
CS 318 Principles of 
Operating Systems

Fall 2017

Lecture 13: Dynamic Memory Allocation
Ryan Huang



Administrivia

• Lab 2 due Friday midnight

• Guoye will be traveling 10/21 to 10/30
- Lab 3 overview session will be livestreamed or recorded
- His office hours will be canceled, but please ask questions on Piazza, via 

emails, or request remote meeting

• Midterm grading

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 2



Memory Allocation

• Static Allocation (fixed in size)
- want to create data structures that are fixed and don’t need to grow or shrink
- global variables, e.g., char name[16];
- done at compile time

• Dynamic Allocation (change in size)
- want to increase or decrease the size of a data structure according to 

different demands
- done at run time

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 3



Dynamic Memory Allocation

• Almost every useful program uses it 
- Gives wonderful functionality benefits
- Don’t have to statically specify complex data structures
- Can have data grow as a function of input size
- Allows recursive procedures (stack growth)
- But, can have a huge impact on performance

• Two types of dynamic memory allocation
- Stack allocation: restricted, but simple and efficient
- Heap allocation (focus today): general, but difficult to implement.

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 4



Dynamic Memory Allocation
• Today: how to implement dynamic heap allocation
- Lecture based on [Wilson] (good survey from 1995)

• Some interesting facts:
- Two or three line code change can have huge, non-obvious impact on how 

well allocator works (examples to come)
- Proven: impossible to construct an "always good" allocator
- Surprising result: after 35 years, memory management still poorly 

understood
• Mallacc: Accelerating Memory Allocation: ASPLOS 2017 Highlights

- Big companies may write their own “malloc”
• Google: TCMalloc
• Facebook: jemalloc

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 5



Why Is It Hard?

• Satisfy arbitrary set of allocation and frees.

• Easy without free: set a pointer to the beginning of some big 
chunk of memory (“heap”) and increment on each allocation:

• Problem: free creates holes (“fragmentation”) Result? Lots of 
free space but cannot satisfy request!

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 6

heap (free memory)

allocation current free position



More Abstractly

• What an allocator must do?
- Track which parts of memory in use, which parts are free
- Ideal: no wasted space, no time overhead

• What the allocator cannot do?
- Control order of the number and size of requested blocks
- Know the number, size, & lifetime of future allocations
- Move allocated regions (bad placement decisions permanent)

• The core fight: minimize fragmentation
- App frees blocks in any order, creating holes in “heap” 
- Holes too small? cannot satisfy future requests

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 7

NULL

freelist

20 10 20 10 20malloc(20)?



What Is Fragmentation Really?

• Inability to use memory that is free

• Two factors required for fragmentation
1. Different lifetimes—if adjacent objects die at different times, then 

fragmentation:

• If all objects die at the same time, then no fragmentation:

2. Different sizes: If all requests the same size, then no fragmentation (that’s 
why no external fragmentation with paging):

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 8



Important Decisions
• Placement choice: where in free memory to put a requested block?
- Freedom: can select any memory in the heap
- Ideal: put block where it won’t cause fragmentation later (impossible in general: 

requires future knowledge)

• Split free blocks to satisfy smaller requests?
- Fights internal fragmentation
- Freedom: can choose any larger block to split
- One way: choose block with smallest remainder (best fit)

• Coalescing free blocks to yield larger blocks
- Freedom: when to coalesce (deferring can save work)
- Fights external fragmentation

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 9

20 10 30

30 30



Impossible to “Solve” Fragmentation
• If you read allocation papers to find the best allocator
- All discussions revolve around tradeoffs
- The reason? There cannot be a best allocator

• Theoretical result:
- For any possible allocation algorithm, there exist streams of allocation and 

deallocation requests that defeat the allocator and force it into severe 
fragmentation.

• How much fragmentation should we tolerate?
- Let 𝑀 = bytes of live data, nmin = smallest allocation, nmax = largest allocation
- Bad allocator: M	·	(nmax/nmin)

• E.g., make all allocations of size nmax regardless of requested size
- Good allocator: ∼ M	·	log(nmax/nmin)

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 10



Pathological Examples

• Suppose heap currently has 7 20-byte chunks

-What’s a bad stream of frees and then allocates?

• Next: two allocators (best fit, first fit) that, in practice, work 
pretty well
- “pretty well” = ∼20% fragmentation under many workloads

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 11

2020 20 20 20 20 20



Pathological Examples

• Suppose heap currently has 7 20-byte chunks

-What’s a bad stream of frees and then allocates?
- Free every other chunk, then alloc 21 bytes

• Next: two allocators (best fit, first fit) that, in practice, work 
pretty well
- “pretty well” = ∼20% fragmentation under many workloads

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 12

2020 20 20 20 20 20



Best Fit
• Strategy: minimize fragmentation by allocating space from 

block that leaves smallest fragment
- Data structure: heap is a list of free blocks, each has a header holding block 

size and a pointer to the next block

- Code: Search freelist for block closest in size to the request. (Exact match is 
ideal)
- During free return free block, and (usually) coalesce adjacent blocks

• Potential problem: Sawdust
- Remainder so small that over time left with “sawdust” everywhere
- Fortunately not a problem in practice

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 13



Best Fit Gone Wrong

• Simple bad case: allocate n,	m	(n	<	m)	in alternating orders, free 
all the ns, then try to allocate an n	+	1

• Example: start with 99 bytes of memory
- alloc 19, 21, 19, 21, 19

- free 19, 19, 19:

- alloc 20? Fails! (wasted space = 57 bytes)

• However, doesn’t seem to happen in practice

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 14

2119 19 21 19

2119 19 21 19



First Fit

• Strategy: pick the first block that fits
- Data structure: free list, sorted LIFO, FIFO, or by address
- Code: scan list, take the first one

• Suppose memory has free blocks:
-Workload 1: alloc(10), alloc(20)

-Workload 2: alloc(8), alloc(12), alloc(12)

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 15

1520

20Best Fit 15 First Fit 1520

Fail!
Best Fit 1520

Fail!

First Fit 20 15



First Fit

• LIFO: put free object on front of list.
- Simple, but causes higher fragmentation
- Potentially good for cache locality

• Address sort: order free blocks by address
- Makes coalescing easy (just check if next block is free)
- Also preserves empty/idle space (locality good when paging)

• FIFO: put free object at end of list
- Gives similar fragmentation as address sort, but unclear why

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 16



Subtle Pathology: LIFO FF

• Storage management example of subtle impact of simple 
decisions

• LIFO first fit seems good:
- Put object on front of list (cheap), hope same size used again (cheap + good 

locality)

• But, has big problems for simple allocation patterns:
- E.g., repeatedly intermix short-lived 2n-byte allocations, with long-lived (n	+	
1)-byte allocations
- Each time large object freed, a small chunk will be quickly taken, leaving 

useless fragment. Pathological fragmentation

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 17



First Fit: Nuances

• First fit sorted by address order, in practice
- Blocks at front preferentially split, ones at back only split when no larger one 

found before them
- Result? Seems to roughly sort free list by size
- So? Makes first fit operationally similar to best fit: a first fit of a sorted list = 

best fit!

• Problem: sawdust at beginning of the list
- Sorting of list forces a large requests to skip over many small blocks. Need to 

use a scalable heap organization

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 18



Some Other Ideas

• Worst-fit:
- Strategy: fight against sawdust by splitting blocks to maximize leftover size
- In real life seems to ensure that no large blocks around

• Next fit:
- Strategy: use first fit, but remember where we found the last thing and start 

searching from there
- Seems like a good idea, but tends to break down entire list 

• Buddy systems:
- Round up allocations to power of 2 to make management faster

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 19



Buddy Allocator Motivation

• Allocation requests: frequently 2^n
- E.g., allocation physical pages in Linux
- Generic allocation strategies: overly generic

• Fast search (allocate) and merge (free)
- Avoid iterating through free list

• Avoid external fragmentation for req of 2^n

• Keep physical pages contiguous

• Used by Linux, FreeBSD

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 20



Buddy Allocation

• Recursively divide larger blocks until reach suitable block
- Big enough to fit but if further splitting would be too small

• Insert “buddy” blocks into free lists
• Upon free, recursively coalesce block with buddy if buddy free
10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 21

64 KB

32 KB 32 KB

16 KB 16 KB

8 KB buddy block



Buddy Allocation Example

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 22

freelist[3] = {0}

freelist[0] = {1}, freelist[1] = {2}, freelist[2] = {4}
p1 = alloc(2^0)

p2 = alloc(2^2)

free(p1)

free(p2)

freelist[0] = {1}, freelist[1] = {2}

freelist[2] = {0}

freelist[3] = {0}



Known Patterns of Real Programs
• So far we’ve treated programs as black boxes.

• Most real programs exhibit 1 or 2 (or all 3) of the following patterns 
of alloc/dealloc:

- Ramps: accumulate data monotonically over time

- Peaks: allocate many objects, use briefly, then free all 

- Plateaus: allocate many objects, use for a long time

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 23



Pattern 1: ramps

• In a practical sense: ramp = no free!
- Implication for fragmentation?
-What happens if you evaluate allocator with ramp programs only?

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 24



Pattern 2: Peaks

• Peaks: allocate many objects, use briefly, then free all
- Fragmentation a real danger
-What happens if peak allocated from contiguous memory?
- Interleave peak & ramp? Interleave two different peaks?

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 25



Exploiting Peaks

• Peak phases: allocate a lot, then free everything
- Change allocation interface: allocate as before, but only support free of 

everything all at once
- Called “arena allocation”, “obstack” (object stack), or alloca/procedure call 

(by compiler people)

• Arena = a linked list of large chunks of memory
- Advantages: alloc is a pointer increment, free is “free” 
- No wasted space for tags or list pointers

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 26



Pattern 3: Plateaus

• Plateaus: allocate many objects, use for a long time
-What happens if overlap with peak or different plateau?

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 27



Slab Allocation

• Kernel allocates many instances of same structures
- E.g., a 1.7 KB task_struct for every process on system

• Often want contiguous physical memory (for DMA)

• Slab allocation optimizes for this case:
- A slab is multiple pages of contiguous physical memory
- A cache contains one or more slabs
- Each cache stores only one kind of object (fixed size)

• Each slab is full, empty, or partial

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 28



Slab Allocation
• E.g., need new task_struct?
- Look in the task_struct cache
- If there is a partial slab, pick free task_struct in that
- Else, use empty, or may need to allocate new slab for cache

• Free memory management: bitmap
- Allocate: set bit and return slot, Free: clear bit

• Advantages: speed, and no internal fragmentation

• Used in FreeBSD and Linux, implemented on top of buddy page 
allocator

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 29



Simple, Fast Segregated Free Lists

• Array of free lists for small sizes, tree for larger
- Place blocks of same size on same page
- Have count of allocated blocks: if goes to zero, can return page

• Pro: segregate sizes, no size tag, fast small alloc
• Con: worst case waste: 1 page per size even w/o free, After pessimal free: 

waste 1 page per object
• TCMalloc [Ghemawat] is a well-documented malloc like this

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 30



Typical Space Overheads
• Free list bookkeeping and alignment determine minimum 

allocatable size:
• If not implicit in page, must store size of block
• Must store pointers to next and previous freelist element

• Allocator doesn’t know types
- Must align memory to conservative boundary

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 31



Getting More Space from OS
• On Unix, can use sbrk
- E.g., to activate a new zero-filled page:

• For large allocations, sbrk a bad idea
- May want to give memory back to OS
- Can’t with sbrk unless big chunk last thing allocated
- So allocate large chunk using mmap’s MAP_ANON

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 32

/* add nbytes of valid virtual address space */
void *get_free_space(size_t nbytes) {
void *p = sbrk(nbytes);
if (!p)
error("virtual memory exhausted");

return p;
}



Next Time…

• Read Chapter 36, 37

10/19/17 CS 318 – Lecture 13 – Dynamic Memory Allocation 33


