
CS 318 Principles of
Operating Systems

Fall 2017

Lecture 15: File Systems
Ryan Huang

Administrivia

• Next Tuesday project hacking day, no class

10/26/17 CS 318 – Lecture 15 – File Systems 2

File System Fun

• File systems: traditionally hardest part of OS
- More papers on FSes than any other single topic

• Main tasks of file system:
- Don’t go away (ever)
- Associate bytes with name (files)
- Associate names with each other (directories)
- Can implement file systems on disk, over network, in memory, in non-volatile

ram (NVRAM), on tape, w/ paper.
-We’ll focus on disk and generalize later

• Today: files, directories, and a bit of performance

10/26/17 CS 318 – Lecture 15 – File Systems 3

Why disks are different

• Disk = First state we’ve seen that doesn’t go away
- So: Where all important state ultimately resides

• Slow (milliseconds access vs. nanoseconds for memory)

• Huge (100–1,000x bigger than memory)
- How to organize large collection of ad hoc information?
- File System: Hierarchical directories, Metadata, Search

10/26/17 CS 318 – Lecture 15 – File Systems 4

Disk vs. Memory

Disk MLC NAND
Flash DRAM

Smallest write sector sector byte
Atomic write sector sector byte/word
Random read 8 ms 3-10 µs 50 ns
Random write 8 ms 9-11 µs* 50 ns
Sequential read 100 MB/s 550–2500 MB/s > 1 GB/s
Sequential write 100 MB/s 520–1500 MB/s* > 1 GB/s
Cost $0.03/GB $0.35/GB $6/GiB
Persistence Non-volatile Non-volatile Volatile

*: Flash write performance degrades over time

10/26/17 CS 318 – Lecture 15 – File Systems 5

Disk Review
• Disk reads/writes in terms of sectors, not bytes
- Read/write single sector or adjacent groups

• How to write a single byte? “Read-modify-write”
- Read in sector containing the byte
- Modify that byte
- Write entire sector back to disk
- Key: if cached, don’t need to read in

• Sector = unit of atomicity.
- Sector write done completely, even if crash in middle (disk saves up enough momentum to

complete)

• Larger atomic units have to be synthesized by OS

10/26/17 CS 318 – Lecture 15 – File Systems 6

Some Useful Trends
• Disk bandwidth and cost/bit improving exponentially

- Similar to CPU speed, memory size, etc.

• Seek time and rotational delay improving very slowly
- Why? require moving physical object (disk arm)

• Disk accesses a huge system bottleneck & getting worse
- Bandwidth increase lets system (pre-)fetch large chunks for about the same cost as small chunk.
- Trade bandwidth for latency if you can get lots of related stuff.

• Desktop memory size increasing faster than typical workloads
- More and more of workload fits in file cache
- Disk traffic changes: mostly writes and new data

• Memory and CPU resources increasing
- Use memory and CPU to make better decisions
- Complex prefetching to support more IO patterns
- Delay data placement decisions reduce random IO

10/26/17 CS 318 – Lecture 15 – File Systems 7

Files
• File: named bytes on disk
- data with some properties
- contents, size, owner, last read/write time, protection, etc.

• A file can also have a type
- Understood by the file system

• Block, character, device, portal, link, etc.
- Understood by other parts of the OS or runtime libraries

• Executable, dll, source, object, text, etc.

• A file’s type can be encoded in its name or contents
- Windows encodes type in name

• .com, .exe, .bat, .dll, .jpg, etc.
- Unix encodes type in contents

• Magic numbers, initial characters (e.g., #! for shell scripts)

10/26/17 CS 318 – Lecture 15 – File Systems 8

Basic File Operations
Unix

• creat(name)

• open(name, how)

• read(fd, buf, len)

• write(fd, buf, len)

• sync(fd)

• seek(fd, pos)

• close(fd)

• unlink(name)

Windows

• CreateFile(name, CREATE)

• CreateFile(name, OPEN)

• ReadFile(handle, …)

• WriteFile(handle, …)

• FlushFileBuffers(handle, …)

• SetFilePointer(handle, …)

• CloseHandle(handle, …)

• DeleteFile(name)

• CopyFile(name)

• MoveFile(name)

10/26/17 CS 318 – Lecture 15 – File Systems 9

Goal

• Want: operations to have as few disk accesses as possible &
have minimal space overhead (group related things)

• What’s hard about grouping blocks?
- Like page tables, file system metadata are simply data structures used to

construct mappings
• Page table: map virtual page # to physical page #
• File metadata: map byte offset to disk block address
• Directory: map name to disk address or file #

10/26/17 CS 318 – Lecture 15 – File Systems 10

File Systems vs. Virtual Memory
• In both settings, want location transparency
- Application shouldn’t care about particular disk blocks or physical memory locations

• In some ways, FS has easier job than than VM:
- CPU time to do FS mappings not a big deal (= no TLB)
- Page tables deal with sparse address spaces and random access, files often

denser (0 . . . filesize − 1), ∼sequentially accessed

• In some ways FS’s problem is harder:
- Each layer of translation = potential disk access
- Space a huge premium! (But disk is huge?!?!) Reason? Cache space never

enough; amount of data you can get in one fetch never enough
- Range very extreme: Many files

10/26/17 CS 318 – Lecture 15 – File Systems 11

Some Working Intuitions
• FS performance dominated by # of disk accesses
- Say each access costs ∼10 milliseconds
- Touch the disk 100 extra times = 1 second
- Can do a billion ALU ops in same time!

• Access cost dominated by movement, not transfer:
- 1 sector: 5𝑚𝑠	 + 	4𝑚𝑠	 + 	5µ𝑠	(≈ 	512	𝐵/(100	𝑀𝐵/𝑠)) 	≈ 	9𝑚𝑠
- 50 sectors: 5𝑚𝑠	 + 	4𝑚𝑠	 +	 .25𝑚𝑠	 = 	9.25𝑚𝑠
- Can get 50x the data for only ∼3% more overhead!

• Observations that might be helpful:
- All blocks in file tend to be used together, sequentially
- All files in a directory tend to be used together
- All names in a directory tend to be used together

10/26/17 CS 318 – Lecture 15 – File Systems 12

File Access Methods
• Some file systems provide different access methods that

specify different ways for accessing data in a file
- Sequential access – read bytes one at a time, in order
- Direct access – random access given block/byte number
- Record access – file is array of fixed- or variable-length records, read/written

sequentially or randomly by record #
- Indexed access – file system contains an index to a particular field of each

record in a file, reads specify a value for that field and the system finds the
record via the index (DBs)

• What file access method does Unix, Windows provide?
• Older systems provide the more complicated methods

10/26/17 CS 318 – Lecture 15 – File Systems 13

Problem: How to Track File’s Data

• Disk management:
- Need to keep track of where file contents are on disk
- Must be able to use this to map byte offset to disk block
- Structure tracking a file’s sectors is called an index node or inode
- inodes must be stored on disk, too

• Things to keep in mind while designing file structure:
- Most files are small
- Much of the disk is allocated to large files
- Many of the I/O operations are made to large files
-Want good sequential and good random access (what do these require?)

10/26/17 CS 318 – Lecture 15 – File Systems 14

Straw Man: Contiguous Allocation
• “Extent-based”: allocate files like segmented memory
- When creating a file, make the user pre-specify its length and allocate all space at

once
- Inode contents: location and size

• Example: IBM OS/360
• Pros?
- Simple, fast access, both sequential and random

• Cons? (Think of corresponding VM scheme)
- External fragmentation

file a (base=1, len=3) file b (base=5, len=2)

What happens if file c needs
2 sectors?

10/26/17 CS 318 – Lecture 15 – File Systems 15

Straw Man #2: Linked Files
• Basically a linked list on disk.
- Keep a linked list of all free blocks
- Inode contents: a pointer to file’s first block
- In each block, keep a pointer to the next one

• Examples (sort-of): Alto, TOPS-10, DOS FAT

• Pros?
- Easy dynamic growth & sequential access, no fragmentation

• Cons?
- Linked lists on disk a bad idea because of access times
- Random very slow (e.g., traverse whole file to find last block)
- Pointers take up room in block, skewing alignment

file a (base=1) file b (base=5)

How do you find last block in a?

10/26/17 CS 318 – Lecture 15 – File Systems 16

Example: DOS FS (simplified)
• Linked files with key optimization: puts links in fixed-size “file

allocation table” (FAT) rather than in the blocks.

• Still do pointer chasing, but can cache entire FAT so can be
cheap compared to disk access

free
eof
1

eof
3

eof
4

FAT (16-bit entries)

A: 6 6 4 3

0
1
2
3
4
5
6

File A:

2 1

File B:

Directory (5)

B: 2

...

10/26/17 CS 318 – Lecture 15 – File Systems 17

FAT Discussion
• Entry size = 16 bits
- What’s the maximum size of the FAT?
- Given a 512 byte block, what’s the maximum size of FS?
- One solution: go to bigger blocks. Pros? Cons?

• Space overhead of FAT is trivial:
- 2 bytes / 512 byte block = ∼ 0.4% (Compare to Unix)

• Reliability: how to protect against errors?
- Create duplicate copies of FAT on disk
- State duplication a very common theme in reliability

• Bootstrapping: where is root directory?
- Fixed location on disk:

65,536 entries
32MiB

10/26/17 CS 318 – Lecture 15 – File Systems 18

Another Approach: Indexed Files
• Each file has an array holding all of its block pointers
- Just like a page table, so will have similar issues
- Max file size fixed by array’s size (static or dynamic?)
- Allocate array to hold file’s block pointers on file creation
- Allocate actual blocks on demand using free list

• Pros?
- Both sequential and random access easy

• Cons?
- Mapping table requires large chunk of contiguous space
- ...Same problem we were trying to solve initially

file a file b

10/26/17 CS 318 – Lecture 15 – File Systems 19

Indexed Files

• Issues same as in page tables
- Large possible file size = lots of unused entries
- Large actual size? table needs large contiguous disk chunk

• Solve identically: small regions with index array, this array with
another array, ... Downside?

10/26/17 CS 318 – Lecture 15 – File Systems 20

Multi-level Indexed Files: Unix inodes

• inode = 15 block pointers + “stuff”
- first 12 are direct blocks: solve problem of first blocks access slow
- then single, double, and triple indirect block

ptr1
ptr2

ptr13
ptr14
ptr15

… …

… …

“stuff”

10/26/17 CS 318 – Lecture 15 – File Systems 21

More About inodes
• inodes are stored in a fixed-size array
- Size of array fixed when disk is initialized; can’t be changed
- Lives in known location, originally at one side of disk:

- Now is smeared across it (why?)

- The index of an inode in the inode array called an i-number
- Internally, the OS refers to files by inumber
- When file is opened, inode brought in memory
- Written back when modified and file closed or time elapses

10/26/17 CS 318 – Lecture 15 – File Systems 22

Directories
• Problem:
- “Spend all day generating data, come back the next morning, want to use it.” – F.

Corbato, on why files/dirs invented

• Approach 0: Users remember where on disk their files are
- E.g., like remembering your social security or bank account #

• Yuck. People want human digestible names
- We use directories to map names to file blocks

• Directories serve two purposes
- For users, they provide a structured way to organize files
- For FS, they provide a convenient naming interface that allows the separation of

logical file organization from physical file placement on the disk

10/26/17 CS 318 – Lecture 15 – File Systems 23

Basic Directory Operations

Unix

• Directories implemented in files
- Use file ops to create dirs

• C runtime library provides a higher-level
abstraction for reading directories
- opendir(name)
- readdir(DIR)
- seekdir(DIR)
- closedir(DIR)

Windows

• Explicit dir operations
- CreateDirectory(name)
- RemoveDirectory(name)

• Very different method for reading directory
entries
- FindFirstFile(pattern)
- FindNextFile()

10/26/17 CS 318 – Lecture 15 – File Systems 24

A Short History of Directories
• Approach 1: Single directory for entire system
- Put directory at known location on disk
- Directory contains hname, inumberi pairs
- If one user uses a name, no one else can
- Many ancient personal computers work this way

• Approach 2: Single directory for each user
- Still clumsy, and ls on 10,000 files is a real pain

• Approach 3: Hierarchical name spaces
- Allow directory to map names to files or other dirs
- File system forms a tree (or graph, if links allowed)
- Large name spaces tend to be hierarchical (ip addresses, domain names, scoping

in programming languages, etc.)

10/26/17 CS 318 – Lecture 15 – File Systems 25

Hierarchical Directory

• Used since CTSS (1960s)
- Unix picked up and used really nicely

• Directories stored on disk just like regular files
- Special inode type byte set to directory
- User’s can read just like any other file
- Only special syscalls can write (why?)
- Inodes at fixed disk location
- File pointed to by the index may be another directory
- Makes FS into hierarchical tree

• Simple, plus speeding up file ops speeds up dir ops!

afs cdrombin dev sbin tmp

awk chmod chown

<name,inode#>

<afs,1021>
<tmp,1020>
<bin,1022>
<cdrom,4123>
<dev,1001>
<sbin,1011>
…

10/26/17 CS 318 – Lecture 15 – File Systems 26

Naming Magic
• Bootstrapping: Where do you start looking?
- Root directory always inode #2 (0 and 1 historically reserved)

• Special names:
- Root directory: “/”
- Current directory: “.”
- Parent directory: “..”

• Some special names are provided by shell, not FS:
- User’s home directory: “∼”
- Globbing: “foo.*” expands to all files starting “foo.”

• Using the given names, only need two operations to navigate the entire
name space:
- cd name: move into (change context to) directory name
- ls: enumerate all names in current directory (context)

10/26/17 CS 318 – Lecture 15 – File Systems 27

Unix inodes and Path Search

• Unix inodes are not directories
- Inodes describe where on the disk the blocks for a file are placed
- Directories are files, so inodes also describe where the blocks for directories

are placed on the disk

• Directory entries map file names to inodes
- To open “/one”, use Master Block to find inode for “/” on disk
- Open “/”, look for entry for “one”
- This entry gives the disk block number for the inode for “one”
- Read the inode for “one” into memory
- The inode says where first data block is on disk
- Read that block into memory to access the data in the file

10/26/17 CS 318 – Lecture 15 – File Systems 28

Unix Example: /a/b/c.c

10/26/17 CS 318 – Lecture 15 – File Systems 29

Default Context: Working Directory

• Cumbersome to constantly specify full path names
- In Unix, each process has a “current working directory” (cwd)
- File names not beginning with “/” are assumed to be relative to cwd;

otherwise translation happens as before

• Shells track a default list of active contexts
- A “search path” for programs you run
- Given a search path A : B : C, a shell will check in A, then check in B, then

check in C
- Can escape using explicit paths: “./foo”

• Example of locality

10/26/17 CS 318 – Lecture 15 – File Systems 30

Hard and Soft Links (synonyms)

• More than one dir entry can refer to a given file
- Unix stores count of pointers (“hard links”) to inode
- To make: “ln foo bar” creates a synonym (bar) for file foo

• Soft/symbolic links = synonyms for names
- Point to a file (or dir) name, but object can be deleted from underneath it (or

never even exist).
- Unix implements like directories: inode has special “symlink” bit set and

contains name of link target
-When the file system encounters a symbolic link it automatically translates it

(if possible).

inode #31279
refcount = 2

foo bar

10/26/17 CS 318 – Lecture 15 – File Systems 31

File Buffer Cache
• Applications exhibit significant locality for reading and writing

files
• Idea: Cache file blocks in memory to capture locality
- Called the file buffer cache
- Cache is system wide, used and shared by all processes
- Reading from the cache makes a disk perform like memory
- Even a small cache can be very effective

• Issues
- The file buffer cache competes with VM (tradeoff here)
- Like VM, it has limited size
- Need replacement algorithms again (LRU usually used)

10/26/17 CS 318 – Lecture 15 – File Systems 32

Caching Writes
• On a write, some applications assume that data makes it through the

buffer cache and onto the disk
- As a result, writes are often slow even with caching

• OSes typically do write back caching
- Maintain a queue of uncommitted blocks
- Periodically flush the queue to disk (30 second threshold)
- If blocks changed many times in 30 secs, only need one I/O
- If blocks deleted before 30 secs (e.g., /tmp), no I/Os needed

• Unreliable, but practical
- On a crash, all writes within last 30 secs are lost
- Modern OSes do this by default; too slow otherwise
- System calls (Unix: fsync) enable apps to force data to disk

10/26/17 CS 318 – Lecture 15 – File Systems 33

Read Ahead

• Many file systems implement “read ahead”
- FS predicts that the process will request next block
- FS goes ahead and requests it from the disk
- This can happen while the process is computing on previous block

• Overlap I/O with execution
-When the process requests block, it will be in cache
- Compliments the disk cache, which also is doing read ahead

• For sequentially accessed files can be a big win
- Unless blocks for the file are scattered across the disk
- File systems try to prevent that, though (during allocation)

10/26/17 CS 318 – Lecture 15 – File Systems 34

File Sharing
• File sharing has been around since timesharing
- Easy to do on a single machine
- PCs, workstations, and networks get us there (mostly)

• File sharing is important for getting work done
- Basis for communication and synchronization

• Two key issues when sharing files
- Semantics of concurrent access

• What happens when one process reads while another writes?
• What happens when two processes open a file for writing?
• What are we going to use to coordinate?

- Protection

10/26/17 CS 318 – Lecture 15 – File Systems 35

Protection

• File systems implement a protection system
-Who can access a file
- How they can access it

• More generally…
- Objects are “what”, subjects are “who”, actions are “how”

• A protection system dictates whether a given action performed
by a given subject on a given object should be allowed
- You can read and/or write your files, but others cannot
- You can read “/etc/motd”, but you cannot write it

10/26/17 CS 318 – Lecture 15 – File Systems 36

Representing Protection

Access Control Lists (ACL)
• For each object, maintain a

list of subjects and their
permitted actions

Capabilities
• For each subject, maintain a

list of objects and their
permitted actions

/one /two /three
Alice rw - rw
Bob w - r
Charlie w r rw

Subjects

Objects

ACL

Capability

10/26/17 CS 318 – Lecture 15 – File Systems 37

ACLs and Capabilities
• Approaches differ only in how the table is represented
-What approach does Unix use in the FS?

• Capabilities are easier to transfer
- They are like keys, can handoff, does not depend on subject

• In practice, ACLs are easier to manage
- Object-centric, easy to grant, revoke
- To revoke capabilities, have to keep track of all subjects that have the

capability – a challenging problem

• ACLs have a problem when objects are heavily shared
- The ACLs become very large
- Use groups (e.g., Unix)

10/26/17 CS 318 – Lecture 15 – File Systems 38

Summary
• Files
- Operations, access methods

• Directories
- Operations, using directories to do path searches

• File System Layouts
- Unix inodes

• File Buffer Cache
- Strategies for handling writes

• Read Ahead
• Sharing
• Protection
- ACLs vs. capabilities

10/26/17 CS 318 – Lecture 15 – File Systems 39

Next Time…

• Read Chapter 41, 42

10/26/17 CS 318 – Lecture 15 – File Systems 40

