CS 318 Principles of
Operating Systems

Fall 2017

Midterm Review

Ryan Huang

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

2017-18 Gerald M. Masson Distinguished Lecture Series

Distinguished Lecturer
Shafi Goldwasser
Massachusetts Institute of
Technology

Hg;' erman HélTB—l7

’

“Pseudo Deterministic Algorithms and Proofs”

ABSTRACT: Pseudo-deterministic BIO: Shafi Goldwasser is the RSA
algorithms are a class of Professor of Electrical Engineering and
randomized search algorithms, Computer Science at MIT. She is also a
which output a unique answer professor of computer science and

with high probability. Intuitively, applied mathematics at the Weizmann
they are indistinguishable from Institute of Science in Israel. Goldwasser
deterministic algorithms by an pioneering contributions include the
polynomial time observer of their introduction of interactive proofs, zero
input/output behavior. In this talk, knowledge protocols, hardness of

I will describe what is known approximation proofs for combinatorial
about pseudo-deterministic problems, and multi-party secure
algorithms in the sequential, protocols.

sub-linear and parallel setting.

‘ I,l]OHNS HOPKINS

10/12/17

Midterm

- October 17t Tuesday 9:00-10:20 am at classroom

- Covers material before virtual memory

- Based upon lecture material, homeworks, and project
* One 8.5”°x11” double-sided sheet of notes

- Obligatory: Please, do not cheat

- Do not copy from your neighbor
- No one involved will be happy, particularly the teaching staff

10/12/17 CS 318 — Midterm Review 3

Arch Support for OSes

- Types of architecture support

- Manipulating privileged machine state
- Generating and handling events

10/12/17 CS 318 — Midterm Review 4

Privileged Instructions

- What are privileged instructions?

- Who gets to execute them?
- How does the CPU know whether they can be executed?
- Difference between user and kernel mode

* Why do they need to be privileged?

* What do they manipulate?

- Protected control registers
- Memory management
- |/O devices

10/12/17 CS 318 — Midterm Review 5

 Events

- Synchronous: fault (exceptions), syscall trap
- Asynchronous: interrupts, software interrupt

- What are faults, and how are they handled?
- What are system calls, and how are they handled?

- What are interrupts, and how are they handled?
- How do I/O devices use interrupts?

- What is the difference between exceptions and interrupts?

10/12/17 CS 318 — Midterm Review 6

Processes

- What is a process?
- What resource does it virtualize?
- What is the difference between a process and a program?

- What is contained in a process?

10/12/17 CS 318 — Midterm Review 7

Process Data Structures

* Process Control Blocks (PCBs)

- What information does it contain?
- How is it used in a context switch?

- State queues

- What are process states?

- What is the process state graph?

- When does a process change state?

- How does the OS use queues to keep track of processes?

10/12/17 CS 318 — Midterm Review 8

Process Manipulation

* What does CreateProcess on NT do?

 What does fork() on Unix do?
- What does it mean for it to “return twice”?

 What does exec () on Unix do?
- How is it different from fork?

- How are fork and exec used to implement shells?

10/12/17 CS 318 — Midterm Review 9

Threads

« What is a thread?

- What is the difference between a thread and a process?
- How are they related?

* Why are threads useful?

« What is the difference between user-level and kernel-level

threads?
- What are the advantages/disadvantages of one over another?

10/12/17 CS 318 — Midterm Review 10

Thread Implementation

- How are threads managed by the run-time system?

- Thread control blocks, thread queues
- How is this different from process management?

- What operations do threads support?

- create, yield, sleep, etc.
- What does thread yield do?

« What is a context switch?

- What is the difference between non-preemptive scheduling and

preemptive thread scheduling?
- Voluntary and involuntary context switches

10/12/17 CS 318 — Midterm Review 11

Synchronization

- Why do we need synchronization?

- Coordinate access to shared data structures
- Coordinate thread/process execution

- What can happen to shared data structures if synchronization is not

used?

- Race condition
- Corruption
- Bank account example

- When are resources shared?

- Global variables, static objects
- Heap objects

10/12/17 CS 318 — Midterm Review 12

Concurrent Programs

Monitor bounded buffer { Resource get resource() {
Resource buffer[N]; while (buffer array is empty)
// Variables for indexing buffer wait (not empty);
// monitor invariant involves these vars Get resource R from buffer array;
Condition not full; // space in buffer signal(not full);
Condition not empty; // value in buffer return R;
}
void put resource (Resource R) { } // end monitor

while (buffer array is full)
wait(not full);
Add R to buffer array;
signal (not empty);
}

« Our goal is to write concurrent programs...

10/12/17 CS 318 — Midterm Review 13

Concurrent Programs

Resource get resource() {
— while (buffer array is empty)
Need mutual wait(not_empty);
exclusion for critical — Get resource R from buffer array;
sections signal (not full);
- return R;
} \

Need mechanisms for
coordinating threads

10/12/17 CS 318 — Midterm Review 14

Mutual Exclusion

lock.acquire();

Need mutual
exclusion for critical —
sections

lock.release();

Interrupts enabled, other
threads can run (just not in
this critical section)

10/12/17 CS 318 — Midterm Review 15

10/12/17

Mutual Exclusion

void acquire () { ‘//////
// Disable interrupts :%

}

// Enable interrupts

Also need mutual exclusion; disable
interrupts, or use spinlocks with special
hardware instructions

lock.acquire();

lock.release();

CS 318 — Midterm Review

16

Mutual Exclusion

« What is mutual exclusion?

- What is a critical section?
- What guarantees do critical sections provide?

- What are the requirements of critical sections?
« Mutual exclusion (safety)
« Progress (liveness)
» Bounded waiting (no starvation: liveness)
» Performance

« How does mutual exclusion relate to critical sections?

- What are the mechanisms for building critical sections?
- Locks, semaphores, monitors, condition variables

10/12/17 CS 318 — Midterm Review 17

Locks

- What does Acquire do?
- What does Release do?
- What does it mean for Acquire/Release to be atomic?

- How can locks be implemented?
- Spinlocks
- Disable/enable interrupts
- Blocking

* How does test-and-set work?
- What kind of lock does it implement?

- What are the limitations of using spinlocks, interrupts?
- Inefficient, interrupts turned off too long

10/12/17 CS 318 — Midterm Review 18

Semaphores

- What is a semaphore?

- What does Wait/P/Decrement do?

- What does Signal/V/Increment do?

- How does a semaphore differ from a lock?

- What is the difference between a binary semaphore and a counting semaphore?

* When do threads block on semaphores?
- When are they woken up again?

* Using semaphores to solve synchronization problems

- Readers/Writers problem
- Bounded Buffers problem

10/12/17 CS 318 — Midterm Review 19

Monitors

« What is a monitor?

- Shared data
- Procedures
- Synchronization

* In what way does a monitor provide mutual exclusion?
- To what extent is it provided?

- How does a monitor differ from a semaphore?
- How does a monitor differ from a lock?

- What kind of support do monitors require?
- Language, run-time support

10/12/17 CS 318 — Midterm Review 20

Condition Variables

« What is a condition variable used for?

- Coordinating the execution of threads
- Not mutual exclusion

- Operations

- What are the semantics of Wait?
- What are the semantics of Signal?
- What are the semantics of Broadcast?

- How are condition variables different from semaphores?

10/12/17 CS 318 — Midterm Review 21

Implementing Monitors

- What does the implementation of a monitor look like?

- Shared data

- Procedures

- A'lock for mutual exclusion to procedures (w/ a queue)
- Queues for the condition variables

 What is the difference between Hoare and Mesa monitors?

- Semantics of signal (whether the woken up waiter gets to run immediately or
not)
- What are their tradeoffs?

- What does Java provide?

10/12/17 CS 318 — Midterm Review 22

Locks and Condition Vars

* Condition variables are also used without monitors in

conjunction with locks
A monitor = a module whose state includes a C/V and a lock

* Why must cond wait both release mutex t & sleep?

10/12/17 CS 318 — Midterm Review 23

Scheduling

- What kinds of scheduling is there?

- Long-term scheduling
- Short-term scheduling

-« Components
- Scheduler (dispatcher)

* When does scheduling happen?

- Job changes state (e.g., waiting to running)
- Interrupt, exception
- Job creation, termination

10/12/17 CS 318 — Midterm Review 24

Scheduling Goals

* Goals

- Maximize CPU utilization
- Maximize job throughput
- Minimize turnaround time
- Minimize waiting time

- Minimize response time

- What is the goal of a batch system?

- What is the goal of an interactive system?

10/12/17 CS 318 — Midterm Review 25

Starvation

- Starvation
- Indefinite denial of a resource (CPU, lock)

 Causes

- Side effect of scheduling
- Side effect of synchronization

- Operating systems try to prevent starvation

10/12/17 CS 318 — Midterm Review 26

Scheduling Algorithms

- What are the properties, advantages and disadvantages of the

following scheduling algorithms?

- First Come First Serve (FCFS)/First In First Out (FIFO)

- Shortest Job First (SJF)
* Preemptive: Shortest-Remaining-Time-First (SRTF)

- Priority
- Round Robin
- Multilevel feedback queues

- What scheduling algorithm does Unix use? Why?

10/12/17 CS 318 — Midterm Review 27

Deadlock

- Deadlock happens when processes are waiting on each other and
cannot make progress

« What are the conditions for deadlock?

- Mutual exclusion
- Hold and wait

- No preemption

- Circular wait

- How to visualize, represent abstractly?

- Resource allocation graph (RAG)
- Waits for graph (WFQG)

10/12/17 CS 318 — Midterm Review 28

Deadlock Approaches

* Dealing with deadlock

- Ignore it

- Prevent it (prevent one of the four conditions)

- Avoid it (have tight control over resource allocation)
- Detect and recover from it

- What is the Banker’s algorithm?
- Which of the four approaches above does it implement?

10/12/17 CS 318 — Midterm Review 29

Race Conditions

int x = 0;
int i, Jj;

void AddToX() {
for (i = 0; i < 100; i++) x++;

}

void SubFromX() {
for (j = 0; j < 100; j++) x—-;
}

- What is the range of possible values for x? Why?

10/12/17 CS 318 — Midterm Review 30

Synchronization

Class Event {
void Signal () {

}
void Wait () {

« Event synchronization (e.g., Win32)

+ Event::Wait blocks if and only if Event is unsignaled

+ Event::Signal makes Event signaled, wakes up blocked threads
« Once signalled, an Event remains signaled until deleted

+ Use locks and condition variables

10/12/17 CS 318 — Midterm Review 31

