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Apply the security update immedidately!



Administrivia

• Lab 4 deadline one week away

• Groups of 2 students receive 2-day extra late hour

• Groups of 3 students with 1 318 section student receive 1-day 
extra late-hour

• Please, please don’t cheat

• Homework 5 is released
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Mobile Devices Become Ubiquitous
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History of Mobile OS (1)

• Early “smart” devices are PDAs (touchscreen, Internet)

• Symbian, first modern mobile OS
- released in 2000
- run in Ericsson R380, the first ‘smartphone’ (mobile phone + PDA)
- only support proprietary programs
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History of Mobile OS (2)
• Many smartphone and mobile OSes followed up
- Kyocera 6035 running Palm OS (2001)

• 8 MB non-expandable memory
- Windows CE (2002)
- Blackberry (2002)

• was a prominent vendor
• known for secure communications

- Moto Q (2005)
- Nokia N70 (2005)

• 2-megapixel camera, bluetooth
• 32 MB memory
• Symbian OS
• Java games
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One More Thing…

• Introduction of iPhone (2007)
- revolutionize the smartphone industry
- 4GB flash memory, 128 MB DRAM, multi-touch interface
- runs iOS, initially only proprietary apps
- App Store opened in 2008, allow third party apps
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Android – An Unexpected Rival of iPhone
• Android Inc. founded by Andy Rubin et al. in 2003
- original goal is to develop an OS for digital camera
- shift focus on Android as a mobile OS

• The startup had a rough time [Story]
- run out of cash, landlord threatens to kick them out
- later bought by Google
- no carrier wants to support it except for T-Mobile
- while preparing public launch of Android, iPhone was 

released

• Android 1.0 released in 2008 (HTC G1)

• Today: ~88% of mobile OS market
- iOS ~11%
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Android Releases
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Lollipop
06/2014

Marshmallow
10/2015

Nougat
08/2016

Oreo
08/2017



Why Are Mobile OSes Interesting?

• They are running in every mobile device as an essential part of 
people’s daily life, even for non-technical users
- In many developing countries, the only computing device a person has is a 

phone

• Mobile OSes and traditional OSes share the same core 
abstractions but also have many unique designs
- Comparing and contrasting helps you understand the whole OS design space
- You will be surprised to see that some concepts in distributed systems can be 

applied in mobile OS as well

• It will make you a more efficient mobile user and developer 
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Why Are Mobile OSes Interesting?
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Design Considerations for Mobile OS
• Resources are very constrained
- Limited memory
- Limited storage
- Limited battery life
- Limited processing power
- Limited network bandwidth
- Limited size

• User perception are important
- Latency outweighs throughput

• Users will be frustrated if an app takes several seconds to launch

• Environment are frequently changing
- The whole point about being mobile
- Cellular signals from strong to weak and then back to strong
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Process Management in Mobile OS (1)
• In desktop/server: an application = a process

• Not true in modern mobile OSes like Android
- When you see an app present to you, doesn’t mean an actual process is running
- Multiple apps might share processes
- An app might make use of multiple processes
- When you “close” an app, the process might be still running

• Why?
• “all applications are running all of the time”

• Different user-application interaction patterns
- Check Facebook for 1 min, switch to Reminder for 10s, Check Facebook again
- Server: launch a job, waits for result 
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Process Management in Mobile OS (2)

• Example: Android app Activity lifecycle
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Process Management in Mobile OS (3)
• Multitasking is a luxury in mobile OS
- Early versions of iOS don’t allow multi-tasking

• Not because the CPU doesn’t support it
• Because of battery life and limited memory

- Only one app runs in the foreground, all other user apps are suspended
- OS’s tasks are multi-tasked because they are assumed to be well-behaving
- Starting with iOS 4, the OS APIs allow multi-tasking in apps

• But only available for a limited number of app types 

• Different philosophies among mobile OSes
- Android gives more freedom to developers: apps are allowed to run in background

• Define Service class, e.g., to periodically fetch tweets
• When system runs low in memory, kill an app

• But what to do when user re-launches the app?
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Memory Management in Mobile OS
• Most desktop and server OSes today support swap space
- Allows virtual memory to grow beyond physical memory size
- When physical memory is full utilized, evict some pages to disk

• Smartphones use flash memory rather than hard disk
- Capacity is very constrained: 16 GB vs. 512 GB
- Limited number of writes in its lifetime
- Poor throughput between main memory and flash memory

• As a result, mobile OSes typically don’t support swapping!
- iOS asks applications to voluntarily relinquish allocated memory
- Android will terminate an app when free memory is running low
- What about paging?

• App developers must be very careful about memory usage
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Storage in Mobile OS

• App privacy and security is hugely 
important in mobile device
- Each app has its own private directory 

that other app can’t access
- Only shared storage is external storage

• /sdcard/

• High-level abstractions
- Files
- Database (SQLite)
- Preferences (key-value pairs)
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A Primer on Android OS
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Android OS Stack
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Linux Kernel vs. Android Kernel
• Linux kernel is the foundation of Android platform
• New core code
- binder - interprocess communication mechanism 
- ashmem - shared memory mechanism 
- logger

• Performance/power
- wakelock
- low-memory killer
- CPU frequency governor

• and much more . . . 361 Android patches for the kernel
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Some Controversial Changes to Linux Kernel
• Android Suspend Blockers
- System by default is in a sleep state
- When there is a wakeup signal, CPU wakes up doing some work
- As soon as the requested work is completed, CPU goes back to sleep state

• Full system is suspended
- Called opportunistic suspend

• Different from generic Linux strategy

• Sounds like a good idea, but devils are in the details
- Problem: race condition between system suspend and system wakeup

• E.g., during suspend, a wakeup event comes, will only be delivered after another 
wakeup event comes later
• What if this event is an incoming phone call? 

• Android solution: WakeLock, more control, but can be easily abused
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Hardware Abstraction Layer (HAL)

• Standard interfaces between hardware and Java API framework
- Enables Android to be agnostic about lower-level driver implementations
- Hardware vendors just implement this interface without modifying/affecting 

high-level systems
- Stored as a shared library module

• When a framework API makes a call to access device hardware, 
Android loads the library module for that hardware component
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Hardware Abstraction Layer (HAL)
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• Generic module data structure
- defines version, name, etc.
- a pointer to a method struct that in turn 

contains pointer to the open function
• initiate communication with the device

• Each specific HAL module usually 
extends the data structure

struct hw_module_t {
uint32_t tag;
uint16_t version_major;
uint16_t version_minor;
const char *id;
const char *name;
const char *author;
struct hw_module_methods_t* methods;
uint32_t reserved[32-6];

}; 

typedef struct camera_module {
hw_module_t common;
int (*get_number_of_cameras)(void);
int (*get_camera_info)(int camera_id, struct camera_info *info);
int (*set_callbacks)(const camera_module_callbacks_t *callbacks);

} camera_module_t;



Hardware Abstraction Layer (HAL)
• Similarly a generic hardware device data structure

• Each specific HAL device extends this data structure
- Includes detailed operations to be provided on this device
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typedef struct camera_device {
hw_device_t common;
camera_device_ops_t *ops;
void *priv;

} camera_device_t;

typedef struct camera_device_ops {
… 
int (*start_preview)(struct camera_device *);
void (*stop_preview)(struct camera_device *);
int (*start_recording)(struct camera_device *);
void (*stop_recording)(struct camera_device *);
int (*take_picture)(struct camera_device *);
int (*cancel_picture)(struct camera_device *);
…

} camera_device_ops_t;



Android Runtime
• What is a runtime?
- A component provides functionality necessary for the 

execution of a program
• E.g., scheduling, resource management, C’s stack 

behavior

• Prior to Android 5.0, Dalvik is the runtime
- Each Android app has its own process, runs its own 

instance of the Dalvik virtual machine (process virtual 
machine)
- The VM executes the Dalvik executable (.dex) format
- Register-based compared to stack-based of JVM

• ART introduced in Android 5.0
- Backward compatible for running Dex bytecode
- New feature: Ahead-of-time (AOT) compilation
- Improved garbage collection
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Android Runtime - Zygote
• All Android apps derive from a 

process called Zygote
- Zygote is started as part of the init process
- Preloads Java classes, resources, starts 

Dalvik VM
- Registers a Unix domain socket
- Waits for commands on the socket
- Forks off child processes that inherit the 

initial state of VMs

• Uses Copy-on-Write
- Only when a process writes to a page will a 

page be allocated
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Native C/C++ Libraries

• Many core Android services are built from native code
- Require native libraries written in C/C++
- Performance benefit
- Some of them are exposed through the Java API framework as native APIs

• E.g., Java OpenGL API

• Technique: JNI – Java Native Interface

• App developer can use Android NDK to include C/C++ code
- Common in gaming apps
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Java API Framework

• The main Android “OS” from app point of view
- Provide high-level services and environment to apps
- Interact with low-level libraries and Linux kernel

• Example
- Activity Manager

• Manages the lifecycle of apps
- Package Manager

• Keeps track of apps installed
- Power Manager

• Wakelock APIs to apps
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Android Binder IPC

• An essential component in Android for Inter-Process 
Communication (IPC)
- Allows communication among apps, between system services, and between 

app and system service

• Data sent through “parcels” in “transactions”
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IPC Is Pervasive in Android
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How Is Binder Implemented: As RPC!
• Developer defines methods and object interface in an .aidl file

• Android SDK generate a stub Java file for the .aidl file
- Developer implements the stub methods
- Expose the stub in a Service

• Client copies the .aidl file to its source, Android SDK generates a 
stub (a.k.a proxy) for it as well
- Client invoke the RPC through the stub
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package com.example.android; // IRemoteService.aidl

/** Example service interface */
interface IRemoteService {

/** Request the process ID of this service, to do evil things with it. */
int getPid();
/** Pause the service for a while */
void pause(long time);

}



Binder Information Flow

11/30/17 CS 318 – Lecture 21 – Mobile Systems 33

Java Proxy Class
(generated by AIDL)

Java Stub Class
(generated by AIDL)

Method Implementation
(provided by developer)

Method Invocation
(at client side)

android.os.IBinder:transact()

android.os.BinderProxy:transactNative() android.os.Binder:execTransact()

android.os.Binder:onTransact()

android.os.Parcel

/dev/binder Kernel Module

Developer

Framework

Kernel

Library

Upcall to process VM



Passing Objects over IPC

• Primitive types are automatically translated by the stub

• For complex object must let binder know how to serialize and 
de-serialize
- The object needs to implement Parcelable
- Provides both write and read methods

• E.g., writeInt, writeInt, writeLong, writeFloat
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Some Other Interesting Topics in Mobile OS
• Energy management
- ECOSystem: Managing Energy as a First Class Operating System Resource
- Drowsy Power Management

• Dealing with misbehaving apps
- DefDroid: Towards a More Defensive Mobile OS Against Disruptive App 

Behavior
- eDoctor: Automatically Diagnosing Abnormal Battery Drain Issues on 

Smartphones

• Security and safety
- CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management
- Multiprogramming a 64 kB Computer Safely and Efficiently
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Summary
• Smartphone becomes a ubiquitous computing device
- Long history but last 5 years have been disruptive

• Mobile OS is an interesting and challenging subject
- Constrained resources
- Different user interaction patterns
- Frequently changing environment
- Untrusted, immature third-party apps

• Some unique design choices
- Application ≠ process
- Multitasking
- No swap space
- Private storage

• Android: a very complex ecosystem
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Next Time…

• System Reliability
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