
CS 318 Principles of
Operating Systems

Fall 2017

Lecture 21: Mobile Systems
Ryan Huang

11/30/17 CS 318 – Lecture 21 – Mobile Systems 2

CS 318 – Lecture 21 – Mobile Systems

Apply the security update immedidately!

Administrivia

• Lab 4 deadline one week away

• Groups of 2 students receive 2-day extra late hour

• Groups of 3 students with 1 318 section student receive 1-day
extra late-hour

• Please, please don’t cheat

• Homework 5 is released

11/30/17 CS 318 – Lecture 21 – Mobile Systems 4

Mobile Devices Become Ubiquitous

5

296.13 277 246 232
209.79 226 196 195

1806.96 1879 1910 1959

0

500

1000

1500

2000

2500

3000

2013 2014 2015 2016

Worldwide Devices Shipments by Device Type
(Millions of Units)

Traditional PCs Ultramobiles (Premium)
Ultramobiles (Basic and Utility) Mobile Phones

Google Nexus 6P

History of Mobile OS (1)

• Early “smart” devices are PDAs (touchscreen, Internet)

• Symbian, first modern mobile OS
- released in 2000
- run in Ericsson R380, the first ‘smartphone’ (mobile phone + PDA)
- only support proprietary programs

11/30/17 CS 318 – Lecture 21 – Mobile Systems 6

History of Mobile OS (2)
• Many smartphone and mobile OSes followed up
- Kyocera 6035 running Palm OS (2001)

• 8 MB non-expandable memory
- Windows CE (2002)
- Blackberry (2002)

• was a prominent vendor
• known for secure communications

- Moto Q (2005)
- Nokia N70 (2005)

• 2-megapixel camera, bluetooth
• 32 MB memory
• Symbian OS
• Java games

11/30/17 CS 318 – Lecture 21 – Mobile Systems 7

One More Thing…

• Introduction of iPhone (2007)
- revolutionize the smartphone industry
- 4GB flash memory, 128 MB DRAM, multi-touch interface
- runs iOS, initially only proprietary apps
- App Store opened in 2008, allow third party apps

11/30/17 CS 318 – Lecture 21 – Mobile Systems 8

Android – An Unexpected Rival of iPhone
• Android Inc. founded by Andy Rubin et al. in 2003
- original goal is to develop an OS for digital camera
- shift focus on Android as a mobile OS

• The startup had a rough time [Story]
- run out of cash, landlord threatens to kick them out
- later bought by Google
- no carrier wants to support it except for T-Mobile
- while preparing public launch of Android, iPhone was

released

• Android 1.0 released in 2008 (HTC G1)

• Today: ~88% of mobile OS market
- iOS ~11%

11/30/17 CS 318 – Lecture 21 – Mobile Systems 9

Android Releases

11/30/17 CS 318 – Lecture 21 – Mobile Systems 10

Lollipop
06/2014

Marshmallow
10/2015

Nougat
08/2016

Oreo
08/2017

Why Are Mobile OSes Interesting?

• They are running in every mobile device as an essential part of
people’s daily life, even for non-technical users
- In many developing countries, the only computing device a person has is a

phone

• Mobile OSes and traditional OSes share the same core
abstractions but also have many unique designs
- Comparing and contrasting helps you understand the whole OS design space
- You will be surprised to see that some concepts in distributed systems can be

applied in mobile OS as well

• It will make you a more efficient mobile user and developer

11/30/17 CS 318 – Lecture 21 – Mobile Systems 11

Why Are Mobile OSes Interesting?

11/30/17 CS 318 – Lecture 21 – Mobile Systems 12

Design Considerations for Mobile OS
• Resources are very constrained
- Limited memory
- Limited storage
- Limited battery life
- Limited processing power
- Limited network bandwidth
- Limited size

• User perception are important
- Latency outweighs throughput

• Users will be frustrated if an app takes several seconds to launch

• Environment are frequently changing
- The whole point about being mobile
- Cellular signals from strong to weak and then back to strong

11/30/17 CS 318 – Lecture 21 – Mobile Systems 13

Process Management in Mobile OS (1)
• In desktop/server: an application = a process

• Not true in modern mobile OSes like Android
- When you see an app present to you, doesn’t mean an actual process is running
- Multiple apps might share processes
- An app might make use of multiple processes
- When you “close” an app, the process might be still running

• Why?
• “all applications are running all of the time”

• Different user-application interaction patterns
- Check Facebook for 1 min, switch to Reminder for 10s, Check Facebook again
- Server: launch a job, waits for result

11/30/17 CS 318 – Lecture 21 – Mobile Systems 14

Process Management in Mobile OS (2)

• Example: Android app Activity lifecycle

11/30/17 CS 318 – Lecture 21 – Mobile Systems 15

Process Management in Mobile OS (3)
• Multitasking is a luxury in mobile OS
- Early versions of iOS don’t allow multi-tasking

• Not because the CPU doesn’t support it
• Because of battery life and limited memory

- Only one app runs in the foreground, all other user apps are suspended
- OS’s tasks are multi-tasked because they are assumed to be well-behaving
- Starting with iOS 4, the OS APIs allow multi-tasking in apps

• But only available for a limited number of app types

• Different philosophies among mobile OSes
- Android gives more freedom to developers: apps are allowed to run in background

• Define Service class, e.g., to periodically fetch tweets
• When system runs low in memory, kill an app

• But what to do when user re-launches the app?

11/30/17 CS 318 – Lecture 21 – Mobile Systems 16

Memory Management in Mobile OS
• Most desktop and server OSes today support swap space
- Allows virtual memory to grow beyond physical memory size
- When physical memory is full utilized, evict some pages to disk

• Smartphones use flash memory rather than hard disk
- Capacity is very constrained: 16 GB vs. 512 GB
- Limited number of writes in its lifetime
- Poor throughput between main memory and flash memory

• As a result, mobile OSes typically don’t support swapping!
- iOS asks applications to voluntarily relinquish allocated memory
- Android will terminate an app when free memory is running low
- What about paging?

• App developers must be very careful about memory usage

11/30/17 CS 318 – Lecture 21 – Mobile Systems 17

Storage in Mobile OS

• App privacy and security is hugely
important in mobile device
- Each app has its own private directory

that other app can’t access
- Only shared storage is external storage

• /sdcard/

• High-level abstractions
- Files
- Database (SQLite)
- Preferences (key-value pairs)

11/30/17 CS 318 – Lecture 21 – Mobile Systems 18

A Primer on Android OS

11/30/17 CS 318 – Lecture 21 – Mobile Systems 19

Android OS Stack

11/30/17 CS 318 – Lecture 21 – Mobile Systems 20

System Apps

Java API Framework

Native C/C++ Libraries Android Runtimes

Hardware Abstraction Layer (HAL)

Linux Kernel

Dialer Email Calendar Camera …

Content Providers

View System

Managers

Activity Location Package Notification

Resource Telphony Window

Webkit OpenMax LibC

Media OpenGL …

Android Runtime (ART)

Core Libraries

Audio Bluetooth Camera Sensors …

Drivers
Audio Binder Display Keypad Camera

Shared Memory USB WIFI Bluetooth …

Power Management

Java

C/ASM

Linux Kernel vs. Android Kernel
• Linux kernel is the foundation of Android platform
• New core code
- binder - interprocess communication mechanism
- ashmem - shared memory mechanism
- logger

• Performance/power
- wakelock
- low-memory killer
- CPU frequency governor

• and much more . . . 361 Android patches for the kernel

11/30/17 CS 318 – Lecture 21 – Mobile Systems 21

Some Controversial Changes to Linux Kernel
• Android Suspend Blockers
- System by default is in a sleep state
- When there is a wakeup signal, CPU wakes up doing some work
- As soon as the requested work is completed, CPU goes back to sleep state

• Full system is suspended
- Called opportunistic suspend

• Different from generic Linux strategy

• Sounds like a good idea, but devils are in the details
- Problem: race condition between system suspend and system wakeup

• E.g., during suspend, a wakeup event comes, will only be delivered after another
wakeup event comes later
• What if this event is an incoming phone call?

• Android solution: WakeLock, more control, but can be easily abused

11/30/17 CS 318 – Lecture 21 – Mobile Systems 22

Hardware Abstraction Layer (HAL)

• Standard interfaces between hardware and Java API framework
- Enables Android to be agnostic about lower-level driver implementations
- Hardware vendors just implement this interface without modifying/affecting

high-level systems
- Stored as a shared library module

• When a framework API makes a call to access device hardware,
Android loads the library module for that hardware component

11/30/17 CS 318 – Lecture 21 – Mobile Systems 23

Hardware Abstraction Layer (HAL)

11/30/17 CS 318 – Lecture 21 – Mobile Systems 24

• Generic module data structure
- defines version, name, etc.
- a pointer to a method struct that in turn

contains pointer to the open function
• initiate communication with the device

• Each specific HAL module usually
extends the data structure

struct hw_module_t {
uint32_t tag;
uint16_t version_major;
uint16_t version_minor;
const char *id;
const char *name;
const char *author;
struct hw_module_methods_t* methods;
uint32_t reserved[32-6];

};

typedef struct camera_module {
hw_module_t common;
int (*get_number_of_cameras)(void);
int (*get_camera_info)(int camera_id, struct camera_info *info);
int (*set_callbacks)(const camera_module_callbacks_t *callbacks);

} camera_module_t;

Hardware Abstraction Layer (HAL)
• Similarly a generic hardware device data structure

• Each specific HAL device extends this data structure
- Includes detailed operations to be provided on this device

11/30/17 CS 318 – Lecture 21 – Mobile Systems 25

typedef struct camera_device {
hw_device_t common;
camera_device_ops_t *ops;
void *priv;

} camera_device_t;

typedef struct camera_device_ops {
…
int (*start_preview)(struct camera_device *);
void (*stop_preview)(struct camera_device *);
int (*start_recording)(struct camera_device *);
void (*stop_recording)(struct camera_device *);
int (*take_picture)(struct camera_device *);
int (*cancel_picture)(struct camera_device *);
…

} camera_device_ops_t;

Android Runtime
• What is a runtime?
- A component provides functionality necessary for the

execution of a program
• E.g., scheduling, resource management, C’s stack

behavior

• Prior to Android 5.0, Dalvik is the runtime
- Each Android app has its own process, runs its own

instance of the Dalvik virtual machine (process virtual
machine)
- The VM executes the Dalvik executable (.dex) format
- Register-based compared to stack-based of JVM

• ART introduced in Android 5.0
- Backward compatible for running Dex bytecode
- New feature: Ahead-of-time (AOT) compilation
- Improved garbage collection

11/30/17 CS 318 – Lecture 21 – Mobile Systems 26

APK

Resources &
Native Code

zip
.class Dex fileSource

Dex file Resources &
Native Code

Dalvik VM Native

install

Odex file

dexopt

compile & package

Dalvik

Android Runtime - Zygote
• All Android apps derive from a

process called Zygote
- Zygote is started as part of the init process
- Preloads Java classes, resources, starts

Dalvik VM
- Registers a Unix domain socket
- Waits for commands on the socket
- Forks off child processes that inherit the

initial state of VMs

• Uses Copy-on-Write
- Only when a process writes to a page will a

page be allocated

11/30/17 CS 318 – Lecture 21 – Mobile Systems 27

Dalvik
VM classes dlls Dalvik

VM classes dlls

fork

Zygote process Child process

Dalvik
VM classes dlls

Physical memory

Native C/C++ Libraries

• Many core Android services are built from native code
- Require native libraries written in C/C++
- Performance benefit
- Some of them are exposed through the Java API framework as native APIs

• E.g., Java OpenGL API

• Technique: JNI – Java Native Interface

• App developer can use Android NDK to include C/C++ code
- Common in gaming apps

11/30/17 CS 318 – Lecture 21 – Mobile Systems 28

Java API Framework

• The main Android “OS” from app point of view
- Provide high-level services and environment to apps
- Interact with low-level libraries and Linux kernel

• Example
- Activity Manager

• Manages the lifecycle of apps
- Package Manager

• Keeps track of apps installed
- Power Manager

• Wakelock APIs to apps

11/30/17 CS 318 – Lecture 21 – Mobile Systems 29

Android Binder IPC

• An essential component in Android for Inter-Process
Communication (IPC)
- Allows communication among apps, between system services, and between

app and system service

• Data sent through “parcels” in “transactions”

11/30/17 CS 318 – Lecture 21 – Mobile Systems 30

Linux Kernel
/dev/binder

Service Manager System
Server com.foo.app1 com.bar.app2

IPC Is Pervasive in Android

11/30/17 CS 318 – Lecture 21 – Mobile Systems 31

How Is Binder Implemented: As RPC!
• Developer defines methods and object interface in an .aidl file

• Android SDK generate a stub Java file for the .aidl file
- Developer implements the stub methods
- Expose the stub in a Service

• Client copies the .aidl file to its source, Android SDK generates a
stub (a.k.a proxy) for it as well
- Client invoke the RPC through the stub

11/30/17 CS 318 – Lecture 21 – Mobile Systems 32

package com.example.android; // IRemoteService.aidl

/** Example service interface */
interface IRemoteService {

/** Request the process ID of this service, to do evil things with it. */
int getPid();
/** Pause the service for a while */
void pause(long time);

}

Binder Information Flow

11/30/17 CS 318 – Lecture 21 – Mobile Systems 33

Java Proxy Class
(generated by AIDL)

Java Stub Class
(generated by AIDL)

Method Implementation
(provided by developer)

Method Invocation
(at client side)

android.os.IBinder:transact()

android.os.BinderProxy:transactNative() android.os.Binder:execTransact()

android.os.Binder:onTransact()

android.os.Parcel

/dev/binder Kernel Module

Developer

Framework

Kernel

Library

Upcall to process VM

Passing Objects over IPC

• Primitive types are automatically translated by the stub

• For complex object must let binder know how to serialize and
de-serialize
- The object needs to implement Parcelable
- Provides both write and read methods

• E.g., writeInt, writeInt, writeLong, writeFloat

11/30/17 CS 318 – Lecture 21 – Mobile Systems 34

Some Other Interesting Topics in Mobile OS
• Energy management
- ECOSystem: Managing Energy as a First Class Operating System Resource
- Drowsy Power Management

• Dealing with misbehaving apps
- DefDroid: Towards a More Defensive Mobile OS Against Disruptive App

Behavior
- eDoctor: Automatically Diagnosing Abnormal Battery Drain Issues on

Smartphones

• Security and safety
- CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management
- Multiprogramming a 64 kB Computer Safely and Efficiently

11/30/17 CS 318 – Lecture 21 – Mobile Systems 35

Summary
• Smartphone becomes a ubiquitous computing device
- Long history but last 5 years have been disruptive

• Mobile OS is an interesting and challenging subject
- Constrained resources
- Different user interaction patterns
- Frequently changing environment
- Untrusted, immature third-party apps

• Some unique design choices
- Application ≠ process
- Multitasking
- No swap space
- Private storage

• Android: a very complex ecosystem

11/30/17 CS 318 – Lecture 21 – Mobile Systems 36

Next Time…

• System Reliability

11/30/17 CS 318 – Lecture 21 – Mobile Systems 37

