Management in Mobile OS

* Most desktop and server OSes today support swap space
- Allows virtual memory to grow beyond physical memory size
- When physical memory is full utilized, evict some pages to disk

- Smartphones use flash memory rather than hard disk
- Capacity is very constrained: 16 GB vs. 512 GB
- Limited number of writes in its lifetime
- Poor throughput between main memory and flash memory

 As a result, mobile OSes typically don’t support swapping!
- I0S asks applications to voluntarily relinquish allocated memory
- Android will terminate an app when free memory is running low
- What about paging?

- App developers must be very careful about memory usage

11/30/17 CS 318 — Lecture 21 — Mobile Systems 17

Storage in Mobile OS

* App privacy and security is hugely |y
. . . . shell@shamu: C ata/app
important in mobile device B o et o e i
- Each app has its own private directory s ataropp 3 =0
that other app can’t access com. android. chrome-2

. com.android.vending-2
- Only shared storage is external storage com. facebook. katana-1
com.google.android.apps.docs.editors.docs-1
¢ /Sdcard/ com.google.android.apps.maps-1
com.google.android.apps.messaging-1
com.google.android.gms-2

¢ ngh'level abStraCthnS com.google.android.googlequicksearchbox-1
. com.google.android.instantapps. supervisor-2
- FlleS com.google.android.play.games-1
. com.google.android.youtube-1
- Database (SQthe) com. jumobile.manager.systemapp-1
. com.ketchapp.stack-1
- Pl’efel’ences (key'value palrS) com.progames@l. tanks.playtank-1

com.rovio.angrybirds-1
com. snapchat.android-1
edu. jhu.order.appstatstracker-1

11/30/17 CS 318 — Lecture 21 — Mobile Systems 18

A Primer on Android OS

Android OS Stack

System Apps

Email Calendar Camera

Java API Framework

i Man
Content Providers anagers

Activity Location Package Notification

View System Resource Telphony Window

Native C/C++ Libraries

OpenMax LibC Android Runtime (ART)

OpenGL Core Libraries

Hardware Abstraction Layer (HAL)

Bluetooth Camera Sensors

Linux Kernel
Drivers

Audio Binder Display Keypad Camera
Shared Memory USB WIFI Bluetooth

11/30/17 Power Management

Linux Kernel vs. Android Kernel

 Linux kernel is the foundation of Android platform

- New core code
- binder - interprocess communication mechanism
- ashmem - shared memory mechanism
- logger

- Performance/power
- wakelock
- low-memory Killer
- CPU frequency governor

- and much more . .. 361 Android patches for the kernel

11/30/17 CS 318 — Lecture 21 — Mobile Systems 21

Some Controversial Changes to Linux Kernel

- Android Suspend Blockers
- System by default is in a sleep state
- When there is a wakeup signal, CPU wakes up doing some work

- As soon as the requested work is completed, CPU goes back to sleep state
* Full system is suspended

- Called opportunistic suspend
« Different from generic Linux strategy

- Sounds like a good idea, but devils are in the details

- Problem: race condition between system suspend and system wakeup

« E.g., during suspend, a wakeup event comes, will only be delivered after another
wakeup event comes later

« What if this event is an incoming phone call?
« Android solution: WakelLock, more control, but can be easily abused

11/30/17 CS 318 — Lecture 21 — Mobile Systems 22

Hardware Abstraction Layer (HAL)

Hardware Abstraction Layer (HAL)

- Standard interfaces between hardware and Java API framework
- Enables Android to be agnostic about lower-level driver implementations

- Hardware vendors just implement this interface without modifying/affecting
high-level systems

- Stored as a shared library module

 When a framework APl makes a call to access device hardware,
Android loads the library module for that hardware component

11/30/17 CS 318 — Lecture 21 — Mobile Systems 23

Hardware Abstraction Layer (HAL)

struct hw module t {

« Generic module data structure uint32 t tag;
. . uintl6é_t version major;
- defines version, name, etc. wintlé t version minor.
- a pointer to a method struct that in turn const char *id;
contains pointer to the open function const char Tnamei

* initiate communication with the device struct hw module methods t* methods;
uint32 t reserved[32-6];

- Each specific HAL module usually
extends the data structure

typedef struct camera module {
hw module t common;
int (*get number of cameras) (void);
int (*get camera info) (int camera id, struct camera info *info);
int (*set callbacks) (const camera module callbacks t *callbacks);
} camera module t;

11/30/17 CS 318 — Lecture 21 — Mobile Systems 24

Hardware Abstraction Layer (HAL)

- Similarly a generic hardware device data structure

- Each specific HAL device extends this data structure
- Includes detailed operations to be provided on this device

typedef struct camera device { typedef struct camera_device ops {
hw device t common; -
camera device ops_t *ops; int (*start preview) (struct camera device *);
void *priv; void (*stop preview) (struct camera device ¥*);

} camera device t; int (*start recording) (struct camera device *);

void (*stop recording) (struct camera device *);
int (*take picture) (struct camera device *);
int (*cancel picture) (struct camera device ¥);

} camera device ops t;

11/30/17 CS 318 — Lecture 21 — Mobile Systems 25

Android Runtime

« What is a runtime?

- A component provides functionality necessary for the Resources &
execution of a program Native Code
. % scheduling, resource management, C’s stack
behavior

compile & package

* Prior to Android 5.0, Dalvik is the runtime Zip

' ' : . Dex fil
- _Each Android aBp h_as 'f[S OWN Process, runs its own Source class ex file APK
instance of the Dalvik virtual machine (process virtual

machine)
- The VM executes the Dalvik executable (.dex) format install
- Register-based compared to stack-based of JVM .
Dex file Sosourees &
. . . t 0]
- ART introduced in Android 5.0 toxon

- Backward compatible for running Dex bytecode _
- New feature: Ahead-of-time (AOT) compilation Dalvik | S0 s

- Improved garbage collection
v
@

11/30/17 CS 318 — Lecture 21 — Mobile Systems 26

Android Runtime - Zygote

 All Android apps derive from a

process called Zygote
- Zygote is started as part of the init process i

- Preloads Java classes, resources, starts 47 fork
Dalvik VM e
- Registers a Unix domain socket il *y
- Waits for commands on the socket Zygote process Child process

- Forks off child processes that inherit the
initial state of VMs

- Uses Copy-on-Write

- Only when a process writes to a page will a M
page be allocated =

Physical memory

11/30/17 CS 318 — Lecture 21 — Mobile Systems 27

Native C/C++ Libraries

- Many core Android services are built from native code
- Require native libraries written in C/C++
- Performance benefit

- Some of them are exposed through the Java API framework as native APIs
« E.g., Java OpenGL API

- Technique: JNI — Java Native Interface

- App developer can use Android NDK to include C/C++ code
- Common in gaming apps

11/30/17 CS 318 — Lecture 21 — Mobile Systems 28

Java APl Framework

- The main Android “OS” from app point of view
- Provide high-level services and environment to apps
- Interact with low-level libraries and Linux kernel

- Example
- Activity Manager
« Manages the lifecycle of apps

- Package Manager
» Keeps track of apps installed

- Power Manager
« Wakelock APls to apps

11/30/17 CS 318 — Lecture 21 — Mobile Systems 29

Android Binder IPC

- An essential component in Android for Inter-Process
Communication (IPC)

- Allows communication among apps, between system services, and between
app and system service

- Data sent through “parcels” in “transactions”
[com.foo.app1 J [com.bar.app?2 J

| J

T~ o
~— —{ /dev/binder

Linux Kernel

11/30/17 CS 318 — Lecture 21 — Mobile Systems 30

IPC Is Pervasive in Android

Applications
IPC IPC IPC IPC
A
Content
(Home) (Contact) (Phone) (Browser) (Provi der)
IPC

Vibrator

WiFi Battery
Service Service Service
Resource Location Notification
Manager Manager Service

Activity Window
Service Service

Telephony
Service

Package
Service

Native Layer

ECHED DR

(OpenGL) C vold) (netd) (WebKit) CCM‘)
Dalvik

(" tibwifi) (" tibcamera) ((libgps) (libc)

System
Calls
e

Linux Kernel

(Display) (Camera) (GPS) (Binder)
Driver Driver Driver Driver

Keypad WiFi Audio Power
11/30/17 (Driver > (Driver) Driver) Driver

31

How Is Binder Implemented: As RPC!

- Developer defines methods and object interface in an .aidl file

package com.example.android; // IRemoteService.aidl

/** Example service interface */
interface IRemoteService {
/** Request the process ID of this service, to do evil things with it. */
int getPid();
/** Pause the service for a while */
void pause(long time);

}

- Android SDK generate a stub Java file for the .aidl file
- Developer implements the stub methods
- Expose the stub in a Service

* Client copies the .aidl file to its source, Android SDK generates a
stub (a.k.a proxy) for it as well
- Client invoke the RPC through the stub

11/30/17 CS 318 — Lecture 21 — Mobile Systems 32

Developer

Framework

Kernel

11/30/17

Binder Information Flow

Method Invocation
(at client side)

Method Implementation
(provided by developer)

Java Proxy Class
(generated by AIDL)

Java Stub Class
(generated by AIDL)

android.os.IBinder:transact()

android.os.Binder:onTransact()

A\ 4

A

android.os.BinderProxy:transactNative()

\ 4
\ 4

android.os.Binder:execTransacit()

Upcall to process VM

/dev/binder Kernel Module

CS 318 — Lecture 21 — Mobile Systems 33

Passing Objects over IPC

* Primitive types are automatically translated by the stub

* For complex object must let binder know how to serialize and

de-serialize
- The object needs to implement Parcelable

- Provides both write and read methods
« E.g., writelnt, writelnt, writeLong, writeFloat

11/30/17 CS 318 — Lecture 21 — Mobile Systems 34

Some Other Interesting Topics in Mobile OS

- Energy management
- ECOSystem: Managing Energy as a First Class Operating System Resource
- Drowsy Power Management

- Dealing with misbehaving apps

- DefDroid: Towards a More Defensive Mobile OS Against Disruptive App
Behavior

- eDoctor: Automatically Diagnosing Abnormal Battery Drain Issues on
Smartphones

- Security and safety
- CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management
- Multiprogramming a 64 kB Computer Safely and Efficiently

11/30/17 CS 318 — Lecture 21 — Mobile Systems 35

Summary

- Smartphone becomes a ubiquitous computing device
- Long history but last 5 years have been disruptive

- Mobile OS is an interesting and challenging subject
- Constrained resources
- Different user interaction patterns
- Frequently changing environment
- Untrusted, immature third-party apps

- Some unique design choices
- Application # process
- Multitasking
- No swap space
- Private storage

* Android: a very complex ecosystem

11/30/17 CS 318 — Lecture 21 — Mobile Systems 36

Next Time...

- System Reliability

11/30/17 CS 318 — Lecture 21 — Mobile Systems 37

