CS 318 Principles of
Operating Systems

Fall 2017

Lecture 20: Distributed Systems
Ryan Huang

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Preview

* Next three lectures are advanced topics on systems Iin general
- Each topic has enough depth to be covered in an entire course by itself
- We will only cover the high-level basics
- Focus on abstractions and generic systems techniques

- Today: distributed systems
- What is a distributed system?
- What are the basic concepts essential to build a distributed system?
- Examine an important abstraction: Remote Procedure Call (RPC)

11/28/17 CS 318 — Lecture 20 — Distributed Systems 2

Societal Scale Information Systems

- The world is a large distributed system
- Microprocessors in everything
- Vast infrastructure behind them '

Scalable, Reliable,
Secure Services

Internet
Connectivity

Databases

Information Collection
Remote Storage
Online Games
Commerce

.....
S)

11/28/17 MEMS for
Sensor Nets

CS 318 — Lecture 20 — Distributed Systems

—Q m‘} 0.0 o 0. @ _

1ol pe) [T
. _.- Q.O 9—9_9_0—0 m‘.m\.m\.m?m?m:m:m:—:
0__°~00.°_0_0000 O“.H,.

_
{5
_

|
|

Il
|
|

11/28/17

Today

Microsoft Azure regions

Canada East --- Norh £ UK South --------- :
i orth Europe : , .
Canada Central --- P --- West Europe

: UK West ----een: @ @ oo GGerr*wan\,v'CNoEthleast
v lowa--- AL, A ermany Centra
Wi USCSI?U;?UE i France Central ----- éA 4 : Koreéa Centsral h
estUS2-. o " 2775 g.. North-Sentral US Erance South ... : _ R orea Sou
West US --weeeeee ; \ US DoD East China North ccccooce. @ 0 0 £ 1 @ oneenens Japan East
US Gov Arizona ==-=reweeeeeeeee-- 1 M @ N East US - Japan West
#\ East US 2

West Central US i 4 i +.\JS Gov Virginia
US Gov Texas - i . US DoD Cenral
South Central US -+

Generally available
A Coming soon

Ty

......... Brazi| South

~~~~~~~~ Australia East
....... Australia Southeast

”

- e

‘.
-
‘™
5.
1§
‘N
‘N
N
5
W
w

i
i

<
s
L

11/28/17 CS 318 — Lecture 20 — Distributed Systems 5



What is a Distributed System?

- Cooperating processes in a computer network

(@)

Computer 0

0 ﬁ)ré\puter
e S
- = AN
O processes o— \O 0
—» messages Conc?uter Comp&l)ter

* Degree of integration
- Loose: Internet applications, email, web browsing
- Medium: remote execution, remote file systems
- Tight: distributed file systems

- Popular distributed systems today
- Google file systems, BigTable, MapReduce, Hadoop, ZooKeeper, etc.

11/28/17 CS 318 — Lecture 20 — Distributed Systems 6



Centralized vs Distributed Systems

Peer-to-Peer Model

 Centralized System: System in which major functions are

performed by a single physical computer
- Originally, everything on single computer
- Later: client/server model

11/28/17 CS 318 — Lecture 20 — Distributed Systems 7



Centralized vs Distributed Systems

Peer-to-Peer Model

 Distributed System: physically separate computers working

together on some task
- Early model: multiple servers working together
* Probably in the same room or building
« Often called a “cluster”
- Later models: peer-to-peer/wide-spread collaboration

11/28/17 CS 318 — Lecture 20 — Distributed Systems 8



Distributed Systems: Motivation

- Why do we want distributed systems?
- Performance: parallelism across multiple nodes
- Scalability: by adding more nodes
- Reliability: leverage redundancy to provide fault tolerance
- Cost: cheaper and easier to build lots of simple computers
- Control: users can have complete control over some components
- Collaboration: much easier for users to collaborate through network resources

- The promise of distributed systems:

- Higher availability: one machine goes down, use another
- Better durability: store data in multiple locations
- More security: each piece easier to make secure

11/28/17 CS 318 — Lecture 20 — Distributed Systems 9



Distributed Systems: Reality

- Reality has been disappointing
- Worse availability: depend on every machine being up
» Lamport: “a distributed system is one where | can’t do work because
some machine I've never heard of isn’t working!”
- Worse reliability: can lose data if any machine crashes
- Worse security: anyone in world can break into system

- Coordination is more difficult
- Must coordinate multiple copies of shared state information (using only a
network)
- What would be easy in a centralized system becomes a lot more difficult

11/28/17 CS 318 — Lecture 20 — Distributed Systems 10



Distributed Systems: Goals/Requirements

* Transparency:
- the ability of the system to mask its complexity behind a simple interface

- Possible transparencies:
- Location: Can’t tell where resources are located
- Migration: Resources may move without the user knowing
- Replication: Can’t tell how many copies of resource exist
- Concurrency: Can’t tell how many users there are
- Parallelism: May speed up large jobs by splitting them into smaller pieces
- Fault Tolerance: System may hide various things that go wrong

- Transparency and collaboration require some way for different
processors to communicate with one another

11/28/17 CS 318 — Lecture 20 — Distributed Systems 11



Clients and Servers

- The prevalent model for structuring distributed computation is the
client/server paradigm

- A server is a program (or collection of programs) that provide a service
(file server, name service, etc.)

- The server may exist on one or more nodes
- Often the node is called the server, too, which is confusing

- A client is a program that uses the service
- Aclient first binds to the server (locates it and establishes a connection to it)

- Aclient then sends requests, with data, to perform actions, and the servers sends
responses, also with data

11/28/17 CS 318 — Lecture 20 — Distributed Systems 12



 Name systems in network
- often hierarchical name. cs.jhu.edu is domain

* Network Address (Internet IP address)
- 192.17.4.131 -- 192.17.4.**
- 128.174.240.**

* Physical Network Address
- Ethernet address or Token Ring Address

- Address processes/ports within system (host, id) pair

- Domain name service (DNS) specifies naming structure of hosts and
provides resolution of names to network address

11/28/17 CS 318 — Lecture 20 — Distributed Systems 13



Communication

- Socket (TCP/IP)

- Remote Procedure Call (RPC) /Remote Method Invocation(RMI)

11/28/17 CS 318 — Lecture 20 — Distributed Systems 14



TCP/IP (Socket)

- Transport Protocols

- User Datagram Protocol (UDP)

« UDP/IP is an unreliable, connectionless transport protocol, which uses IP to transport IP
datagrams but adds error correction and a protocol port address to specify the process
on the remote system for which the packet is destined.

- Transmission Control Protocol (TCP)

« TCP/IP is a reliable stream protocol for communicating information between two
processes

11/28/17 CS 318 — Lecture 20 — Distributed Systems 15



TCP/IP Protocol Layers

Layers 5-7 FTP, TELNET, SMTP, NSP, SNMP

Layers 4

Layers 1-3

https://en.wikipedia.org/wiki/OSI model -

11/28/17 CS 318 — Lecture 20 — Distributed Systems 16




TCP Sockets

« Communication endpoint
- (IP address, Port number)

- Client-server
- server listens to a port

 Telnet port 23, ftp port 21, web server port 80

11/28/17 CS 318 — Lecture 20 — Distributed Systems 17



TCP/IP Ports

* Ports < 1024, standard
* Ports > 1024, user created

 All connections unique
- 161.25.19.8:20
- |IP Address: 161.25.19.8
- TCP/IP Port: 20 (ftpdata)
- http://www.iana.org/assignments/port-numbers

11/28/17 CS 318 — Lecture 20 — Distributed Systems 18



TCP Socket Communication

11/28/17 CS 318 — Lecture 20 — Distributed Systems 19



Raw Messaging

- Initially network programming = raw messaging
- Programmers hand-coded messages to send requests and responses

* Problem: too low-level and tiresome
- Need to worry about message formats
Must wrap up information into message at source
Must decide what to do with message at destination
Have to pack and unpack data from messages
May need to sit and wait for multiple messages to arrive

- Messages are not a very natural programming model
- Could encapsulate messaging into a library

- Just invoke library routines to send a message
- Which leads us to RPC...

11/28/17 CS 318 — Lecture 20 — Distributed Systems 20



Procedure Calls

* Procedure calls are a more natural way to communicate
- Every language supports them
- Semantics are well-defined and understood
- Natural for programmers to use

- Idea: let servers export procedures that can be called by client

programs
- Similar to module interfaces, class definitions, etc.
- Clients just do a procedure call as it they were directly linked with the server

- Under the covers, the procedure call is converted into a message exchange
with the server

11/28/17 CS 318 — Lecture 20 — Distributed Systems 21



Remote Procedure Calls

* So, we would like to use procedure call as a model for
distributed (remote) communication

- Lots of issues
- How do we make this invisible to the programmer?
- What are the semantics of parameter passing?
- How do we bind (locate, connect to) servers?
- How do we support heterogeneity (OS, arch, language)?
- How do we make it perform well?

11/28/17 CS 318 — Lecture 20 — Distributed Systems 22



Why is RPC Interesting?

 Remote Procedure Call (RPC) is the most common means for remote
communication

* It is used both by operating systems and applications
- NFS is implemented as a set of RPCs
- DCOM, CORBA, Java RMI, etc., are all basically just RPC

- Someday (soon?) you will most likely have to write an application that
uses remote communication (or you already have)
- You will most likely use some form of RPC for that remote communication

- So it’s good to know how all this RPC stuff works
* More “debunking the magic”

11/28/17 CS 318 — Lecture 20 — Distributed Systems 23



RPC Model

- A server defines the server’s interface using an interface definition
language (IDL)

- The IDL specifies the names, parameters, and types for all client-callable server procedures

+ A stub compiler reads the IDL and produces two stub procedures for each
server procedure (client and server)
- Server programmer implements the server procedures and links them with server-side stubs
- Client programmer implements the client program and links it with client-side stubs

- The stubs are the “glues”responsible for managing all details of the remote communication
between client and server

11/28/17 CS 318 — Lecture 20 — Distributed Systems 24



RPC Stubs

A client-side stub is a procedure that looks to the client as if it were a
callable server procedure
- Task: pack message, send it off, wait for result, unpack result and return to caller

- A server-side stub looks to the server as if a client called it
- Task: unpack message, call procedure, pack results, send them off

* The client program thinks it is calling the server
- In fact, it’s calling the client stub

- The server program thinks it is called by the client
- In fact, it’s called by the server stub

- The stubs send messages to each other to make RPC happen transparently

11/28/17 CS 318 — Lecture 20 — Distributed Systems 25



RPC Information Flow

marshal
args

: call : send
Client » Client Packet

(caller) |¢ Stub [¢ , Handler
return receive

unmarshal mbo

Machine A ret vals

A 4

marshal
ret vals

Network

return send
Server »l Server »| Packet

(callee) ¢ Stub |« . Handler
call receive

unmarshal
args
11/28/17 CS 318 — Lecture 20 — Distributed Systems 26




RPC Example

Server Interface:

int Add(int x, int y);

Client Program:

int Add(int x, int y) {
return X + y;

}

- If the server were just a library, then Add would just be a
procedure call

11/28/17 CS 318 — Lecture 20 — Distributed Systems

27



11/28/17

RPC Example: Call

Client Program:

sum = server->Add(3,4);

Client Stub: l

int Add(int x, int y) {
Alloc message buffer;
Mark as “Add” call;
Store x, y into buffer;
Create, send message;

Server Program:

int Add(int x, int y){
return X + y;

}

Server Stub: T

Add Stub(Message) {
Remove x, y from buffer
r = Add(x, V);

}

RPC Runtime:

RPC Runtime: ‘

Send message to server;

Receive message;
Dispatch, call Add Stub;

CS 318 - Lecture 20 — Distributed Systems




11/28/17

RPC Example: Return

Client Program:

sum = server->Add(3,4);

Server Program:

Client Stub: ‘

int Add(int x, int y){
return X + y;

}

int Add(int x, int y) {
Alloc message buffer;
Mark as “Add” call;

Create, send message;
Remove r from reply;
return r;

}

Server Stub: 1

Store x, y into buffer;

Add Stub(Message) {
Remove x, y from buffer
r = Add(x, Y);
Store r in buffer;

RPC Runtime: Y

Return reply to stub;

RPC Runtime:

Send reply to client;

CS 318 - Lecture 20 — Distributed Systems




RPC Marshalling

- Marshalling is the packing of procedure parameters into a message packet

- The RPC stubs call type-specific procedures to marshal (or unmarshal) the

parameters to a call
- The client stub marshals the parameters into a message

- The server stub unmarshals parameters from the message and uses them to call the server
procedure

* On return
- The server stub marshals the return parameters
- The client stub unmarshals return parameters and returns them to the client program

11/28/17 CS 318 — Lecture 20 — Distributed Systems 30



RPC Implementation Details

- Cross-platform issues:
- What if client/server machines are different architectures/ languages?
« Convert everything to/from some canonical form

« Tag every item with an indication of how it is encoded (avoids unnecessary
conversions)

* How does client know which server to send to?
- Need to translate name of remote service into network endpoint (Remote machine,
port, possibly other info)
- Binding: the process of converting a user-visible name into a network endpoint
 This is another word for “naming” at network level
 Static: fixed at compile time
» Dynamic: performed at runtime

11/28/17 CS 318 — Lecture 20 — Distributed Systems 31



RPC Binding (1)

» Binding is the process of connecting the client to the server

- The server, when it starts up, exports its interface
- ldentifies itself to a network name server
- Tells RPC runtime it’s alive and ready to accept calls

- The client, before issuing any calls, imports the server

- RPC runtime uses the name server to find the location of a server and establish a
connection

- The import and export operations are explicit in the server and client

programs
- Breakdown of transparency

11/28/17 CS 318 — Lecture 20 — Distributed Systems 32



RPC Example in

Go Including Binding

Client Program:

type Args struct {
A, B int

}

type Arith int

Server Program:

client, err := rpc.DialHTTP("tcp", func (t *Arith) Multiply(args *Args,
serverAddress + ":1234") reply *int) error {
if err != nil { *reply = args.A * args.B
log.Fatal("dialing:", err) return nil
} }
// Synchronous call func main() {
args := &server.Args{7,8} arith := new(Arith)
var reply int rpc.RegisterName( "Arithmetic", arith)
err = client.Call("Arith.Multiply", args, &reply) rpc.HandleHTTP ()
if err != nil { l, e := net.Listen("tcp", ":1234")
log.Fatal("arith error:", err) if e != nil {
} log.Fatal("listen error:", e)
fmt.Printf("Arith: %d*%d=%d", args.A, args.B, reply) }
http.Serve(l, nil)
}

11/28/17

CS 318 - Lecture 20 — Distributed Systems



RPC Binding (2)

- Dynamic Binding
- Most RPC systems use dynamic binding via name service
* Name service provides dynamic translation of service — mbox
- Why dynamic binding?
« Access control: check who is permitted to access service
 Fail-over: If server fails, use a different one

* What if there are multiple servers?
- Could give flexibility at bindin? time
« Choose unloaded server for each new client
- Could provide same mbox (router level redirect)
« Choose unloaded server for each new request
* Only works if no state carried from one call to next

* What if multiple clients?
- Pass pointer to client-specific return mbox in request

11/28/17 CS 318 — Lecture 20 — Distributed Systems 34



RPC Transparency

* One goal of RPC is to be as transparent as possible
- Make remote procedure calls look like local procedure calls

- We have seen that binding breaks transparency

* What else?

- Failures — remote nodes/networks can fail in more ways than with local
procedure calls
» Need extra support to handle failures well

- Performance — remote communication is inherently slower than local
communication

« If program is performance-sensitive, could be a problem

11/28/17 CS 318 — Lecture 20 — Distributed Systems 35



Problems with RPC: Non-Atomic Failures

- Different failure modes in dist. system than on a single machine
- Consider many different types of failures
- User-level bug causes address space to crash
- Machine failure, kernel bug causes all processes on same machine to fail
- Some machine is compromised by malicious party
- Before RPC: whole system would crash/die
- After RPC: One machine crashes/compromised while others keep working
- Can easily result in inconsistent view of the world
- Did my cached data get written back or not?
- Did server do what | requested or not?
- Answer? Distributed transactions/Byzantine Commit

11/28/17 CS 318 — Lecture 20 — Distributed Systems 36



Problems with RPC: Performance

* Cost of Procedure call <« same-machine RPC «network RPC

- Means programmers must be aware that RPC is not free
- Caching can help, but may make failure handling complex

11/28/17 CS 318 — Lecture 20 — Distributed Systems 37



RPC Failure Semantic (1)

- What does a failure look like to the client RPC library?

- Client never sees a response from the server request
- Client does not know if the server saw the request -/*\ x
« Maybe server/net failed just before sending reply _ \/ x
client server

reply

- Simplest scheme: at-least-once behavior
- RPC library waits for response for time T, if none arrives, re-send the request
- Repeat this a few times
- Still no response - return an error to the application

* Problem with at-least-once behavior?
- E.g., request is “deduct $100 from bank account”
- What about this Sequence?: v = get(key); put(key, v - 100); 3 put(key, v);

https://pdos.csail.mit.edu/6.824/notes/I-rpc.txt
11/28/17 CS 318 — Lecture 20 — Distributed Systems 38



RPC Failure Semantic (2)

- When is at-least-once behavior OK?
- If it’s ok to repeat an operation, e.g., get (key) ;
- If the application has its own way of dealing with duplicates

* Another (better) RPC behavior: at most once

- Idea: server RPC code detects duplicate requests returns previous reply
instead of re-running handler
- How to detect a duplicate request?
« client includes unique ID (XID) with each request, and uses the same XID for re-send
 server checks an incoming XID in a table, if an entry is found, directly returns the reply

https://pdos.csail.mit.edu/6.824/notes/I-rpc.txt
11/28/17 CS 318 — Lecture 20 — Distributed Systems 39



RPC Failure Semantic (3)

- Some complexities about implementing at-most-once
- How to ensure XID is unique?
- Server must eventually discard info about old RPCs, when is it safe to discard?
- How to handle duplicate request while original is still executing?

- What if an at-most-once server crashes and re-starts?
- If duplicate info is in memory, server will forget and accept duplicate requests after re-start
- It could write the duplicate info to disk
- Replica server could also replicate duplicate info

- What about "exactly once"?
- at-most-once plus unbounded retries plus fault-tolerant service

- RPC semantics beyond two entities

- Master sends RPC to a worker, worker doesn't respond, master re-send to another worker
« original worker may have not failed, and is working on it too

https://pdos.csail.mit.edu/6.824/notes/I-rpc.txt
11/28/17 CS 318 — Lecture 20 — Distributed Systems 40



RPC Summary

* RPC is the most common model for communication in distributed
applications
- “Cloaked” as DCOM, CORBA, Java RMI, etc.
- Some popular libraries: gRPC, Golang RPC
- Also used on same node between applications (e.g., gRPC)

- RPC is essentially language support for distributed programming

- RPC relies upon a stub compiler to automatically generate client/server
stubs from the IDL server descriptions

- These stubs do the marshalling/unmarshalling, message sending/receiving/replying
- At-least-once, at-most-once, exactly-once RPC failure semantic

* NFS uses RPC to implement remote file systems

11/28/17 CS 318 — Lecture 20 — Distributed Systems 41



Next Time...

* Mobile Systems

11/28/17 CS 318 — Lecture 20 — Distributed Systems 42



