CS 318 Principles of
Operating Systems

Fall 2017

Lecture 18: Virtual Machine Monitors

Ryan Huang

=X
W
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

- We’ve covered the three fundamental concepts in OS
- Concurrency
- Virtualization
- Persistency

- A major milestone of the course is reached ©

- Remaining lectures are slightly advanced (but important) OS
topics

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 2

Administrivia

- Many groups used late hours in Lab 3

- Last lab is out
- It’s hard and needs substantial implementation
- Not possible to get it done in last few days or even a week
- Hard deadline: 12/07 11:59 pm
- Please start early

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 3

Review: What Is An OS

vim gcc Chrome

OS

* OS is software between applications and hardware
- Abstracts hardware to makes applications portable
- Makes finite resources (memory, # CPU cores) appear much larger
- Protects processes and users from one another

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 4

What If...

* The process abstraction looked just like hardware?

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 5

Virtual Machine Monitor

- Thin layer of software that virtualizes the hardware
- Exports a virtual machine abstraction that looks like the hardware

- Provides the illusion that software has full control over the hardware
* Run multiple instances of an OS or different OSes simultaneously on the same physical

machine
Operating
Virtual System
Machine [>
Monitor

Hardware

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 6

Old Idea from The 1970s

* IBM VM/370 — A VMM for IBM mainframe

- Multiplex multiple OS environments on expensive hardware
- Desirable when few machines around

* Interest died out in the 1980s and 1990s

- Hardware got cheap
- Compare Windows NT vs. N DOS machines

- Revived by the Disco [SOSP '97] work
- Led by Mendel Rosenblum, later lead to the foundation of VMware

» Another important work Xen [SOSP ’03]

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 7

VMMs Today

- VMs are used everywhere
- Popularized by cloud computing
- Used to solve different problems

ml .

vmware mmgmes"
o B

- VMMs are a "o xreerein industry

and academia

- Industry commitment g b"p‘g’b"s @\Iirtuawox

« Software: VMware, Xen,...
 Hardware: Intel VT, AMD-V

* If Intel and AMD add it to their chips, you I l PB['B“E'S@ é E M U

know it’s serious...
- Academia: lots of related projects and

papers Xen %'W-KV M

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 8

Why Would You Do Such a Crazy Thing?

- Software compatibility
- VMMs can run pretty much all software

- Resource utilization
- Machines today are powerful, want to multiplex their hardware

- Isolation
- Seemingly total data isolation between virtual machines
- Leverage hardware memory protection mechanisms

- Encapsulation
- Virtual machines are not tied to physical machines
- Checkpoint/migration

- Many other cool applications
- Debugging, emulation, security, speculation, fault tolerance...

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 9

OS Backwards Compatibility

- Backward compatibility is bane of new Oses
- Huge effort require to innovate but not break

- Security considerations may make it impossible
- Choice: Close security hole and break apps or be insecure

- Example: Windows XP is end of life
- Eventually hardware running WinXP will die
- What to do with legacy WinXP applications?
- Not all applications will run on later Windows
- Given the # of WinXP applications, practically any OS change will break something

if (0S == WinXP) ...
» Solution: Use a VMM to run both WinXP and Win10

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 10

Logical Partitioning of Servers

* Run multiple servers on same box (e.g., Amazon EC2)
- Ability to give away less than one machine
- Modern CPUs more powerful than most services need
- Server consolidation trend: N machines - 1 real machine
- 0.10U rack space machine — less power, cooling, space, etc.

- Isolation of environments
- Printer server doesn’t take down Exchange server
- Compromise of one VM can’t get at data of others

- Resource management
- Provide service-level agreements

- Heterogeneous environments
- Linux, FreeBSD, Windows, etc.

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 11

Implementing VMMs - Requirements

- Fidelity
- OSes and applications work the same without modification
* (although we may modify the OS a bit)

- Isolation
- VMM protects resources and VMs from each other

- Performance
- VMM is another layer of software...and therefore overhead
« As with OS, want to minimize this overhead

- VMware (early):
« CPU-intensive apps: 2-10% overhead
« 1/O-intensive apps: 25-60% overhead (much better today)

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 12

What Needs to Be Virtualized?

- Exactly what you would expect
- CPU
- Events (exceptions and interrupts)
- Memory
- 1/0O devices

* Isn’t this just duplicating OS functionality in a VMM?
- Yes and no

- Approaches will be similar to what we do with OSes
« Simpler in functionality, though (VMM much smaller than OS)

- But implements a different abstraction
« Hardware interface vs. OS interface

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 13

Approach 1: Complete Machine Simulation

- Simplest VMM approach, used by bochs

* Build a simulation of all the hardware

- CPU — A loop that fetches each instruction, decodes it, simulates its effect on the
machine state

- Memory — Physical memory is just an array, simulate the MMU on all memory
accesses

- 1/O — Simulate 1/O devices, programmed /O, DMA, interrupts

* Problem: Too slow!
- CPU/Memory — 100x CPU/MMU simulation
- /O Device — < 2x slowdown.
- 100x slowdown makes it not too useful

* Need faster ways of emulating CPU/MMU

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 14

Virtualizing the CPU

- Observations: Most instructions are the same regardless of

processor privileged level
- Example: incl %eax

- Why not just give instructions to CPU to execute?

- One issue: Safety — How to get the CPU back? Or stop it from stepping on us? How
about cli/halt?

- Solution: Use protection mechanisms already in CPU

* Run virtual machine’s OS directly on CPU in unprivileged user mode
- “Trap and emulate” approach
- Most instructions just work
- Privileged instructions trap into monitor and run simulator on instruction
- Makes some assumptions about architecture

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 15

Virtualizing Traps

- What happens when an interrupt or trap occurs
- Like normal kernels: we trap into the monitor

- What if the interrupt or trap should go to guest 0S?
- Example: Page fault, illegal instruction, system call, interrupt
- Re-start the guest OS simulating the trap

« X86 example:
- Give CPU an IDT that vectors back to VMM

- Look up trap vector in VM’s “virtual” IDT
« How does VMM know this?

- Push virtualized ¢cs, %eip, %eflags, on stack
- Switch to virtualized privileged mode

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 16

Virtualizing Memory

- OSes assume they have full control over memory
- Managing it: OS assumes it owns it all
- Mapping it: OS assumes it can map any virtual page to any physical page

* But VMM partitions memory among VMs
- VMM needs to assign hardware pages to VMs

- VMM needs to control mappings for isolation
« Cannot allow an OS to map a virtual page to any hardware page
* OS can only map to a hardware page given to it by the VMM

- Hardware-managed TLBs make this difficult
- When the TLB misses, the hardware automatically walks the page tables in memory
- As a result, VMM needs to control access by OS to page tables

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 17

One Way: Direct Mapping

- VMM uses the page tables that a guest OS creates
- These page tables are used directly by hardware MMU

- VMM validates all updates to page tables by guest OS

- OS can read page tables without modification

- But VMM needs to check all PTE writes to ensure that the virtual-to-physical
mapping is valid
« That the OS “owns” the physical page being used in the PTE
- Modify OS to hypervisor call into VMM when updating PTEs

- Page tables work the same as before, but OS is constrained to only
map to the physical pages it owns

- Works fine if you can modify the OS (used in Xen paravirtualization)
- If you can’t...

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 18

Second Approach: Level of Indirection

* Three abstractions of memory

- Machine: actual hardware memory
16 GB of DRAM
- Physical: abstraction of hardware memory managed by OS

 If a VMM allocates 512 MB to a VM, the OS thinks the computer has 512 MB of contiguous
physical memory

* (Underlying machine memory may be discontiguous)
- Virtual: virtual address spaces you know and love
« Standard 232 or 264 address space

 Translation: VM’s Guest VA — VM’s Guest PA — Host PA

- In each VM, OS creates and manages page tables for its virtual
address spaces without modification
- But these page tables are not used by the MMU hardware

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 19

Shadow Page Tables

- VMM creates and manages page tables that map virtual pages
directly to machine pages

- These tables are loaded into the MMU on a context switch
- VMM page tables are the shadow page tables

* VMM needs to keep its V->M tables consistent with changes
made by OS to its V> P tables
- VMM maps OS page tables as read only
- When OS writes to page tables, trap to VMM
- VMM applies write to shadow table and OS table, returns
- Also known as memory tracing

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 20

Memory Mapping Summary

Host Host
Virtual Physical
Address Address

physical machine

virtual machine

Guest Guest Host
Virtual m Physical m Physical
Address Address Address
Guest Host
Virtual Physical
Address Address

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 21

Shadow Page Table Example

Guest Guest

Virtual Physical 'I\\"Ai‘r’:c')”e
AS AS Y
Guest A 5
/,\
6 | < RW
Guest B /2 =
6 <L R/W

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 22

Memory Allocation

- VMMs tend to have simple hardware memory allocation policies
- Static: VM gets 512 MB of hardware memory for life

- No dynamic adjustment based on load
« OSes not designed to handle changes in physical memory...
- No swapping to disk

* More sophistication: Overcommit with balloon driver

- Balloon driver runs inside OS to consume hardware pages
+ Steals from virtual memory and file buffer cache (balloon grows)

- Gives hardware pages to other VMs (those balloons shrink)

- Identify identical physical pages (e.g., all zeroes)
- Map those pages copy-on-write across VMs

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 23

Virtualizing I/0O

* OSes can no longer interact directly with I/0 devices

* Types of communication
- Special instruction — in/out
- Memory-mapped 1/O
- Interrupts
- DMA

- Make in/out trap into VMM
- Use tracing for memory-mapped I/O

 Run simulation of I/0 device

- Interrupt — Tell CPU simulator to generate interrupt
- DMA — Copy data to/from physical memory of virtual machine

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 24

Virtualizing 1/O: Three Models

- Xen: modify OS to use low-level I/O interface (hybrid)

- Define generic devices with simple interface
* Virtual disk, virtual NIC, etc.

- Ring buffer of control descriptors, pass pages back and forth
- Handoff to trusted domain running OS with real drivers

- VMware: VMM supports generic devices (hosted)
- E.g., AMD Lance chipset/PCNet Ethernet device
- Load driver into OS in VM, OS uses it normally

- Driver knows about VMM, cooperates to pass the buck to a real device driver
(e.g., on underlying host OS)

- VMware ESX Server: drivers run in VMM (hypervisor)

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 25

1114117

Virtualized I/0O Models

Hybrid VMM
Service VM
User Level VM
Monitor (ULM)

. Guest OS
Service OS and Apps

YU —

\ ———p-Hypervisor

OS-Hosted VMM

User Level VM
Monitor (ULM)

Device Guest OS
Mgdels and Apps

38

User
Apps

Hostgs/ ~_ 7 :

Devices

Driver | VMM]

X

Stand-alone Hypervisor VMM

VM, VM,
Guest OS Guest OS
and Apps and Apps

\\ Vs

Hypervisor Device
Models
Driver

—

e
Devices

Abramson et al., “Intel Virtualization Technology for Directed 1/0”,
Intel Technology Journal, 10(3) 2006

CS 318 — Lecture 18 — Virtual Machine Monitor

26

VMM Case Study 1: Xen

- Early versions use “paravirtualization”
- Fancy word for “we have to modify & recompile the OS”
- Since you’re modifying the OS, make life easy for yourself
- Create a VMM interface to minimize porting and overhead

- Xen hypervisor (VMM) implements interface
- VMM runs at privilege, VMs (domains) run unprivileged

- Trusted OS (Linux) runs in own domain (DomainO)
« Use Domain0 to manage system, operate devices, etc.

- Most recent version of Xen does not require OS mods
- Because of Intel/AMD hardware support

- Commercialized via XenSource, but also open source

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 27

Xen Architecture

User User User
Software Software Software

GuestOS GuestOS GuestOS

(XenoLinux) (XenoBSD) (XenoXP)
Xeno-Aware Xeno-Aware Xeno-Aware Xeno-Aware
Device Drivers Device Drivers Device Drivers Device Drivers

Dom?inlo virtual virtual virtual virtual
iﬁ?e’r'fg:: o X86CPU phymem network blockdev

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 28

<M<

VMM Case Study 2: VMware

- VMware workstation uses hosted model
- VMM runs unprivileged, installed on base OS (+ driver)
- Relies upon base OS for device functionality

- VMware ESX server uses hypervisor model
- Similar to Xen, but no guest domain/OS

 VMware uses software virtualization

- Dynamic binary rewriting translates code executed in VM
» Most instructions translated identically, e.g., movl
« Rewrite privileged instructions with emulation code (may trap), e.g., popf

- Think JIT compilation for JVM, but
« full binary x86 - IR code - safe subset of x86
- Incurs overhead, but can be well-tuned (small % hit)

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 29

VMware Hosted Architecture

Application

Application
Guest Operating System
Virtualization Layer

Host Operating System

Hosted Architecture

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 30

Hardware Support

* Intel and AMD implement virtualization support in their recent x86
chips (Intel VT-x, AMD-V)
- Goal is to fully virtualize architecture
- Transparent trap-and-emulate approach now feasible
- Echoes hardware support originally implemented by IBM

 Execution model

- New execution mode: guest mode

 Direct execution of guest OS code, including privileged insts
- Virtual machine control block (VMCB)

« Controls what operations trap, records info to handle traps in VMM
- New instruction vmenter enters guest mode, runs VM code
- When VM traps, CPU executes new vmexit instruction
- Enters VMM, which emulates operation

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 31

Hardware Support (2)

* Memory
- Intel extended page tables (EPT), AMD nested page tables (NPT)

- Original page tables map virtual to (guest) physical pages
« Managed by OS in VM, backwards-compatible

- New tables map physical to machine pages
* Managed by VMM

- Tagged TLB w/ virtual process identifiers (VPIDs)
« Tag VMs with VPID, no need to flush TLB on VM/VMM switch

- /O

- Constrain DMA operations only to page owned by specific VM
- AMD DEV: exclude pages (c.f. Xen memory paravirtualization)
- Intel VT-d: IOMMU — address translation support for DMA

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 32

Summary

- VMMs multiplex virtual machines on hardware
- Export the hardware interface
- Run OSes in VMs, apps in OSes unmodified
- Run different versions, kinds of OSes simultaneously

* Implementing VMMs
- Virtualize CPU, Memory, 1/0O

- Lesson: Never underestimate the power of indirection

11/14/17 CS 318 — Lecture 18 — Virtual Machine Monitor 33

