
CS 318 Principles of
Operating Systems

Fall 2017

Lecture 17: File System Crash Consistency
Ryan Huang

Administrivia

• Lab 3 deadline Thursday Nov 9th 11:59pm

• Thursday class cancelled, work on the lab

• Some test cases will be changed to extra credit

• Extra (Ryan’s) office hours this week
- Tuesday 3-4pm
-Wednesday 2-4pm

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 2

Review: File I/O Path (Reads)
• read() from file
- Check if block is in cache
- If so, return block to user

[1 in figure]
- If not, read from disk, insert into cache,

return to user [2]

Disk

Main
Memory
(Cache)

1

2

Block in cache

Block Not in cache L
e
a
v
e
 c

o
p
y
 i

n
 c

a
c
h

e

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 3

Review: File I/O Path (Writes)
• write() to file
- Write is buffered in memory (“write behind”) [1]
- Sometime later, OS decides to write to disk [2]

• Periodic flush or fsync call

• Why delay writes?
- Implications for performance
- Implications for reliability

Disk

Main
Memory
(Cache)

1

2

Buffer in memory

Later Write to disk

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 4

The Consistent Update Problem

• Atomically update file system from one consistent state to
another, which may require modifying several sectors, despite
that the disk only provides atomic write of one sector at a time
-What do we mean by consistent state?

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 5

Example: File Creation

• Initial state

Disk 01000 01000 /
inode
map

block
map inode array data blocks

Memory

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 6

Example: File Creation

• Read to in-memory Cache

Disk 01000 01000 /
inode
map

block
map inode array data blocks

Memory

01000 /

<‘.’, #2>
<‘..’, #2>

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 7

<‘.’, #2>
<‘..’, #2>

01000

Example: File Creation

• Modify metadata and blocks

Disk 01000 01000 /
inode
map

block
map inode array data blocks

Memory

01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

Dirty blocks, memory state and disk state are inconsistent: must write to disk

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 8

Crash?

• Disk: atomically write one sector
- Atomic: if crash, a sector is either completely written, or none of this sector is

written

• An FS operation may modify multiple sectors

• Crash è FS partially updated

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 9

Possible Crash Scenarios

• File creation dirties three blocks
- inode bitmap (B)
- inode for new file (I)
- parent directory data block (D)

• Old and new contents of the blocks
- B = 01000 B’	= 01010
- I	= free I’	= allocated, initialized
- D = {} D’	= {<‘a.txt’, 3>}

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 10

Possible Crash Scenarios

• Crash scenarios: any subset can be written
- B	 I		D
- B’	 I		D
- B	 I’	D
- B	 I		D’
- B’	 I’	D
- B’	 I	 D’
- B	 I’	D’
- B’	 I’	D’

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 11

The General Problem

• Writes: Have to update disk with N writes
- Disk does only a single write atomically

• Crashes: System may crash at arbitrary point
- Bad case: In the middle of an update sequence

• Desire: To update on-disk structures atomically
- Either all should happen or none

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 12

Example: Bitmap First

• Write Ordering: Bitmap (B), Inode (I), Data (D)
- But CRASH after B has reached disk, before I or D

• Result?

Disk 01010 /
B I D

Memory 01010

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 13

Example: Inode First

• Write Ordering: Bitmap (B), Inode (I), Data (D)
- But CRASH after I has reached disk, before B or D

• Result?

Disk 01000 /
B I D

Memory 01010

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 14

Example: Inode First

• Write Ordering: Bitmap (B), Inode (I), Data (D)
- But CRASH after I AND B have reached disk, before D

• Result?

Disk 01010 /
B I D

Memory 01010

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 15

Example: Inode First

• Write Ordering: Bitmap (B), Inode (I), Data (D)
- But CRASH after I AND B have reached disk, before D

• Result?
-What if data block is a new block for the new file (i.e., create file with data)

Disk 01010 /
B I D

Memory 01010

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 16

Example: Data First

• Write Ordering: Data (D) , Bitmap (B), Inode (I)
- CRASH after D has reached disk, before I or B

• Result?

Disk 01000 /

Memory 01010

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 17

Example: Data First

• Write Ordering: Data (D) , Bitmap (B), Inode (I)
- CRASH after D has reached disk, before I or B

• Result?
-What if data block is a new block for the new file (i.e., create file with data)

Disk 01000 /

Memory 01010 ‘Hello, 318’

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 18

Traditional Solution: FSCK
• FSCK: “file system checker”

• When system boots:
- Make multiple passes over file system, looking for inconsistencies

• e.g., inode pointers and bitmaps, directory entries and inode reference counts
- Either fix automatically or punt to admin

• Example: B’	I		D, B I’	D,
• Can B’		I	 D’	be fixed? (cannot fix all crash scenarios)

- Does fsck have to run upon every reboot?

• Problem:
- Performance

• Sometimes takes hours to run on large disk volumes
- Not well-defined consistency

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 19

Another Solution: Journaling

• Idea: Write “intent” down to disk before updating file system
- Called the “Write Ahead Logging” or “journal”
- Originated from database community

• When crash occurs, look through log to see what was going on
- Use contents of log to fix file system structures

• Crash before “intent” is written è no-op
• Crash after “intent” is written è redo op

- The process is called “recovery”

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 20

Case Study: Linux Ext3

• Physical journaling: write real block contents of the update to log
- Four totally ordered steps

• Commit dirty blocks to journal as one transaction (TxBegin, I, B, D blocks)
• Write commit record (TxEnd)
• Copy dirty blocks to real file system (checkpointing)
• Reclaim the journal space for the transaction

• Logical journaling: write logical record of the operation to log
- “Add entry F to directory data block D”
- Complex to implement
- May be faster and save disk space

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 21

Step 1: Write Blocks to Journal

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 22

Disk 01000 01000 /

Memory 01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

journal 01010TxB
id=1

Step 2: Write Commit Record

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 23

Disk 01000 01000 /

Memory 01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

journal 01010TxB
id=1

TxE
id=1

Step 3: Copy Dirty Blocks to Real FS

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 24

Disk 01000 01000 /

Memory 01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

journal 01010TxB
id=1

TxE
id=1

Step 4: Reclaim Journal Space

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 25

Disk 01000 01000 /

Memory 01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

journal

What If There Is A Crash?

• Recovery: Go through log and “redo” operations that have been
successfully commited to log

• What if …
- TxBegin but not TxEnd in log?
- TxBegin through TxEnd are in log, but I, B, and D have not yet been

checkpointed?
• How could this happen?
• Why don’t we merge step 2 and step 1?

-What if Tx is in log, I, B, D have been checkpointed, but Tx has not been
freed from log?

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 26

Summary of Journaling Write Orders

• Journal writes < FS writes
- Otherwise, crash è FS broken, but no record in journal to patch it up

• FS writes < Journal clear
- Otherwise, crash è FS broken, but record in journal is already cleared

• Journal writes < commit record write < FS writes
- Otherwise, crash è record appears committed, but contains garbage

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 27

Ext3 Journaling Modes
• Journaling has cost
- one write = two disk writes, two seeks

• Several journaling modes balance consistency and performance
• Data journaling: journal all writes, including file data
- Problem: expensive to journal data

• Metadata journaling: journal only metadata
- Used by most FS (IBM JFS, SGI XFS, NTFS)
- Problem: file may contain garbage data

• Ordered mode: write file data to real FS first, then journal metadata
- Default mode for ext3
- Problem: old file may contain new data

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 28

Summary

• The consistent update problem
- Example of file creation and different crash scenarios

• Two approaches to crash consistency
- FSCK: slow, not well-defined consistency
- Journaling: well-defined consistency, different modes

• Other approach
- Soft updates (advanced OS topics)

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 29

Next Time…

• Read Appendix B

11/7/17 CS 318 – Lecture 17 – File System Crash Consistency 30

