CS 318 Principles of
Operating Systems

Fall 2017
Lecture 14: I/0 & Disks

Ryan Huang

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Midterm Results

c 15
o)
o
o
o 10
5
. L L
40 45 50 55 60 65 70 80

Score Range

* Mean: 56.5, Max: 72.5, STD Dev 8.7
- 318 Section: Mean 58.5 (amazing!), Max 70, STD Dev 9.2

10/24/17

CS 318 — Lecture 14 — I/0 & Disks

100

Midterm Results

’assignment mean

10/24/17

2 3 4 5
Question

CS 318 — Lecture 14 — I/0 & Disks

Midterm Results

» Tend to overthink a problem

- The synchronization and dining graduate problem are directly adapted from
homework and textbook

- A variety of overly complex (incorrect) answers

- Some serious misconception
- E.g., syscall makes user-level threads faster (Q4 also from homework)

* Don’t panic if you didn’t do well on midterm
- Still a lot of chance to make up, e.g., do Lab 3 well
- But do make sure you understand all the questions and answers now

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 4

Administrivia

- Midterm solution will not be directly posted online
- The Rubric items are published in gradescope
- Can request to see the copy of sample solution in my office hour or the CASs’

- If there Is issue with grading, email the staff list or request
through gradescope

- If you want to talk about midterm, don’t hesitate to contact me

- Lab 3 is out, please start early
- workload increasing
- absolute late penalty increasing
- suggest checking design with the staff first

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 5

/O Devices

* I/O is critical to computer system to interact with systems.

* Issue:
- How should I/O be integrated into systems?
- What are the general mechanisms?
- How can we make the efficiently?

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 6

Structure of Input/Output (I/0) Device

Memory
Memory Bus

(proprietary)

> General 1/O Bus
» Peripheral I/O Bus

<

(e.g., SCSI, SATA, USB)

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 7

Buses

- Buses

- Data paths that provided to enable information between CPU(s), RAM, and
/0O devices.

* /0 bus

- Data path that connects a CPU to an I/O device.

- 1/0 bus is connected to I/O device by three hardware components: I/O ports,
interfaces and device controllers.

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 8

What Is I/0O Bus? E.g., PCI

DOO®

monitor processor
cache
c?;ﬁ'ﬁgif:r b rii%?\ﬁ';?lrenro B memory SCSI controller
| PCI bus)
IDE disk controller expansion bus keyboard
interface

@ @ { expansion bus)
@ @ parallel serial
port port

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 9

Canonical Device

OS reads/writes to these

Device Registers: IESIENIE Command Data interface

Canonical Device

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 10

Canonical Device

OS reads/writes to these

Device Registers: IESIENIE Command Data interface

??? internals

Canonical Device

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 11

Canonical Device

OS reads/writes to these

Device Registers: IESIENIE Command Data interface

Micro-controller (CPU) .
Memory (DRAM or SRAM or both) internals
Other Hardware-specific Chips

Canonical Device

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 12

Hardware Interface Of Canonical Device

- status register
- See the current status of the device

- command register
- Tell the device to perform a certain task

- data register
- Pass data to the device, or get data from the device

By reading or writing the above three registers, the OS controls
device behavior.

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 13

Hardware Interface Of Canonical Device

* Typical interaction example

while (STATUS == BUSY)
; //wait until device is not busy
write data to data register
write command to command register
Doing so starts the device and executes the command
while (STATUS == BUSY)

; //wait until device is done with your request

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 14

Polling

- OS waits until the device is ready by repeatedly reading the
status register

- Positive aspect is simple and working.

- However, it wastes CPU time just waiting for the device.
« Switching to another ready process is better utilizing the CPU.

;task 1 | P | : polling

“waiting 10" 1

CU 1111 (11 {1|plplPlP|lP|1T|T1T|[1T]1]1

Disk 111111111

Diagram of CPU utilization by polling

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 15

Interrupts

- Put the I/0 request process to sleep and context switch to
another

- When the device is finished, wake the process waiting for the

I/0 by interrupt
- Positive aspect is allow to CPU and the disk are properly utilized.

1 | : task 1 2 | :task 2

CPU 1111112222211 |1T]1]1

Disk 1111 (1]1

Diagram of CPU utilization by interrupt

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 16

Polling vs Interrupts

- However, “interrupts is not always the best solution”
- If, device performs very quickly, interrupt will “slow down” the system.

 E.g., high network packet arrival rate

- Packets can arrive faster than OS can process them
Interrupts are very expensive (context switch)
Interrupt handlers have high priority

In worst case, can spend 100% of time in interrupt handler and never make any progress —
receive livelock

Best: Adaptive switching between interrupts and polling

If a device is fast 2 poll is best.
If it is slow > interrupts is better.

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 17

One More Problem: Data Copying

- CPU wastes a lot of time in copying a large chunk of data from
memory to the device.

“over-burdened” 1 | :task 1 2 | :task 2

C | : copy data from memory

CPU (1|1 1]1]CfC|Cl2|2|2|2|2]|1]1]1

Disk 111111111

Diagram of CPU utilization

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 18

DMA (Direct Memory Access)

Memory buffers

Buffer descriptor list

1500

- Ildea: only use CPU to transfer control requests, not data

* Include list of buffer locations in main memory
- Device reads list and accesses buffers through DMA
- Descriptions sometimes allow for scatter/gather I/O

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 19

DMA (Direct Memory Access) Cont.

- When completed, DMA raises an interrupt, I/0 begins on Disk.

1 | : task 1 2 | :task 2

C | : copy data from memory

CPU 111111222222 (2|2|1]1]1

DMA C|C|C

Disk 111111111

Diagram of CPU utilization by DMA

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 20

Example: Network Interface Card

L L Network link
Bus = =— Link
interface —= __[[[}-= interface

Host I/O bus

Adaptor

v

- Link interface talks to wire/fiber/antenna
- Typically does framing, link-layer CRC

* FIFOs on card provide small amount of buffering

- Bus interface logic uses DMA to move packets to and from buffers in main
memory

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 21

Device Interaction

« How the OS communicates with the device?

» Solutions

- 1/O instructions: a way for the OS to send data to specific device registers.
 EX) in and out instructions on x86
- memory-mapped I/O

* Device registers available as if they were memory locations.
 The OS load (to read) or store (to write) to the device instead of main memory.

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 22

x86 I/0O instructions

static inline uint8 t inb (uintlé t port)

{
uint8 t data;
asm volatile ("inb %wl, %b0" : "=a" (data) : "Nd" (port));
return data;
}
static inline void outb (uintlé t port, uint8 t data)
{
asm volatile ("outb %b0, %wl" : : "a" (data), "Nd" (port));
}
static inline void insw (uintl6é_t port, void *addr, size t cnt)
{
asm volatile ("rep insw" : "+D" (addr), "+c" (cnt)
'd" (port) : "memory");
}

10/24/17 CS 318 — Lecture 14 — /O & Disks Pintos threads/io.h 23

IDE Disk Driver

void IDE ReadSector(int disk, int off, void IDEWait()
void *buf) {
{ // Discard status 4 times
// Select Drive inb(0x1F7); inb(0x1F7);
outb(0x1F6, disk == 0 ? OxXEO : OxXFO0); inb(0x1F7); inb(0x1F7);
IDEWait(); // Wait for status BUSY flag to clear
// Read length (1 sector = 512 B) while ((inb(0x1F7) & 0x80) != 0);
outb(0x1F2, 1); }

outb(0x1F3, off); // LBA low

outb(0x1F4, off >> 8); // LBA mid
outb(0x1F5, off >> 16); // LBA high
outb(0x1F7, 0x20); // Read command
insw(0x1F0, buf, 256); // Read 256 words

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 24

Memory-mapped IO

* in/out instructions slow and clunky
- Instruction format restricts what registers you can use
- Only allows 216 different port numbers

- Per-port access control turns out not to be useful (any port access allows you
to disable all interrupts)

* Devices can achieve same effect with physical addresses, e.g.:

volatile int32 t *device control

= (int32 t *) (0xc0100 + PHYS BASE);
*device control = 0x80;
int32 t status = *device control;

- OS must map physical to virtual addresses, ensure non-cachable

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 25

Protocol Variants

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

- Status checks: polling vs. interrupts
- Data: PIO vs. DMA

- Control: special instructions vs. memory-mapped I/O

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 26

Variety Is a Challenge

* Problem:
- many, many devices
- each has its own protocol

- How can we avoid writing a slightly different OS for each H/W
combination?

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 27

Variety Is a Challenge

* Problem:
- many, many devices
- each has its own protocol

- How can we avoid writing a slightly different OS for each H/W
combination?

- Solution: Abstraction!
- Build a common interface
- Write device driver for each device
- Drivers are 70% of Linux source code

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 28

File System Abstraction

* File system specifics of which disk class it is using.
- EX) It issues block read and write request to the generic block layer.

Application user
——————————— POSIX API [open, read, write, close, etc] J— —_——— = ———-
. ; kernel
File System '
Generic Block Interface [block read/write] }
Generic Block Layer
Specific Block Interface [protocol-specific read/write]J
Device Driver [SCSI, ATA, etc] The File System Stack

Hard Drive

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 29

Hard Disks

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 30

Hard Disks

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 31

Hard Disks

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 32

Basic Interface

* Disk interface presents linear array of sectors
- Historically 512 Bytes
- Written atomically (even if there is a power failure)

- 4 KiB in “advanced format” disks

 Torn write: If an untimely power loss occurs, only a portion of a larger write may
complete

* Disk maps logical sector #s to physical sectors

* OS doesn’t know logical to physical sector mapping

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 33

Basic Geometry

- Platter (Aluminum coated with a thin magnetic layer)
- A circular hard surface
- Data is stored persistently by inducing magnetic changes to it.
- Each platter has 2 sides, each of which is called a surface.

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 34

Basic Geometry (Cont.)

- Spindle
- Spindle is connected to a motor that spins the platters around.

- The rate of rotations is measured in RPN (Rotations Per Minute).
« Typical modern values : 7,200 RPM to 15,000 RPM.

* Track
- Concentric circles of sectors
- Data is encoded on each surface in a track.
- A single surface contains many thousands and thousands of tracks.

 Cylinder
- A stack of tracks of fixed radius
- Heads record and sense data along cylinders
- Generally only one head active at a time

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 35

Cylinders, Tracks, & Sectors

track t «— spindle

— arm assembly

sector s

|

|

|

: read-write
| head
|

|

I

I

!

I

. I
cylinder ¢ —>
I

|

platter

LD

rotation

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 36

A Simple Disk Drive

thates this way

A Single Track Plus A Head

- Disk head (One head per surface of the drive)

- The process of reading and writing is accomplished by the disk head.
- Attached to a single disk arm, which moves across the surface.

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 37

Single-track Latency: The Rotational Delay

thates this way

A Single Track Plus A Head

« Rotational delay: Time for the desired sector to rotate
- Ex) Full rotational delay is R and we start at sector 6
* Read sector 0: Rotational delay =§
* Read sector 5: Rotational delay = R-1 (worst case.)

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 38

Multiple Tracks

* Let’s Read 12!

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 39

Multiple Tracks: Seek To Right Track

* Let’s Read 12!

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 40

Multiple Tracks: Seek To Right Track

* Let’s Read 12!

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 41

Multiple Tracks: Seek To Right Track

* Let’s Read 12!

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 42

Multiple Tracks: Wait for Rotation

* Let’s Read 12!

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 43

Multiple Tracks: Wait for Rotation

* Let’s Read 12!

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 44

Multiple Tracks: Wait for Rotation

* Let’s Read 12!

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 45

Multiple Tracks: Wait for Rotation

* Let’s Read 12!

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 46

Multiple Tracks: Wait for Rotation

* Let’s Read 12!

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 47

Multiple Tracks: Wait for Rotation

* Let’s Read 12!

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 48

Multiple Tracks: Transfer Data

* Let’s Read 12!

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 49

Multiple Tracks: Transfer Data

* Let’s Read 12!

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 50

Multiple Tracks: Transfer Data

* Let’s Read 12!

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 51

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 52

Multiple Tracks: Seek Time

Ro(tates this way thates this way

* Seek: Move the disk arm to the correct track
- Seek time: Time to move head to the track contain the desired sector.
- One of the most costly disk operations.

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 53

Seek, Rotate, Transfer

* Acceleration - Coasting = Deceleration - Settling
- Acceleration: The disk arm gets moving.
- Coasting: The arm is moving at full speed.
- Deceleration: The arm slows down.
- Settling: The head is carefully positioned over the correct track.

 Seeks often take several milliseconds!
- settling alone can take 0.5 to 2ms.
- entire seek often takes 4 - 10 ms.

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 54

Seek, Rotate, Transfer

- Depends on rotations per minute (RPM)
- 7200 RPM is common, 1500 RPM is high end.

« With 7200 RPM, how long to rotate around?

-1 /7200 RPM = 1 minute / 7200 rotations = 1 second / 120 rotations = 8.3
ms / rotation

- Average rotation?
-83ms/2=415ms

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 55

Seek, Rotate, Transfer

* The final phase of I/0
- Data is either read from or written to the surface.

 Pretty fast — depends on RPM and ector density
* 100+ MB/s is typical for maximum transfer rate

- How long to transfer 512-bytes?
- 9512 bytes * (1s/100 MB) =5 us

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 56

Workload

* So...

- seeks are slow
- rotations are slow
- transfers are fast

- What kind of workload is fastest for disks?
- Sequential: access sectors in order (transfer dominated)
- Random: access sectors arbitrarily (seek+rotation dominated)

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 57

Track Skew

Rc(>tates this way

Three Tracks: Track Skew Of 2

- Make sure that sequential reads can be properly serviced even when
crossing track boundaries

- Without track skew, the head would be moved to the next track but the desired next
block would have already rotated under the head.

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 58

Disk Scheduling

Ro(tates this way

 Disk Scheduler decides which I/O request to schedule next

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 59

Disk Scheduling: FCFS

* “First Come First Served”
- Process disk requests in the order they are received

- Advantages
- Easy to implement
- Good fairness

- Disadvantages
- Cannot exploit request locality
- Increases average latency, decreasing throughput

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 60

FCFS Example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
|
|

I I 1l I il I I

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 61

SSTF (Shortest Seek Time First)

- Order the queue of I/0 request by track

* Pick requests on the nearest track to complete first
- Also called shortest positioning time first (SPTF)

- Advantages
- Exploits locality of disk requests
- Higher throughput

- Disadvantages
- Starvation
- Don’t always know what request will be fastest

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 62

SSTF Example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
L | I | I |
| |

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 63

“Elevator” Scheduling (SCAN)

- Sweep across disk, servicing all requests passed
- Like SSTF, but next seek must be in same direction
- Switch directions only if no further requests

- Advantages
- Takes advantage of locality
- Bounded waiting

- Disadvantages
- Cylinders in the middle get better service
- Might miss locality SSTF could exploit

« CSCAN: Only sweep in one direction
- Very commonly used algorithm in Unix

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 64

CSCAN example

queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 08 122124 183199
|
[

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 65

Flash Memory

- Today, people increasingly using flash memory

- Completely solid state (no moving parts)
- Remembers data by storing charge
- Lower power consumption and heat
- No mechanical seek times to worry about

- Limited # overwrites possible
- Blocks wear out after 10,000 (MLC) — 100,000 (SLC) erases

- Requires flash translation layer (FTL) to provide wear leveling, so repeated writes to logical
block don’t wear out physical block

- FTL can seriously impact performance

- Limited durability
- Charge wears out over time
- Turn off device for a year, you can potentially lose data!

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 66

Next Time...

- Read Chapter 39, 40

10/24/17 CS 318 — Lecture 14 — I/0 & Disks 67

